
Enhanced CKKS Bootstrapping with Generalized Polynomial
Composites Approximation

Seonhong Min1 , Joon-woo Lee2 , and Yongsoo Song1

1 Seoul National University, Seoul, Republic of Korea
{minsh,y.song}@snu.ac.kr

2 Chung-Ang University, Seoul, Republic of Korea
jwlee2815@cau.ac.kr

Abstract. Bootstrapping in approximate homomorphic encryption involves evaluating the modu-
lar reduction function. Traditional methods decompose the modular reduction function into three
components: scaled cosine, double-angle formula, and inverse sine. While these approaches offer a
strong trade-off between computational cost and level consumption, they lack flexibility in param-
eterization.
In this work, we propose a new method to decompose the modular reduction function with improved
parameterization, generalizing prior trigonometric approaches. Numerical experiments demonstrate
that our method achieves near-optimal approximation errors. Additionally, we introduce a technique
that integrates the rescaling operation into matrix operations during bootstrapping, further reducing
computational overhead.
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1 Introduction

Homomorphic Encryption (HE) is an encryption scheme that allows an unlimited number of arbitrary
function evaluations on encrypted data. Since Gentry’s groundbreaking construction [12], numerous HE
constructions have been developed based on the Learning with Errors (LWE) problem [24] and its ring
variant, the Ring Learning with Errors (RLWE) problem [22]. The most practical HE schemes to date
include BGV [4], BFV [11], GSW [13], TFHE/FHEW [9, 10], and CKKS [8].

Among these schemes, CKKS scheme possesses an intrinsic functionality for supporting fixed-point
arithmetic in a single-instruction-multiple-data (SIMD) manner for real and complex data. However, as
a leveled HE scheme, it can only evaluate circuits of limited depth, as each multiplication consumes
one level. To enable further computation, a homomorphic evaluation of the decryption circuit, known as
bootstrapping, is required to refresh the ciphertext in the lowest level. However, the bootstrapping process
can consumes a significant amount of modulus. Consequently, substantial efforts have been made to reduce
the overall modulus overhead of the bootstrapping. The primary bottleneck in modulus consumption lies
in the polynomial approximation of the modulo function. Therefore, reducing the level consumption
during the modulo function evaluation while optimizing the bootstrapping process is critical.

Let Q0 denote the ciphertext modulus at level zero, ∆ the scaling factor, and h the Hamming weight of
the secret. When the modulus of the level-zero ciphertext is raised, the plaintext of the raised ciphertext
becomes m/Q0+I, where m is a message satisfying ∥m∥∞ ≤ ∆ and ∥I∥∞ < K = O(

√
h). In this process,

an auxiliary integer polynomial is added to the small scaled message coefficient after raising the modu-
lus. During bootstrapping, the integer part of each coefficient must be removed to restore the message
coefficient in the encrypted state. To achieve this, the CoeffToSlot operation is performed to convert the
plaintext’s coefficients into slots, then the function t(x) = x−⌊x⌉ is homomorphically computed. Finally,
the SlotToCoeff operation converts the slots back into coefficients. The t(x) operation is non-arithmetic
and must be approximated using a polynomial. This approximation significantly impacts bootstrapping
precision, runtime, and total depth. Two approaches are commonly used for this approximation. One
direction is to write t(x) as a function related to trigonometric functions, then approximating it with
polynomials. The other is to directly approximate t(x) as a polynomial.
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Approximation of t(x) Many studies on CKKS bootstrapping [15, 2, 20] have decomposed t(x) as a
composition of trigonometric functions to reduce the number of the key-switching operations. For example,
Han and Ki [15] approximated t(x) by composing cos( 2π

2ℓ
(x− 1

4 )) with ℓ double-angle formula iterations.
This method derives the scaled sine function by dividing it by 2π, resulting in a function sufficiently
close to t(x) in regions near the integers. Building on this, Lee et al. [20] introduced an additional step
involving the inverse sine function after the sine evaluation. This additional step completely removes the
difference between t(x) and the scaled sine function.

Alternatively, Lee et al. [21] proposed directly approximating t(x) with a single polynomial to reduce
the depth of bootstrapping. They also introduced an efficient polynomial evaluation algorithm called the
lazy-BSGS algorithm, which minimizes the time-consuming key-switching operations, particularly for odd
polynomials. Since t(x) is an odd function, its direct approximation can be computed more efficiently.
However, due to the high degree of the polynomial, this approach still requires a significant number of
key-switching operations.

Although these methods effectively reduces homomorphic operations and time complexity, leveraging
the decomposition of the target function t(x) and the oddness of t(x) for each, it remains unclear whether
those two optimizations can be employed simultaneously. Therefore, combining both techniques could be
a promising direction to further reduce time complexity.

Rescaling Operation As an independent issue in bootstrapping, several rescaling processes are re-
quired due to the multiple homomorphic multiplications involved. However, since the rescaling operation
necessitates several NTT/INTT operations, it is beneficial to minimize the number of these operations
during the rescaling process. In previous HE research, hoisting techniques have been proposed in various
forms to reduce the number of operations in each homomorphic computation. The hoisting technique is
a general approach that rearranges the order of sub-operation and merges operations with similar func-
tionalities. Recently, to reduce the number of operations in bootstrapping, Bossuat et al. [2] proposed the
double hoisting technique, which decreases the number of Decomp and ModDown processes during the
CoeffToSlot and SlotToCoeff operations. Building on this, it would be valuable to devise another hoisting
technique specifically aimed at reducing the number of operations in the rescaling process, particularly
when additional homomorphic operations are applied just prior to the rescaling step.

1.1 Our Contribution

New Approximation Method for t(x) In this paper, we generalize the sine-based approximation
method to provide a more refined parameterization for CKKS bootstrapping. Our generalized approach
decomposes the target function t(x) into two functions: f1, which performs the role of a scaled cosine
function, and f2, which incorporates both the double angle formula and inverse sine.

More specifically, we define f1 as a function that maps the input intervals into r distinct intervals
for a given parameter r. This heuristic is inspired by the scaled cosine function in previous sine-based
methods, which also maps input intervals into multiple distinct intervals. While there are many possible
choices for f1 and f2, we select f1 as the (shifted) sine function, f1 = sin(2πx/r), and f2 as a composition
of the r-th angle formula and the inverse sine function.

This generalization allows a more versatile choice of r compared to the previous methods, where r was
restricted to power of two. Consequently, this flexibility enables a more adaptable selection of polynomial
degrees in the EvalMod step. Additionally, the oddity and sparsity of the approximations of our chosen
f1 and f2 reduce computational costs during the polynomial evaluation.

Furthermore, we numerically determine the lower bound of the approximation error for f1 and demon-
strate that our choice of f1 is nearly optimal. Among the functions that map input intervals into r distinct
intervals, there exists one with the minimal approximation error for a fixed polynomial degree. We identify
a critical relationship between this ‘most periodic function’ and its best approximation polynomial. Using
this relation, we compute the best periodic function and its corresponding approximation polynomial via
a least-squares optimization problem in polynomial time, ultimately obtaining the lower bound of the
approximation error.
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Improved Linear Transformation We also improve the matrix-vector multiplication algorithm for
leveled HE schemes. The main bottleneck in bootstrapping is CoeffToSlot, which involves a linear trans-
formation, making the acceleration of matrix-vector multiplication critical for achieving better efficiency
during bootstrapping. In prior works, the primary improvements focused on reducing the number of unit
operations. For instance, the hoisting technique minimizes the number of gadget decompositions required
when computing rotations of a single ciphertext [14], and the double hoisting baby-step giant-step (BSGS)
matrix multiplication algorithm optimizes the number of divisions by special modulus [2].

