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Abstract. Recently, Jiang et al. (EUROCRYPT 2025) proposed a uni-
versal framework for constructing commitment schemes using group ac-
tions, and instantiated it with the Lattice Isomorphism Problem (LIP).
This paper attempts to construct an instantiation based on module-
LIP with this framework. More precisely, we first present a reduction
from O2

L-LIP to O2
L-LAP. Then we develop a re-randomized algorithm

based on the self-reduction framework of Module-LIP (Ducas et al. ASI-
ACRYPT 2022), adapting it to the framework to construct commitment
schemes.

Keywords: Lattice automorphism · module-LIP · Commitment

1 Introduction

Lattice-based cryptography has emerged as a leading candidate for post-quantum
cryptography, offering robust security guarantees against quantum attacks. The
hardness of problems such as the Shortest Vector Problem (SVP) and the Learn-
ing With Errors (LWE) problem forms the foundation for numerous crypto-
graphic constructions, including encryption schemes and digital signatures. In
recent years, the Lattice Isomorphism Problem (LIP) has gained significant at-
tention due to its potential for developing efficient cryptographic protocols.

The Lattice Isomorphism Problem (LIP) asks whether two given lattices are
isomorphic, i.e., whether there exists a bijective orthogonal transformation be-
tween them. This problem has been studied with a lot of advances in understand-
ing its computational complexity and applications in cryptography. For exam-
ple, Ducas and van Woerden [3] provided a worst-case to average-case reduction
for LIP and proposed cryptographic schemes based on this problem, including
a key encapsulation mechanism and a signature scheme. However, most exist-
ing works have focused on the application of LIP in signature and encryption
schemes, leaving other cryptographic components relatively unexplored.

One notable application of LIP is the Hawk signature scheme, proposed by
Ducas et al. [2]. Hawk is a concrete instantiation of proposals to use LIP as a
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foundation for cryptography, focusing on simplicity and efficiency. By utilizing
module lattices, Hawk achieves significant improvements in signing speed and
signature size compared to existing lattice-based signature schemes. The security
of Hawk is based on the hardness of the O2

L-LIP problem, where O2
L denotes the

module lattice structure over a cyclotomic number field L.
Recently, Jiang et al. proposed a universal framework for constructing com-

mitment schemes using group actions, and instantiated it with the LIP [5]. This
marked the first application of LIP in cryptographic components beyond signa-
tures and encryption, opening new avenues for leveraging the properties of LIP
in diverse cryptographic contexts.

Our work builds on this foundation by providing a module lattice version of
their framework. For this purpose, we firstly draw inspiration from the algorith-
mic framework presented in [10] to establish a reduction fromO2

L-LIP toO2
L-LAP

(O2
L-Lattice Automorphism Problem). This reduction can be viewed as a struc-

tured analogue of the reduction from Z-LIP to Z-LAP presented in [6]. And
then, we extend the self-reduction framework introduced in [2]. By adapting and
extending this framework, we develop the necessary re-randomized algorithm
required for the commitment scheme proposed in [5]. Our approach leverages
the structured properties of module lattices to achieve improved efficiency and
the security guarantee is based on O2

L-LIP.

1.1 Our Contributions

The primary contributions of our work are as follows:

– We introduce a module lattice-structured reduction from O2
L-LIP to O2

L-
LAP, extending the theoretical foundations of lattice isomorphism problems
in the context of module lattices.

– We develop a re-randomized algorithm based on the self-reduction framework
from [2], adapting it to the requirements of the commitment scheme proposed
in [5].

Roadmap. The remainder of this paper is organized as follows. Section 2 pro-
vides the necessary background and preliminaries on lattice isomorphism prob-
lems, module lattices and group actions. Section 3 details our reduction from
O2

L-LIP to O2
L-LAP. Section 4 presents the re-randomized algorithm needed in

the construction framework.