Our approach introduces a new improvement by reducing the complexity of the unit operation itself.
In our improved double hoisting BSGS algorithm, the rescaling operation is integrated into the matrix
multiplication process, rather than being performed at the end of the algorithm. This modification exploits
the efficiency of the NTT at the lower levels. The proposed method improves the theoretical complexity
compared to prior work by a factor of approximately (L+N )/L, where L represents the number of the
prime factors of the modulus at the current level, and N denotes the number of the prime factors divided
during the algorithm.

1.2 Related Works

There have been a few attempts to reduce modulus consumption during bootstrapping that do not rely
on polynomial approximation. Kim et al. [19] proposed using a smaller scaling factor for CoeffToSlot,
based on the idea that it is sufficient to correctly extract the I term for bootstrapping. Bae et al. [1]
introduced a high-precision bootstrapping method with shallow depth by iteratively bootstrapping from
the highest to the lowest bits of the message through low-precision bootstrapping.

Meanwhile, the cumbersome key-switching operation in the CKKS scheme has been accelerated via
algorithmic techniques. Kim et al. [18] proposed a space-time complexity tradeoff method that leverages
the smallness of the gadget decomposition. This method reduces the cost of NTT-based computations
from quadratic to linear, thereby accelerating key-switching at higher levels. On the other hand, the
key-switching at lower levels has been improved by introducing the unused upper bits of the modulus
into the special modulus without requiring additional key-switching keys [16], achieved through a simple
modification to the gadget decomposition.

We remark that all these improvements are orthogonal to our approach and can be integrated with
our proposed method as well.

2 Background

2.1 Notations

Let N be a power of two and Q be an integer. R = Z[X]/Φ2N (X) = Z[X]/(XN + 1) denotes the 2N -th
cyclotomic polynomial ring. F(a, b) denotes a set of arbitrary functions defined over the interval [a, b].
For a set S, we denote the cardinality of the set by |S|. We denote a uniform distribution over a set S by
U(S). If S is a finite interval [a, b], we write U(a, b) to denote a uniform distribution over [a, b]. Rotation
of a vector v by index i is denoted by v(i). i-times of iterative composition of a function f is denoted by
f◦i, i.e., f◦i = f ◦ f ◦ · · · ◦ f .

2.2 Homomorphic Encryption for Arithmetic of Approximate Numbers (CKKS)

The Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme is a homomorphic encryption scheme
that supports arithmetic operations on real and complex numbers [8]. Since the CKKS scheme operates
on data with approximation noise, it does not remove the noise added for security during decryption of
the ciphertext.

The CKKS scheme supports single-instruction-multiple-data (SIMD) operations. In other words, a
vector containing multiple data elements is encrypted into a single ciphertext, and each homomorphic
operation is applied to all encrypted data in the ciphertext simultaneously. Each element in the vector
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within the ciphertext is referred to as a slot. The maximum number of slots is N/2, where N is the degree
of the base ring Rq = R/qR in the ciphertext. If the number of required data elements is smaller than
N/2, a smaller number of slots can be used to achieve more efficient bootstrapping, and this number is
set to a power-of-two integer. We denote the number of slots as n.

To encode a vector of real or complex approximate numbers, we first convert the vector into a polyno-
mial with real coefficients and multiply it by a large constant then round to integer. For the 2N -th root
of unity ζ, we find a ring polynomial m(X) ∈ R[X]/(XN +1) such that m(ζ5

j

) = v[j]n and m(ζ5j ) = v[j]n
for (0 ≤ j < N/2), given a vector v = (vi)i∈[n]. The polynomial m(X) is then scaled by a sufficiently
large constant and rounded to an integer polynomial, which resides in R and is ready to be added to an
empty ciphertext. This large scaling factor determines the precision of the data and is denoted as ∆. We
note that the encoded vector can be ‘rotated’ slotwise using automorphisms ψi : X 7→ X5i .

One of the core subroutines in homomorphic operations is the key-switching operation. Assume the
input is a ring element c, and the old and new secret keys are s and s′, respectively. The output of the
key-switching operation is a pair of ring elements (b, a) such that c · s = b + a · s′ + e, where e is a
small noise. This operation does not use the secret keys directly but requires the key-switching key swk.
The key-switching operation is essential for homomorphic multiplication between ciphertexts, rotations,
and conjugations, and it constitutes the majority of the overall computational cost in homomorphic
computations. Therefore, reducing the number of key-switching operations is crucial for improving the
efficiency of homomorphic computations.

Now, we describe the core algorithms of CKKS cryptosystem below.

– Ecd(v = (vi)i∈[n] ∈ Cn, ∆) → m: Compute m̃ ∈ R[X]/(XN + 1) such that m(ζ5
i

) = v[i]n and
m(ζ5i) = v[i]n for i ∈ [N ]. Then output m = ⌊∆ · m̃⌉ ∈ R.

– Dcd(m ∈ R,∆)→ v: Compute m̃ = m/∆ ∈ R[X]/(XN + 1) and output v = (m̃(ζ5
i

))i∈[n].

– Enc(m ∈ R, pk = (bpub, apub) ∈ RQL
, ℓ) → (b, a): Sample v, e0, e1 ← χ and compute (b, a) = v ·

([bpub]Qℓ
, [apub]Qℓ

)+(m+e0, e1) ∈ RQℓ
where χ is the error distribution over R. Output ct = (b′, a′) ∈

R2
Qℓ

.

– Dec(ct = (b, a) ∈ R2
Qℓ
, s, ℓ)→ m: Output m = b+ a · s.

2.3 Gadget Decomposition and Rotation Operation

Given an RLWE ciphertext (b, a) ∈ RQ under secret t, the key-switching is an operation which homomor-
phically computes b+ at using an encryption of the previous key t under new key s. This can be realized
with two common toolkits for lattice-based cryptography, the gadget decomposition and the special modu-
lus [4, 8, 11, 9]. We begin by explaining the gadget decomposition briefly. Given a modulus Q and a fixed
vector g = (gi)1≤i≤β ∈ Rβ called the gadget vector, the gadget decomposition is a function h : RQ 7→ RβQ
which satisfies the following conditions for any a ∈ RQ, its decomposition h(a) := a = (ai)1≤i≤β ∈ RQ.

1. ⟨a,g⟩ =
∑β
i=1 ai · gi = a (mod Q)

2. ∥ai∥∞ ≤ Bg for some small Bg.

Using these two properties of gadget decomposition, we can define the key-switching key kskt→s and
the key-switching operation as follows, for a special modulus P .

– kskt→s = (u0,u1) where u0 = −s · u1 + P · t · g + e ∈ RβPQ, u1 ← U(RPQ)β and e ← χβ for some
small error distribution χ.