2 Notations and preliminaries

2.1 Notations

– We use x ← D to denote that x is sampled from a distribution D. In this
paper, we focus solely on discrete distributions. For a finite set S, we write
s←$ S to indicate that s is drawn uniformly from S.
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– The Euclidean norm of a ∈ Rn is denoted by ‖a‖. Let GLn(R) and GLn(Z)
be the general linear group of rank n over R and Z respectively.

– We use rIn to represent the matrix diag(r, r, · · · , r), and sometimes use r to

represent rIn in matrix multiplications (such as r

(
x1

x2

)
=

(
rx1

rx2

)
). We will

also emphasize this point from time to time in the proof.
– For a number field K, the parameter K denotes degree of K, log∆K, and a

basis of OK.
– For x in a number field K, we call x∗ is the complex conjugation of x if

σ(x∗) = σ(x), ∀σ ∈ HomQ(K,C). For matrix H = (hij), let H∗ denote
(h∗

ij)
T and H denote (h∗

ij) if all h∗
ij exist.

– For a ring A in a number field that are closed under complex conjugating,
the unitary matrices over A is Un(A) := {T ∈Mn(A)|T ∗T = In}.

– For a number field K, we use µ(K) to denote the roots of unity in F. Note
µ(K) ⊂ OK and µ(K) = U1(OK)

2.2 Lattices

A lattice is defined as a discrete additive subgroup of Rm. Typically, one con-
structs a lattice by selecting n linearly independent vectors b1, b2, . . . , bn in Rm,
so that every lattice element can be expressed as an integer linear combination
of these basis vectors. In other words, if we denote the basis by B = (b1, . . . , bn),
then the lattice L is given by {Bz : z ∈ Zn}, which defines a lattice of rank n in
Rm.

2.3 Number Theory

A number field K is a finite extension of the rational numbers Q. Equivalently,
any such field may be expressed as Q[X]/(P ), where P is a monic irreducible
polynomial whose degree matches that of the extension. For a field K of degree
d, there exist exactly d embeddings σ1, . . . , σd into C. Those mappings that send
K into R are called real embeddings, while the others, which occur in complex
conjugate pairs, are referred to as complex embeddings. If we denote by r1 the
number of real embeddings and by r2 the number of pairs of complex embeddings,
then d = r1+2r2. A field is said to be totally real if r1 = d, and totally imaginary
if 2r2 = d.

Canonical embedding The canonical embedding of a number field K is
defined by the mapping σ : x 7→ (σ1(x), . . . , σd(x))

T , which sends elements into
Cd. Often, one identifies K with its image under this mapping so that the ring
of integers OK acquires a lattice structure in Cd. It is important to note, we
are not representing elements in K using the canonical embedding. The norm
on K is defined as NK(z) =

∏d
i=1 σi(z) and the trace as TrK(z) =

∑d
i=1 σi(z).

By considering the Q-linear map mz : x 7→ zx, one sees that NK(z) equals the
determinant of mz and TrK(z) equals its trace; notably, both quantities belong



4 Hengyi Luo, Kaijie Jiang, Yanbin Pan(B), and Anyu Wang

to Q.
We also have the coefficient embedding vec : Q[X]/(P )→ Qn, a0 + a1X +
· · ·+ an−1X

n−1 7→ (a0, a1, . . . , an−1)
T , which is an additive group isomorphism.

When P is a cyclotomic polynomial of 2-power order, i.e., when Q[X]/(P ) is a
cyclotomic field of 2-power order, the canonical embedding and the coefficient
embedding differ only by a scaling factor geometrically.

CM number field A CM (number) field L is a number field if it’s a quadratic
extension L/K where the base field K is totally real but L is totally imaginary.
The extension L/K is a Galois extension and we denote the Galois group by
Gal(L/K). There is a complex conjugation in Gal(L/K), i.e ∃τ ∈ Gal(L/K)
s.t. ∀x ∈ L, σi(τ(x)) = σi(x). We usually denote τ(x) by x∗. As an important
example, the cyclotomic number fields are all CM number fields.