– KeySwitch((b, a), kskt→s) → (b′, a′): Compute (b′, a′) = (b + ⌊P−1 · v0⌉, ⌊P−1 · v1⌉) for (v0, v1) =
h(a)⊤ · kskt→s.
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It can be easily checked that this key-switching algorithm is valid. In the following equations, ernd denotes
the rounding error.

b′ + a′ · s = b+
1

P
⟨h(a),u0 + s · u1⟩+ ernd (mod Q)

= b+
1

P
⟨h(a), P · t · g + e⟩+ ernd (mod Q)

= b+ a · t+ 1

P
⟨h(a), e⟩+ ernd (mod Q)

Therefore, the final error ernd + 1
P ⟨h(a), e⟩ is bounded by βNBg/P · ∥e∥∞ + ∥ernd∥∞. Consequently,

setting P sufficiently big, the key-switching operation can be executed with noise with only a size of the
rounding error.

In CKKS, the homomorphic rotation operation can be realized with the key-switching operation. To
be precise, given a ciphertext (b, a) ∈ RQ under secret t, the rotation by index i can be computed as
follows:

KeySwitch((ψi(b), ψi(a)), kskψi(t)→t).

2.4 Bootstrapping of CKKS

The bootstrapping for CKKS scheme was first introduced in [6], which aims to increase the level of the
ciphertext for the sake of further computations. Bootstrapping of CKKS scheme consists of five steps:
ModRaise, SubSum, CoeffToSlot, EvalMod, SlotToCoeff.

Modulus Raising (ModRaise): To bootstrap a CKKS encryption ct = (b, a) of a message m, we first
ensure the ciphertext is at level 0 with ciphertext modulus Q0. Since b + a · s ≈ m (mod Q0), where
s denotes the secret, b + as ≈ m + Q0I(X) for some polynomial I(X) ∈ R. It is worth noting that
∥I(X)∥∞ < K for some integer K, due to the smallness of the secret s. When the ciphertext level is
raised to L with ciphertext modulus QL ≫ Q0, the resulting ciphertext ct encrypts m + Q0I. In the
subsequent bootstrapping steps, this additional Q0I(X) factor is removed by evaluating the modulo
function homomorphically.

Trace Evaluation (SubSum): This step is necessary only when the ciphertext is sparsely packed. In
such cases, the plaintext resides in the subring Z[Y ]/(Y 2n + 1), where n is the number of the slots, and
Y = XN/2n. However, Q0I factor is not an element of the subring. To address this, the (N/2n)i-th
coefficients, for 0 ≤ i < 2n, must be extracted homomorphically. This can be achieved efficiently by
evaluating a trace-like map. After this step, we obtain m(Y ) +Q0Ĩ(Y ) ∈ Z[Y ]/(Y 2n + 1).

Linear Transformation (CoeffToSlot): Observe that the additional Q0I part is added to the coefficient,
not the message itself. Therefore, to evaluate modulo function in SIMD manner, the coefficients needs to
be moved to the slots. This step involves a homomorphic evaluation of the encoding algorithm, which is
a matrix multiplication between the message vector and the encoding matrix.

Modulo Function Evaulation (EvalMod): After the linear transformation, we obtain one or two
ciphertexts encrypting the coefficients of the polynomial m/Q0 + I. As described earlier, the goal is to
evaluate the modulo function t(x) = x − ⌊x⌉ homomorphically over the interval [−K,K]. Since t(x) is
neither a polynomial nor an analytic function, it must be approximated using a polynomial. For better
efficiency, we assume the message m is sufficiently close to the origin, i.e. the ratio between m and Q0 is
small. This assumption allows the modulo function to be approximated with a lower-degree polynomial,
improving time complexity.

Inverse Linear Transformation (SlotToCoeff): After evaluating the modulo function, the cipher-
text(s) encrypt the coefficients of m with a few remaining levels. To complete the bootstrapping, the
coefficients are moved back from the slots to the coefficient representation. This step involves multiplying
the decoding matrix to the ciphertext(s), mirroring the CoeffToSlot step.

The most challenging aspect of CKKS bootstrapping is the approximation of modulo function. Two
primary methods are used:direct approximation [21] and sine-based approximation [6, 5, 15, 20, 17, 3]. Let
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K represent the probabilistic bound of ∥I∥∞ from ModRaise and ε denote the ratio between the bound of
the message and the modulus Q0 at the lowest level. In direct approximation method, the target function
t(x) = x−⌊x⌉ is directly approximated over the 2K−1 intervals (i−ε, i+ε) for −K < i < K, using least-
squares approximation. While this approach achieves low approximation error, it requires a high-degree
polynomial, resulting in significant computational complexity. The sine approximation method reduces
computational complexity by sacrificing some multiplicative levels. In sine method, the target function
t(x) is decomposed into three functions: a scaled cosine, double-angle formulae and (optionally) an inverse
sine function. Specifically, the scale cosine cos( 2π(x−0.25)

r ) is evaluated first, where r is a power-of-two.
Then the double-angle formula is applied to the result log r times to obtain sin(2πx). Finally, 1

2π arcsin is
evaluated to obtain t(x) = x− ⌊x⌉. Each polynomial in this decomposition plays a distinct role. Firstly,
the scaled cosine maps the 2K−1 intervals into r disjoint intervals. Then, the double-angle formulae maps
these r intervals into a single interval. Finally, the inverse sine compensates for the difference between
the sine function and modulo function.

3 New Approach to Approximate Polynomial for EvalMod

In this section, we propose a new approximation method for decomposing the target function t(x) in
CKKS bootstrapping, generalizing prior methods. Our approach enables improved parameterization and
benefits from the efficient evaluation of odd functions, as highlighted in [21]. Additionally, we numerically
demonstrate that the approximation error of our method is near-optimal among approaches with a similar
pipeline.

3.1 Our Method

The primary objective of EvalMod is to approximate the modular reduction function t(x) with polynomials
over the input interval ∪−K<i<K(i− ε, i+ ε), where ε is the message bound, and K is the probabilistic
bound. In previous approximation methods using trigonometry functions, the target function t(x) is
decomposed into three functions: scaled cosine, double-angle formula and inverse sine. More precisely, we
can write t(x) = t3◦t◦(log r)2 ◦t1(x) where t3(x) = 1

2π sin−1 (x), t2(x) = 2x2−1 and t1(x) = cos
(

2π(x−1/4)
r

)
,

for some small power-of-two r > 0. Generally, as r increases, the scaled cosine function cos(2πx/r) can be
approximated with lower-degree polynomials [1]. Consequently, larger values of r reduce the arithmetic
operations required to compute t(x). However, to avoid wasting multiplicative levels when computing
the r-th angle formula, r must be a power-of-two. Similarly, the inverse sine function is often over-
approximated due to its level consumption. These constraints limit the flexibility of parameterization in
this approach.

To address these limitations, we decompose the modular reduction function t(x) into two functions,
i.e., t(x) = f2(f1(x)). In our method, f1(x) serves a similar purpose to the scaled cosine function in
the sine method: it maps the approximation intervals into r disjoint intervals. Subsequently, f2(x) maps
these r intervals into a single interval, ensuring that f2 ◦f1(x) = t(x). Notably, f2(x) effectively combines
the roles of the double angle formula and the inverse sine function. While there are numerous potential
choices for f1 and f2, we select trigonometric functions to exploit their simplicity and suitability for this
task. Below, we detail our specific choices for f1 and f2, taking into the oddity of r.

Odd r. If r is odd, we choose f1(x) = sin(2πx/r). It is straightforward to show that f1 is an odd function
since sin(−2πx/r) = − sin(2πx/r). Next, we demonstrate that f1 maps the input approximation intervals
into r intervals. As f1 is periodic with a period of r, it suffices to show that f1([−ε, ε]), . . . , f1([r − 1 −
ε, r − 1 + ε]) do not intersect. Given the smallness of ε, we only need to verify that there is no repeating
values in the sequence sin(2π ·0/r), sin(2π ·1/r), . . . , sin(2π ·(r−1)/r). Suppose sin(2π ·i/r) = sin(2π ·j/r)
for some 0 ≤ i ̸= j < r. This implies that 2π · j/r + 2π · i/r is either π or 3π. Simplifying this relation,
we find that (i + j)/r = 1

2 or 3
2 . However, due to the oddness of r, such integers i and j cannot exist,

proving our claim.
For f2, we choose it as a composition of the r-th angle formula for sine and the inverse sine, scaled by

1
2π . Applying the r-th angle formula to f1 results in sin(2πx). Evaluating the inverse sine then returns
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[2πx]2π, and scaling it by 1
2π gives t(x). Notably, f2 is an odd function since both the r-th angle formula

and the inverse sine are odd functions.

Even r. When r is even, f1(x) = sin(2πx/r) cannot be used directly as in the odd r case, because
the output intervals of f1 would intersect. Instead, we shift the input by 1

4 , choosing f1(x) = sin(2π(x+
0.25)/r). As with the odd r case, this function is periodic with a period of r. To prove that there are
no repeating values in sin(2π · 0.25/r), sin(2π · 1.25/r), . . . sin(2π(r − 0.75)/r). suppose that for 0 ≤ i ̸=
j < r, sin(2π · (i + 0.25)/r) = sin(2π · (j + 0.25)/r). Analogously to the odd r case, this implies that
2π · (i + 0.25)/r + 2π(j + 0.25)/r is either π or 3π. This simplifies to 2(i + j) + 1 = r or 3r. Since r is
even, such integers i and j cannot exist, proving that the output intervals do not intersect.

For f2, we define it as a composition of the r-th angle formula for cosine and inverse sine, scaled by
± 1

2π . Using the identity

f1(x) = sin

(
2π
x+ 1

4

r

)
= cos

(
2π
x− 1

4 (r − 1)

r

)
,

applying the r-th angle formula for cosine to f1 results in

cos(2πx− π

2
(r − 1)) = (−1)

r+1
2 sin(2πx).

Applying the inverse sine then gives ±2π · t(x), and scaling by ± 1
2π yields t(x). Since the r-th angle

formula is even, f2 is an even function for even r.
To apply these functions in bootstrapping, we approximate f1 and f2 using the multi-interval Remez

algorithm proposed by Lee et al. [20]. Note that any other approximation methods can be utilized.
Specifically, we approximate f1 over the multi-interval ∪−K<i<K(i− ϵ, i+ ϵ), and f2 over the range of f1.

For odd r, the approximation polynomials of f1 and f2 derived from the multi-interval Remez algo-
rithm are odd polynomials, due to the symmetry of the input intervals and the oddity of the functions.
Conversely, for even r, the best approximation polynomial of f1 may not be odd, as the input intervals are
not necessarily symmetric about the origin. While using only odd polynomials as a basis to approximate
f1 can yield odd polynomials, it may increase the approximation error. This trade-off can be advantageous
for certain parameters. On the other hand, the best approximation polynomial for f2 is always an even
polynomial.

3.2 Optimizations in the Bootstrapping

Now we discuss how our choice of f1 and f2 can be applied and optimized during the bootstrapping
process.

Evaluation of f2 We describe an efficient approach to evaluating f2. f2 can be decomposed similar to
previous sine-based methods [15, 20], and moreover its approximation polynomial is sparse. Recall that
f2 is essentially a composition of the r-th angle formula and the inverse sine. If r = 2k · r′, where r′ is
odd, the approximation polynomial p2 of f2 can be expressed as:

p2 = q ◦ (−1)
r′−1

2 Tr′ ◦ T ◦k
2 ,

where q is the approximation polynomial of the inverse sine. This decomposition allows p2 to be computed
by iteratively applying T2 to the input k times, followed by evaluating q◦(−1) r′−1

2 Tr′ , without consuming
any additional multiplicative levels.

Furthermore, we emphasize that q ◦ (−1) r′−1
2 Tr′ is an odd sparse polynomial, which reduces the

required ring arithmetic compared to arbitrary polynomials of the same degree. Specifically, let q, and
odd polynomial of degree d, be expressed in the Chebyshev basis as q =

∑(d+1)/2
i=1 qi · T2i−1. Then,

q ◦ (−1) r′−1
2 Tr′ can be written as

(−1)
r′−1

2 ·
(d+1)/2∑
i=1

qi · Tr′(2i−1)
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using the properties of Chebyshev polynomials. As a result, instead of generating all d · r′ basis functions
for computation, only d basis functions are needed,significantly reducing computational overhead.

Scaling For high-degree polynomial evaluations in CKKS, input data must be confined within the range
[−1, 1] to avoid overflow. To achieve this, the input ciphertext of EvalMod is scaled by a constant during the
Coeffs2Slots step, ensuring that the message values lie within [−1, 1]. In prior works, the input ciphertext
was scaled by a factor of 1/K, assuming the message values were confined within [−K +1− ε,K − 1+ ε]
with overwhelming probability. We propose a refinement by using the scailng factor 1/(K − 0.5). First,
observe that the input data is confined to the intervals [−K + 1 − ε,K − 1 + ε] when r is odd, and
[−K+ 5

4 − ε,K−
3
4 + ε] when r is even. Since ε≪ 1

4 in typical scenarios, the input data for our algorithm
is always within [−K +0.5,K − 0.5]. Thus, scaling by 1/K − 0.5 guarantees that input data for EvalMod
remains within the desired range [−1, 1].

3.3 Measuring Goodness of New Method

In this section, we measure the effectiveness of our method numerically by estimating the lower bound
of the approximation noise. Recall that f1 is chosen as a function that maps 2K − 1 intervals into r
intervals and is periodic when restricted to subsets of the input intervals. Specifically, for some disjoint
subsets I1, . . . , Ir of {−K+1, . . . ,K− 1} such that ∪1≤i≤rIi = {−K+1, . . . ,K− 1}, f1 is periodic when
restricted to each interval ∪j∈Ii(j − ε, j + ε). Now, suppose that the subsets I1, . . . , Ir are fixed. Recall
that the degree of the approximation polynomial for f1 is typically higher than that of f2. Thus, it is
crucial to select f1 such that it can be approximated with a polynomial with the smallest possible degree
among all candidates for f1. In the following, we prove that it is possible to identify f1 with the minimal
approximation error in the L2 norm for a given polynomial degree. To achieve this, we first define the
mean and error variance for the polynomial approximation of a periodic function over a given subset.

Definition 1. For ε > 0 and a continuous function f ∈ F(−ε, ε), a polynomial p with degree d and a
subset S of Z, we define

E(t, p;S) = 1

|S|
∑
i∈S

p(t− i)

Var(f, p;S) =
∑
i∈S

∫ ε

−ε
(f(t)− p(t− i))2dt.