Rings of integer Let OL denote the ring of integers of a number field L. OL
is a free Z-module of rank d. The discriminant of L, denoted ∆L, is defined as
(det(σi(αj))i,j)

2 ∈ Z, where (αj)1≤j≤d is any basis of OL. Specifically, there
exists some absolute constant c > 1 such that ∆L ≥ cd for all number fields K.
In particular, we always have d = poly(log∆L).

2.4 O2
L-LIP and O2

L-LAP

In this paper, we focus on a special instance of the module-LIP: the LIP corre-
sponding to the module lattice O2

L, which is also the module-LIP used in HAWK.
For simplicity, let L be a CM number field in this subsection.

Definition 2.1 (O2
L Lattice isomorphism Problem, O2

L-LIP) Given a quadratic
form G = U∗U where U ∈ GL2(OL), the objective is to find an W such that
G = W ∗W .

Another related problem can be interpreted as the automorphism problem
on O2

L, where the O2
L-automorphisms are defined as follows.

Definition 2.2 Assume B ∈ GL2(OL) and G = B∗B. Define the module lattice
automorphism group of G as AutL(G) := B−1(U2(OL))B. And we call a module
lattice automorphism P ∈ AutL(G) is non-trivial if P /∈ µ(L)I2.

Remark 1. It is noted that AutL(G) has another equivalent definition: {X ∈
GL2(OL)|X∗GX = G}. From this definition, it is clear that the automorphism
group depends only on G.

The following lemma guarantees that the automorphism group is not very
large. Consequently, once an automorphism is obtained, we can guess its form.
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Lemma 2.1 ([10, Lemma 3.1]) Let L be a CM number field with degree 2d.
Then

U2(OL) = {
(
ξ1 0
0 ξ2

)
|ξ1, ξ2 ∈ µ(L)}

∪
{
(
0 ξ1
ξ2 0

)
|ξ1, ξ2 ∈ µ(L)}.

Furthermore, ♯(U2(OL)) ≤ 2♯(µ(L))2 ≤ 128d4.

Definition 2.3 (O2
L Lattice Automorphism Problem, O2

L-LAP) Given a
quadratic form G = U∗U where U ∈ GL2(OL), the objective is to find an non-
trivial module lattice automorphism automorphism P ∈ AutL(G).

2.5 Algorithmic consideration

Representation of ideals and modules Assume BOL = (αj)j=1,...,d is a basis
of OK. We represent elements in L by their coordinates in the basis BOL , which
is a vector in Qd. For x ∈ L represented by the vector (x1, . . . , xd)

T ∈ Qd, we
define size(x) :=

∑
i size(xi), where size(a/b) := dlog2 |a|e+dlog2 |b|e for a, b ∈ Z

coprime. As is customary, we assume that in this paper the BOL is always an
LLL-reduced basis of OL, i.e. σ(BOK) forms an LLL-reduced basis of OK. This
choice is made to ensure that the coefficients of αiαj under BOK representation
do not blow up.

Basic algorithms The following lemma guarantees that the computation of
roots of unity in a given field is efficient.

Lemma 2.2 ([11, Corollary 2.11]) Let K be a degree d number field. Then,
K has at most 2d2 roots of unity, and there exists a polynomial-time algorithm
that, given a basis of the ring of integers OK, computes the roots of unity in K.

The following lemma guarantees that we can compute the intersection of a
module lattice and a L-linear space.

Lemma 2.3 ([10, Lemma 4.4]) Let L be a number field with degree n, and
BOL be a basis of OL. Then for A ∈ L2×2 and a lattice L ⊆ L2, there is a
deterministic polynomial-time algorithm that, given BOL , A, and a basis BL of
L, outputs ker(A) ∩ L.

Proposition 2.1 ([10, Proposition 3.2]) Let B ∈ GL2(L), and r ∈ L. De-

fine t∗ :

(
x
y

)
∈ L2 7→

(
x∗

y∗

)
∈ L2. It’s an Q linear map. Given as input a basis

of OL, G = B∗B, and det(B), we can compute B−1J2t∗B and mr := B−1(rI2)B
in the time of polynomial of the input size.