Given the subsets I1, . . . , Ir and the polynomial degree d, our goal is to find functions gi and a degree
d polynomial p that minimize

∑
1≤i≤r Var(gi, p; Ii). Then, f1 can be defined as a piecewise function

f(x) = gi(x) for x ∈ [j−ε, j+ε] with j ∈ Ii. However, directly minimizing
∑

1≤i≤r Var(gi, p; Ii) results in
a trivial solution where p = g1 = . . . gr = b for some constant b, ensuring Var(gi, p; Ii) = 0 for all 1 ≤ i ≤ r.
To avoid this trivial solution, we fix two points of the polynomial p to constrain the minimization problem.
Fixing any two points with distinct y-axis values is sufficient to guarantee a correct result, as the solution
differs only by scale. Thus, we set E(±ε, p; I) = ±ε and scale the polynomial after approximation. This
constraint eliminates two degrees of freedom in the polynomial approximation without fixing specific
evaluation points, ensuring an effective approximation.

Under this constraint, there exist functions g∗d,i and a polynomial p∗d,r that minimize
∑

1≤i≤r Var(gi, p; I)
when gi = g∗d,i and p = p∗d,r.

Specifically,
min

E(±ε,p;I1)=±ε
deg(p)=d

∑
1≤i≤r

Var(gi, p; Ii) =
∑

1≤i≤r

Var(g∗d,i, p
∗
d,r; Ii). (1)

Next, we show that such g∗d,i’s are polynomials and they can be computed as a simple least-squares op-
timization problem. We begin by proving the following lemma, which establishes the relationship between
g∗d,i and p∗d,r.
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Lemma 1. For any positive integer d > 0 and ε ∈ (0, 1/2), let g∗d,i (1 ≤ i ≤ r) and p∗d,r be the solution
of the minimization problem 1. Then, the following equation holds for any 1 ≤ i ≤ r:

g∗d,i = E(x, p∗d,r; Ii), x ∈ [−ε, ε].

Proof. Suppose we are given the approximation polynomial p∗d,r. Begin by considering the following
optimization problem over a uniform partition (x1, . . . , xn) of [−ε, ε] where the interval width is δ =
x2 − x1 = · · · = xn − xn−1.

min
g1,1,...,g1,n,...,
gr,1,...,gr,n

r∑
i=1

∑
j∈Ii

n∑
k=1

(gi,k − p∗d,r(xk − j))2 · δ

Since this is a convex problem, the gradient of the target function at the solution is a zero vector. The
partial derivative of the target function with respect to gi,k is

δ

(
|Ii|gi,k −

∑
i∈I

p∗d,r(xk − j)

)
.

Thus, the minimizer (g̃i,k)i∈[r],k∈[n] satisfies

g̃i,k =
1

|Ii|
∑
j∈I

p∗d,r(xk − j).

This minimizer g̃i,k is essentially the mean of the polynomial p∗d,r over the set Ii. Next, consider the
following optimization problem in the continuous setting:

min
g1,...,gr

r∑
i=1

Var(gi, p
∗
d,r; Ii) =

r∑
i=1

∑
j∈Ii

∫ ε

−ε
(gi(t)− p∗d,r(t− j))2dt.

Let (g̃d,i)i∈[r] represent the minimizer of this continuous fitting problem. By letting n → ∞ in the
discrete problem 3.3, gd,i(x) converges to the mean of the data, i.e., g̃d,i(x) = E(x, p∗d,r, Ii) for 1 ≤ i ≤ r.
Then, using the optimality of both solutions, we infer:

r∑
i=1

Var(g̃d,i, p
∗
d,r; Ii) ≤

r∑
i=1

Var(g∗d,i, p
∗
d,r; Ii) ≤

r∑
i=1

Var(g̃d,i, p
∗
d,r; Ii).

The left-hand inequality follows from the optimality of (g̃d,i)i∈[r], and the right-hand inequality follows
from the optimality of (g∗d,r)i∈[r]. Since the given problem is a convex problem, the universal optimizer is
unique, and therefore g∗d,i(x) = g̃d,i(x) = E(x, p∗d,r; Ii) for 1 ≤ i ≤ r.

Using the result of this lemma, we show that the degree-d polynomial p∗d,r with the least approximation
error can be computed efficiently. Let φi (0 ≤ i ≤ d) denote the polynomial basis, and let φij (0 ≤ j ≤ d)
denote the average of φj over the interval Ii. i.e., φij(x) = E(x, φj ; Ii) (0 ≤ j ≤ d). Now, if p∗d,r =∑d
i=0 ci · φi for coefficients ci ∈ R, then

g∗d,i =
1

|Ii|
∑
k∈Ii

d∑
j=0

cj · φj =
d∑
j=0

cj · φij

for all 1 ≤ i ≤ r. Substituting this into the original minimization problem reduces into a problem of
finding the coefficients c0, . . . , cd ∈ R which minimize

r∑
i=1

Var
( d∑
j=0

cjφ
i
j ,

d∑
j=0

cjφj ; Ii
)
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(a) Approximation error of our method, and the
optimal error when r = 5

(b) Approximation error of Lee et al. [20], our
method and the optimal error when r = 8

Fig. 1: Comparison of the approximation error between our method, the best approximation method [20]
and the optimal error.

with a constraint
∑d
i=0 ciφ

1
i (±ε) = ±ε. We remark that the solution to this problem can be obtained

numerically by minimizing

g(c) =

r∑
i=1

Var
( d∑
j=0

cjφ
i
j ,

d∑
j=0

cjφj ; Ii
)

+ λ
[
(

d∑
i=0

ciφ
1
i (ε)− ε)2 + (

d∑
i=0

ciφ
1
i (−ε) + ε)2

]
for sufficiently big λ > 0. Since g is a convex function, the partial derivative ∂

∂ci
g(c∗) = 0 (0 ≤ i ≤ d) for

the minimizer c∗. Using this fact, we can formulate a linear system of (
∑r
i=1 Ti + λU) · c∗ = λv to solve

the given minimization problem in polynomial time, where

Tm =

[ ∑
k∈Im

∫ ε

−ε
(φmi (t)− φi(t− k))(φmj (t)− φj(t− k))dt

]
i,j

,

U =
[
φ1
i (ε) · φ1

j (ε) + φ1
i (−ε) · φ1

j (−ε)
]
i,j

and

v = [ε · (φ1
i (ε)− φ1

i (−ε))]i.

We evaluate the effectiveness of our method by comparing it to the approximation lower bound
obtained from the least-squares problem discussed earlier. For this experiment, we fixed K = 26 and
ϵ = 2−8. Fig. 1a displays the L2-norm approximation error of our method alongside the lower bound of the
error from Sec. 3.3, using the same sets {I1, . . . , Ir} as in our method. As shown in the graph, our method
achieves a similar approximation error while consuming only a few additional degrees, demonstrating
near-optimality. Similarly, the L2-norm approximation errors for r = 8, comparing to our method, Lee et
al.’s method [20], and the lower bound, are shown in Fig. 1b. Also for r = 5 case, our method achieves
comparable approximation errors with only a few additional degrees, alongside the results of the prior
method. Notably, our method displays a slightly smaller approximation error, by a few bits, compared to
[20].

We also present possible parameter sets for our method and Lee et al.’s [20], achieving the same
precision. To ensure a fair comparison, we optimized the polynomial degrees in both methods. Specifically,
we first fixed the degree of the inverse sine approximation polynomial. Then, since the final precision
cannot exceed the precision of the inverse sine approximation, we then determine the smallest degree
approximation polynomials for f1 and the scaled cosine (Lee et al.’s method). Using ℓ2 (the number of
levels consumed during f2 evaluation in our method) and the number of levels consumed during the double
angle formula and inverse sine evaluation in Lee et al.’s method, we selected the optimal r following the
heuristic in Sec. 3.2.
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Precision ℓ2
Ours [20]

r degree set r degree set

36 bits

2 1 (183, 3) 1 (183, 3)
3 2 (107, 2, 3) 2 (107, 2, 3)
4 5 (55, 15) 4 (65, 2, 2, 3)
5 10 (37, 2, 15) 8 (43, 2, 2, 2, 3)

50 bits

3 1 (195, 5) 1 (195, 5)
4 3 (87, 15) 2 (117, 2, 5)
5 6 (57, 2, 15) 4 (73, 2, 2, 5)
6 12 (39, 2, 2, 15) 8 (49, 2, 2, 2, 5)

Table 1: Approximation polynomial degrees for our method and the previous method [20].

Table 1 presents the parameters for both 36-bit and 50-bit precision. As expected, the degree of the
approximation polynomials is reduced both cases. Furthermore, our method benefits from the efficient
evaluation of odd/even polynomials, unlike Lee et al. [20]’s work, making polynomial evaluation even more
efficient. Additionally, when r = 2, our method saves one level during polynomial evaluation compared
to the prior method.

4 Improved Linear Transformation

In this section, we improve the time complexity of the matrix evaluation algorithm. We observe that the
rescaling can be fused into the outer loop of the BSGS algorithm. Subsequently, the number of (i)NTTs
during the linear transformation is reduced. In the following subsections, the number of the slots and the
ring dimension are denoted by n and N , respectively.

4.1 Previous Methods

We commence by briefly explaining the underlying idea of the previous matrix-vector multiplication
algorithms. In the context of SIMD arithmetic, the matrix multiplication can be realized with a ‘diagonal
packing’ of the matrix, and rotations of the ciphertext. Suppose that we multiply an n × n matrix
M = (mi,j)i,j∈[n] to an encryption of vector x = (x)i∈[n]. Then, we can write the matrix multiplication
as the sum of the point-wise multiplications between diagonal vectors Mj = (mj,[n−i+j]n)j∈[n] of M and
the rotations x(i) = (x[n−i+j]n)j∈[n] of x.


m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1

...
...

. . .
...

mn−1,0 mn−1,1 · · · mn−1,n−1

 ·

x0
x1
...

xn−1



=

n∑
i=1


m0,n−i
m1,n−i+1

...
mn−1,n−1−i

⊙

xn−i
xn−i+1

...
xn−1−i


=

n∑
i=1

Mi ⊙ x(i).
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Based on this observation, matrix multiplication can be realized with n rotations over the input ci-
phertext. A naïve approach would involve computation of n rotations of the encryptions of x. Considering
that the gadget decomposition operates on the coefficients of the polynomial, each key-switching would
require β + 3 (i)NTTs. This is because we need to perform 1 iNTT before the gadget decomposition in
order to make the ring element into coefficient form, and β NTTs after the gadget decomposition for the
following polynomial multiplications. Finally, to divide the resulting ciphertext with the special modulus
P , it is necessary to transform the ciphertext to the coefficient form. As a result, it requires two (i)NTTs
before and after the division by special modulus. Consequently, this approach demands (n − 1)(β + 3)
(i)NTTs total.

This naïve method was improved in [14] using two methods, hoisting and the Baby-step Giant-step
(BSGS) algorithm. Observe that the automorphism essentially rearranges the coefficients, and therefore
it can be performed over the gadget decomposition of a ring element, thereby yielding a gadget decompo-
sition of a rotated ring element. Additionally, as automorphisms can also be applied to the NTT form as
well, only one gadget decomposition is needed to perform all the key-switchings. However, division by the
special modulus is still required for each rotation and 2(n− 1) more (i)NTTs are needed. This technique
effectively reduces the number of the (i)NTTs to β + 2n− 1, however, this method necessitates to store
all n key-switching keys.

The BSGS matrix multiplication algorithm reduces the space overhead from n to O(
√
n), sacrificing

the time complexity. For n1, n2 = O(
√
n) such that n = n1 · n2, the BSGS matrix-vector multiplication

algorithm is as follows.

1. Compute ct(0) = ct, ct(1), . . . , ct(n1−1), the 0, . . . , n1 − 1-th rotations of ct, the encryption of x.
2. Generate n2 ‘rotated’ partial sums psumj :=

∑n1−1
i=0 M

(−n1j)
n1j+i

· ct(i) (0 ≤ j < n2) using the pre-rotated
encodings M

(−n1j)
n1j+i

(1 ≤ i ≤ n1, 0 ≤ j < n2).
3. Return

∑n2−1
j=0 psum

(n1j)
j .

In the first step of this algorithm, only β + 2n1 − 1 (i)NTTs are required to compute all ciphertext
rotations using the hoisting technique. Subsequently, the third step requires (n2 − 1)(β + 3) (i)NTTs. In
total, n2(β + 3) + 2n1 − 4 (i)NTTs are needed for the BSGS algorithm.

This algorithm was further refined in a subsequent study [2], driven by two observations: 1. Rota-
tions over ring elements can be reduced using pre-rotated rotation keys, 2. Plaintext multiplications and
additions in the second step can be performed without requiring division by the special modulus.

The first improvement leverages the following equalities:

⟨h(ψi(a)), rtki⟩ = ⟨ψi(h(a)), rtki⟩
= ψi(⟨h(a), ψ−i(rtki)⟩)

where h is the gadget decomposition, a ∈ RQ is a ring element, and rtki is the i-th rotation key. By
introducing pre-rotated rotation keys r̃tki := ψ−i(rtki), a single rotation can be instantiated with only
one automorphism instead of β automorphisms, where β is the length of the gadget decomposition. This
technique, termed the double-hoisting, builds on the hoisting technique introduced in [14]. It reduces the
number of automorphisms by a factor of β.

On the other hand, for an encryption ct = (b, a) ∈ RQ of plaintext m under secret t, and a key
switching key kskt→s, a lazy key-switching computes (P · b, 0) + ⟨h(a), kskt→s⟩ ∈ R2

PQ, resulting in an
erroneous encryption of P ·m under secret s. Here, the plaintext is only multiplied by the special modulus
P , allowing ciphertext addition and plaintext multiplication to proceed naturally.

Building on these idea, the computation of ct(i) and the rotation of partial sums can be performed with
lazy key-switching, removing the need for division by the special modulus. Subsequently, the generation
and the summation of the partial sums are instantiated over modulus PQ. Moreover, since the key-
switching operation is only needed to be applied to the second index a for an input ciphertext (b, a),
we can keep the first index for all the partial sums and then the division by the special modulus P
can be performed at the end of the algorithm. Therefore, only β + 1 (i)NTTs are needed before and
after the gadget decomposition of input ciphertext ct. Then, after the computation of the partial sum
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psumi, it requires β+1 (i)NTTs for every iteration for the division by special modulus P and the gadget
decomposition. Finally, four (i)NTTs are needed for the division by special modulus of the final ciphertext.
To sum up it all, it requires n2(β + 1) + 4 (i)NTTs total. The precise algorithm is described in Alg. 1.