6 Hengyi Luo, Kaijie Jiang, Yanbin Pan(B), and Anyu Wang

Lenstra-Silverberg Algorithm Gentry and Szydlo initially proposed an al-
gorithm in [4] to recover x from x∗x and xR (where R is a certain type of poly-
nomial ring). Later, Lenstra and Silverberg extended this in [7,8,9]. Luo et al.
used it to show an algorithm for which, in a certain sense, is a high-dimensional
version of the rank 1 module-LIP.

Proposition 2.2 ([10, Proposition 4.1]) Let F be a CM-field or a totally
real number field with degree n. Let A be the ring of integers of F. [9, Examples
3.7(i)(ii))] showed that A is a CM-order. The conjugate automorphsim is just
the complex conjugation x 7→ x∗, and the trace function is just TrF.

1. For α ∈ F, there is a deterministic polynomial-time algorithm LS1 that, given
A, αA and α∗α, then we can find αµ(A) in polynomial time, where µ(A)
means roots of unity in A.

2. For v =

(
v1
v2

)
∈ F2 and B ∈ GL2(F), there is a deterministic polynomial-

time algorithm LS2 that, given A, B∗B, v∗v = v1v
∗
1 + v2v

∗
2 , and B−1(A · v) ,

then we can find B−1(µ(A) · v) in polynomial time, where µ(A) means roots
of unity in A.

2.6 Commitments from Group actions

In this subsection, we introduce the basic definitions related to the group action
that we will use. Given that the conclusion in [5] provides a good ”encapsulation”
for using these to construct a commitment scheme, we do not even need to
provide the definition of the commitment scheme.

Definition 2.4 (Group Action) Let G be a group with identity element e, and
let X be a set. We say G acts on X if there is an operator ⋆ : G × X → X
satisfying e ⋆ x = x and g ⋆ (h ⋆ x) = (gh) ⋆ x for all g, h ∈ G and x ∈ X. The
notation (G,X, ⋆) will be used to denote such a group action.

For a group action (G,X, ⋆), the orbit of an element x ∈ X is denoted by
O(x) := {g ⋆ x : g ∈ G}. The stabilizer of x ∈ X is the subgroup of G defined
as Stab(x) := {g ∈ G : g ⋆ x = x}. Additionally, the set I(x, y) := {g ∈ G :
g ⋆ x = y} is used to represent the elements of G mapping x to y. It is evident
that I(x, y) = g · Stab(x) for any g ∈ I(x, y).

Additionally, we introduce the search Group Action Stabilizer Problem (s-
GASP), which relates to finding a non-trivial element in a stabilizer. Specifically,
given an x ∈ X such that Stab(x) 6= {e}, the goal is to find an h ∈ G such that
x = h ⋆ x and h 6= e. The formal definition is as follows.

Definition 2.5 (s-GASP) Let F be a family of group actions such that for a
security parameter λ, F(1λ) returns a group action (G,X, ⋆) with distribution
DG,X over G×X. The s-GASP assumption requires that for all PPT adversaries
A, there is a negligible function negl(λ) such that

Pr[A(y) ⋆ y = y,A(y) 6= e | y = h ⋆ x, (h, x)← DG,X ,Stab(x) 6= {e}] ≤ negl(λ).
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Definition 2.6 (Re-Randomized Algorithm) For a group action (G,X, ⋆),
a re-randomized algorithm R takes as input x ∈ X and outputs a pair (g ⋆x, g) ∈
X ×G according to a distribution, denoted as R(x), such that:

– For any x ∈ X, x′ ∈ O(x), and (x′′, g)← R(x), the marginal distributions of
the first variable are identical for R(x) and R(x′); g is uniformly distributed
on I(x, x′′).