Algorithm 1 Double-hoisting BSGS matrix-vector multiplication [2]

Input: A CKKS ciphertext ct ∈ R2
Qℓ

, M ∈ RPQℓ
, the pre-rotated encoding of matrix, n1n2 = n,

r̃tki = (r̃tk
0

i , r̃tk
1

i ) ∈ R2
PQℓ

, the set of pre-rotated rotation keys.
Output: CKKS ciphertext ct′ ∈ R2

Qℓ−1

1: d←
[
[c1]qα0≤i<β

]
PQℓ

2: (a0, b0)← (P · c0, P · c1)
3: for i = 1; i < n1; i = i+ 1 do
4: ai ← ψi

(
a0 + ⟨d, r̃tk

0

i ⟩
)

5: bi ← ψi

(
⟨d, r̃tk

1

i ⟩
)

6: end for
7: (c′0, c

′
1)← (0, 0)

8: for j = 0; j < n2; j = j + 1 do
9: (u0, u1)← (0, 0)

10: for i = 0; i < n1; i = i+ 1 do
11: (u0, u1)← (u0, u1) + (ai, bi) ·M(n1·j+i)

12: end for
13: u1 ← ⌊P−1 · u1⌉
14: d←

[
[u1]qα0≤i<β

]
PQℓ

15: c′0 ← c′0 + ψn1·j(u0 + ⟨d, r̃tk
0

n1·j⟩)
16: c′1 ← c′1 + ψn1·j(⟨d, r̃tk

1

n1·j⟩)
17: end for
18: (c′0, c

′
1)←

(
⌊P−1 · c′0⌉, ⌊P−1 · c′1⌉

)
19: ct′ ← (⌊Qℓ−1/Qℓ · c′0⌉, ⌊Qℓ−1/Qℓ · c′1⌉)
20: return ct′

4.2 Improved matrix-vector multiplication algorithm

As discussed in the previous section, the time complexity of matrix-vector multiplication algorithms is pri-
marily determined by the number of iNTT and NTT operations. Consequently, prior works have focused
on minimizing the number of the (i)NTTs. However, we emphasize that the algorithm can be accelerated
by reducing the time complexity of each unit (i)NTT operations. Our improvement is motivated from
two key observations: 1. (i)NTT operations are more efficient at lower levels. 2. Rescaling and division
by P can be performed at once with a cost of one.

To explain the rationale behind our approach, we first briefly outline the software implementation of
CKKS scheme. A common and efficient method for implementing CKKS is to use the Residue Number
System (RNS) [7]. In the RNS-CKKS variant, each ring polynomial is represented as a tuple of polyno-
mials with word-sized prime moduli, where the product of these moduli forms the ciphertext, employing
the Chinese Remainder Theorem (CRT). Consequently, the (i)NTT for a ring polynomial is performed
as (i)NTT over each prime modulus. Therefore, the time complexity of (i)NTT operations is directly
proportional to the number of prime factors. As a result, (i)NTTs at lower levels (with fewer prime
factors) are inherently faster than those at higher levels. This motivates our approach: if the (i)NTTs
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during matrix-vector multiplication can be performed at lower levels, the overall time complexity can be
reduced.

We propose integrating the rescaling operation into the matrix-vector multiplication algorithm to
reduce the level during computation, thereby achieving lower time complexity. Rescaling can be applied to
the partial sum concurrently with the division by the special modulus without introducing any additional
unit (i)NTT operations. Our proposed algorithm is described in detail in Alg. 2.

Algorithm 2 Improved double-hoisting BSGS matrix-vector multiplication

Input: A CKKS ciphertext ct ∈ R2
Qℓ

, M ∈ RPQℓ
, the pre-rotated encoding of matrix, n1n2 = n,

r̃tki = (r̃tk
0

i , r̃tk
1

i ) ∈ R2
PQℓ

, the set of pre-rotated rotation keys.
Output: CKKS ciphertext ct′ ∈ R2

Qℓ−1
.

1: d←
[
[c1]qα0≤i<β

]
PQℓ

2: (a0, b0)← (P · c0, P · c1)
3: for i = 1; i < n1; i = i+ 1 do
4: ai ← ψi

(
a0 + ⟨d, r̃tk

0

i ⟩
)

5: bi ← ψi

(
⟨d, r̃tk

1

i ⟩
)

6: end for
7: (c′0, c

′
1)← (0, 0)

8: u← 0
9: for j = 0; j < n2; j = j + 1 do

10: (u0, u1)← (0, 0)
11: for i = 0; i < n1; i = i+ 1 do
12: (u0, u1)← (u0, u1) + (ai, bi) ·M(n1·j+i)

13: end for
14: u← u+ ψn1·j(u0)
15: u1 ← ⌊(PQℓ/Qℓ−1)

−1 · u1⌉
16: d←

[
[u1]qα0≤i<β

]
PQℓ−1

17: (c′0, c
′
1)← (c′0, c

′
1) + ψn1·j

((
⟨d, r̃tk

0

n1·j⟩, ⟨d, r̃tk
1

n1·j⟩
))

18: end for
19: (c′0, c

′
1)← (u+Qℓ/Qℓ−1 · c′0, Qℓ/Qℓ−1 · c′1)

20: ct′ ←
(
⌊(PQℓ/Qℓ−1)

−1 · c′0⌉, ⌊(PQℓ/Qℓ−1)
−1 · c′1⌉

)
21: return ct′

Let us elaborate our algorithm in detail. The generation of pre-rotated ciphertext and the partial
sums is executed over the ring RPQℓ

. Note that only the second element of the partial sum is gadget
decomposed, we lazily divide the first element by the special modulus and then rescale. Consequently,
we only divide the second index by PQℓ/Qℓ−1. Then, the base ring is converted to RQℓ−1

and NTT
operation on the gadget decomposition is executed over the ring RPQℓ−1

with a reduced time complexity.
Then after the outer loop, we divide the accumulator with the special modulus P and the accumulator u
for the first index with PQℓ/Qℓ−1.

Comparison We compare the matrix-vector multiplication algorithm from prior work [2] with our refined
approach by evaluating the number of the word-sized (i)NTTs. Let L,L′, LP and β denote the number
of the prime factors for the moduli of the input and output ciphertexts, and the length of the gadget
decomposition, respectively.

In Alg. 1, the pre-computations of rotations for the input ciphertext ct requires (β + 1)L + βLP
(i)NTTs. Subsequently, during each iteration of the outer loop, L + LP iNTTs are performed for the
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division by the special modulus for the accumulator u1, and β(L + LP ) NTTs are executed after the
decomposition of u1. At the end of the algorithm, 2(L − L′ + LP ) iNTTs are performed for the division
by P and rescaling, while 2L′ NTTs are performed for the transformation into the evalution form. Thus,
the total number of (i)NTTs for the double-hoisting BSGS matrix-vector multiplication is given by

(β + 1)L+ βLP + n2(β + 1)(L+ LP ) + 2(L+ LP ).

In Alg. 2, our refined approach, the pre-computation of rotations for the input ciphertext ct similarly
requires (β + 1)L+ βLP (i)NTTs. For each iteration of the outer loop, L+ LP iNTTs are performed for
division by PQℓ/Qℓ−1 for the accumulator u1, and only β(L′ + LP ) NTTs are needed for the transfor-
mation of u1’s decomposition due to its reduced level. Following the outer loop, dividing and rounding
c′0 and c′1 require 2(L − L′ + LP ) iNTTs and 2L′ NTTs. Therefore, the number of the (i)NTTs required
for our algorithm is

(β + 1)L+ βLP + n2 ((β + 1)(L+ L′
P )− β(L − L′)) + 2(L+ LP ).

Consequently, our proposed algorithm reduces the number of (i)NTTs by βn2(L − L′).

Discussion Below, we present the experimental result for our improved linear transformation method.
In the table, radix refers to the number of sparse matrices into which the encoding/decoding matrix is
decomposed. For the radix 1 case, we used N = 215 instead of N = 216, due to the overwhelming size of
the rotation keys.

radix Method [2] Ours

1
CoeffToSlot 20.33s* 19.71s*
SlotToCoeff 7.07s* 6.88s*

2
CoeffToSlot 14.39s 13.50s
SlotToCoeff 3.47s 3.34s

3
CoeffToSlot 10.76s 10.57s
SlotToCoeff 2.08s 2.03s

Table 2: Performance comparison with prior work [2], with parameter set II [2]. We used N = 215 for
experimental results with asterisk.

Our method demonstrates better efficiency when the radix is smaller, i.e., when the matrix is denser,
particularly in the higher level (e.g., during the CoeffToSlot step). This efficiency arises because the
number of the (i)NTTs reduced in our algorithm is O(β

√
n). It is worth noting that bootstrapping

is typically performed at higher levels, so the performance improvements are more pronounced when
matrix multiplication is executed at lower levels. This algorithmic improvement is not limited to the
CKKS scheme but is also applicable to other leveled SIMD HE schemes where the ciphertext modulus is
reduced during computation, such as BGV [4] or leveled BFV [11].

5 Experimental Results and Parameters

In this section, we provide an heuristic to find the best parameters, and the experimental results. We
implement our method using the Lattigo library [23], and also provide a recommended parameter set
which achieves the same precision and security to the previous methods [2, 21]. All experiments were
conducted on a machine equipped with an Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz and 192GB
RAM, running Ubuntu 20.04.2 LTS.
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5.1 Parameter Selection

We propose a heuristic to choose the optimal r and the degrees of the approximation polynomials for f1
and f2. Generally, the approximation error decreases as the degree of the (best) approximation polynomial
increases. However, higher-degree polynomials consume more multiplicative levels in CKKS. Thus, it is
crucial to set adequate approximation polynomial degrees for f1 and f2 to optimize the EvalMod step.

Suppose we aim to evaluate t(x) with ε-bits of precision during EvalMod. In this case, the approxi-
mation polynomials for f1 and f2 must achieve approximation errors no greater than ε-bits. Using this
requirement, we can devise a heuristic to select r, f1 and f2. Since the degree of f1 is generally larger than
f2 for practical parameters, we focus on optimizing f2 first. Recall that f2 is essentially a composition of
the r-th angle formula, which is polynomial, and the inverse sine. Thus, its approximation error is identi-
cal to the error of inverse sine. For example, Fig. 2 shows the error of the best approximation polynomials
of the inverse sine and f2 when r = 3, computed using the multi-interval Remez algorithm [20]. The error
of a degree-d approximation polynomial of f2 matches the error of a degree ⌊d/r⌋ best approximation
polynomial of the inverse sine.

Fig. 2: Approximation error of inverse sine and f2, when r = 3.

Based on this observation, we can first determine d regardless of r, selecting d as the smallest odd
integer such that a degree-d (best) approximation polynomial of the inverse sine achieves ε-bits of ap-
proximation error. Let ℓ1 and ℓ2 denote the number of levels consumed during the evaluation of f1 and
f2, respectively. When ℓ2 is fixed, we choose the largest r possible such that rd < 2ℓ2 , i.e., r = ⌊ log ℓ2d ⌋.
A larger r allows the use of a lower-degree approximation polynomial for f1. Finally, with r settled, we
compute the approximation polynomial for f1, ensuring its approximation error does not exceed ε-bits.

5.2 Experimental Results

We compare our proposed method with state-of-the-art bootstrapping methods [20, 21]. In prior works [20,
2], the parameters ϵ and K were deliberately chosen to minimize level consumption and maximize boot-
strapping precision, leaving little room for further optimization. Therefore, we provide a wider range of
parameters to demonstrate the flexibility and scalability of our method. The parameters for ϵ,K, and the
Coeffs2Slots and Slots2Coeffs steps are summarized in Table 3. We note that the parameters for K are
specified for a secret key with Hamming weight h = 192. Specifically, K = 16 when the key-encapsulation
technique [3] is applied, and K = 23 otherwise.

The recommended parameter set and experimental results are presented in Table. 4. We select r > 2
since most practical parameter sets use r > 2 for performance reasons. During the evaluation, the lazy-
BSGS polynomial evaluation algorithm [21] was applied to all bootstrapping methods. The remaining
levels after bootstrapping are fixed for our proposed method and the prior works for consistency. For the
experiments, the messages in the slots were sampled from a distribution where the real and imaginary
parts were drawn uniformly from [−1, 1], consistent with the assumptions in prior works [2, 21].

https://orcid.org/0000-0002-1151-2453
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Set ε K Coeffs2Slots Slots2Coeffs logP

I
2−6 23

58× 4 42× 3 61× 4
II 16

Table 3: Bootstrapping parameters used in the experiments.

Set Method r Degree Set logPQ Level avg
prec. # relin BTS

I

Ours
5 (53, 25) 1547 11 27.12 20 24.9s
6 (47, 2, 15) 1547 11 27.40 19 25.1s

12 (31, 2, 2, 15) 1547 11 26.42 17 24.6s

[20, 2]
4 (61, 2, 2, 5) 1547 11 27.43 20 25.5s
8 (39, 2, 2, 2, 5) 1562 12 26.54 19 25.0s

[21] - (511) 1517 9 29.38 31 40.0s

II

Ours

3 (57, 15) 1532 10 28.70 20 24.8s
6 (39, 2, 15) 1547 11 28.76 18 24.4s

11 (29, 55) 1547 11 28.75 18 24.9s
12 (27, 2, 2, 15) 1547 11 28.76 17 23.8s

[20, 2]
4 (49, 2, 2, 5) 1547 11 28.77 19 24.6s
8 (33, 2, 2, 2, 5) 1562 12 28.74 18 24.0s

[21] - (301) 1517 9 29.74 25 35.0s

Table 4: Comparison of the degree set, ciphertext modulus, level consumption, average bootstrapping
precision, the number of relinearizations, and the bootstrapping timing for our approximation methods
and the previous ones [20, 2, 21].

In the table, we compare our proposed method, which approximates the (generalized) cosine function
and its inverse function, to state-of-the-art methods. These include previous works that either use only
power-of-two r [20, 2], or directly approximate the target function t(x) [21]. As anticipated, our optimized
composition method consumes fewer multiplicative levels than the original sine method. For instance, in
parameter set I, our optimized composition method consumes only 11 levels across all recommended
parameters, whereas the sine method [20, 2] has parameters consuming 12 levels. Similarly, in parame-
ter set II, our method consumes 10 to 11 levels, while the prior works [20, 2] consume 11 to 12 levels.
Furthermore, in both parameter sets I and II, our method offers parameters with the least number of
the relinearizations. Specifically, our parameter set requires only 17 key-switching operations for some
parameters, whereas the prior works [20, 2] require at least 18 relinearizations. Additionally, the elapsed
time for bootstrapping with our method is faster than both the sine method [20, 2] and the direct ap-
proximation method [21]. This improvement is primarily due to the reduced key-switching operations and
the enhanced linear transformation algorithm. Consequently, our optimized composite function method
offers a more advantageous parameters in both the level consumption and time complexity, making it a
more efficient choice for practical applications.
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