Definition 2.7 (Homomorphic Extractor) For a group action (G,X, ⋆) with
a distribution DG,X in G×X, and M is an abelian group. A homomorphic ex-
tractor is a deterministic and efficient algorithm E : G→M such that

– for (h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that E(g) is uniformly
distributed on M for g ←$ I(y′, y′′).

– E : G → M is a surjective group homomorphism, i.e, for any g0, g1 ∈ G,
E(g0) · E(g1)−1 = E(g0 · g−1

1 )

Theorem 2.1 ([5, Theorem 4.2]) Suppose that group action (G,X, ⋆,DG,X)
satisfies the s-GASP assumption, R is a re-randomization algorithm, and E is a
homomorphic extractor. Then there is an Enhanced Linkable Commitment.

3 Reduction from O2
L-LIP to O2

L-LAP

In this section, we assume that L is a CM number field with degree n.

Theorem 3.1 Let L be a CM number field. Given parameter L, there is a
reduction from O2

L-LIP to O2
L-LAP.

For P ∈ U2(OL), under the condition that the determinant is fixed, the
possible candidates for P are polynomially many. Therefore, by enumeration,
we can assume that given the input modular lattice automorphism U−1PU ,
we have guessed P . (A more straightforward approach is to traverse the entire
U2(OL).)

By Lemma 2.1, the structure of P can be classified into two types: diagonal
and anti-diagonal. We aim to replace (J2, JBU ) with (P,U−1PU) to perform
operations similar to the module lattice decomposition based on eigenspaces as
described in the [10].

When P is a diagonal matrix, this operation can be easily accomplished.
However, when P is an anti-diagonal matrix, in order to compute the eigenspaces,
it is necessary to extend the field L by adjoining the square root of a root of
unity in L. In this case, we must also prove that the extended field remains a
CM field and that an integral basis of its ring of integers can still be efficiently
computed.

Proposition 3.1 Assume U ∈ GL2(OL). Given L, U∗U , ξ1 6= ξ2 ∈ µ(L), and

PU := U−1PU where P :=

(
ξ1 0
0 ξ2

)
, we can find U in polynomial time of the

size of input.
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Proof. We first compute ker(PU−ξ1)∩O2
L by Lemma 2.3 in polynomial time, and

it’s just U−1e1OL where e1 = (1, 0)T . Also we can compute U−1J2t∗U by Propo-
sition 2.1 using U∗U . Then using LS2 for input OL, U−1e1OL, we can find µ(L) ·
U−1e1. Next, for every w ∈ µ(L)·U−1e1, we compute (e1|J2t∗e1)(w|U−1J2t∗Uw)−1.
Then we can find the all the U . ut

Proposition 3.2 Assume U ∈ GL2(OL). Given L, U∗U , ξ1, ξ2 ∈ µ(L), and

U−1PU where P :=

(
0 ξ1
ξ2 0

)
, we can find U in quantum polynomial time of the

size of input.

Lemma 3.1 Assume ξ ∈ L is a root of unity and X2−ξ doesn’t have roots in L.
Let F := L[X]/(X2 − ξ). Then F is also a CM number field.

Proof. Let K be the totally real number field such that of L|K is a totally
imaginary quadratic extension. If ξ 6= −1, consider M := K(X + X−1) ⊆ F.
One can prove that M is totally real. And M 6= K, otherwise (ξ + 1)/X =
(X2 + 1)/X = X +X−1 ∈ K ⊆ L⇒ X ∈ L, leading to a contradiction.

If ξ = −1, assume L = K(α) and consider M := K(X ·α) ⊆ F. One can prove
that M is totally real. And M 6= K, otherwise X · α ∈ K ⊆ L⇒ X ∈ L, leading
to a contradiction. ut

When L is a totally real number field and F = L[X]/(X2 +1), Mureau et.al.
showed log∆F = poly(log∆L) and we can compute OF from OL in [11, Section
2.2]. We generalize this conclusion as follows.

Lemma 3.2 ([1, Lemma 1.4]) There are polynomial time algorithms that given
an algebraic number field K and one of (a), (b), determine the other:

(a) the ring of algebraic integers of K;
(b) the largest squarefree divisor of the discriminant of K.

Lemma 3.3 Assume ξ ∈ L is a root of unity and X2−ξ doesn’t have roots in L.
Let F := L[X]/(X2− ξ). There exists a polynomial time algorithm A that, given
as input a Z-basis BL of OL, computes a Z-basis BF of OF.

Proof. One can see A := OL + OL · X ⊆ OF is an order of F. Assume BL =

{β1, . . . , βn}, then A’s discriminant over Z∆A is det
((

(TrF(βiβj)) (TrF(Xβiβj))
(TrF(Xβjβi)) (TrF(ξβiβj))

))
.

On one hand, A ⊆ OF implies ∆F|∆A. On the other hand, we compute ∆A to
show it’s just 22n∆2

L. Thus ∆F|22n∆2
L. And we also know ∆L|∆F. So the largest

squarefree divisor of ∆F is the largest squarefree divisor of ∆L or the largest
squarefree divisor of ∆L multiplied by 2. By Lemma 3.2, we can find the largest
squarefree divisor of ∆L from BL. Then we can guess the largest squarefree
divisor of ∆F and compute the Z-basis of OF by Lemma 3.2.

The computation is as following. Note TrF(Xβiβj) = TrL(TrF/L(Xβiβj)) =
TrL(0) = 0, TrF(βiβj) = TrL(TrF/L(βiβj)) = 2TrL(βiβj) and TrF(ξβiβj) =
TrL(TrF/L(ξβiβj)) = 2TrL(ξβiβj). So ∆A = det((2TrL(βiβj)))·det((2TrL(ξβiβj))) =
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22n∆L ·det((TrL(ξβiβj))). For (TrL(ξβiβj)), write it as (σj(ξβi)) ·(σi(βj)), where
{σi} is HomQ(L,C). Then det((TrL(ξβiβj))) = det((σj(ξβi))) · det((σi(βj))) =
NmL(ξ) · det((σj(βi))) · det((σi(βj))) = det((σj(βi))) · det((σi(βj))) = ∆L. ut

From the proof, we can see ∆F ≤ 22n∆2
L. Note n = poly(log∆L), so log∆F =

poly(log∆L).

Proof (of Proposition 3.2). Let ξ := ξ1 · ξ2, and

F :=

{
L[X]/(X2 − ξ) if X2 − ξ doesn’t have roots in L;
L otherwise.

By Lemma 3.3, we can compute the Z-basis of OF in polynomial time.
We first compute ker(PU −X) ∩ O2

F by Lemma 2.3 in polynomial time, and
it’s just U−1vOL where v = (ξ1, X)T . Also we can compute U−1J2t∗U by Propo-
sition 2.1 using U∗U . Then using LS2 for input OL, U−1vOL, we can find µ(L) ·
U−1e1. Next, for every w ∈ µ(L)·U−1v, we compute (v|J2t∗v)(w|U−1J2t∗Uw)−1.
Then we can find the all the U . ut

4 Commitment on O2
L-LIP

In this section, as in HAWK, we set L = Q[X]/(Φ2d(X)) to be a power of two
cyclotomic number field and ζ2d to be a 2d-th root of unity. Let n = 2d−1 =
deg(L).

Group Action Based on Module Lattice A naive idea for constructing
a structured version in A is to replace GLn(Z) with GL2(OL). However, when
constructing the Re-randomize algorithm, obstacles arise because, unlike general
lattices, which can use the LLL algorithm to find an integral basis, there is
currently no efficient algorithm on classical computers for finding a OL-basis for
module lattices. This issue is also reflected in the self-reduction of the module
lattice isomorphism problem. To bypass this difficulty, [2] considers SL2(OL). If
we adopt their strategy, we face another obstacle when constructing deterministic
extractors (since we cannot still use det as an extractor as in A). To meet both
requirements simultaneously, we consider such a subgroup.

Definition 4.1 We define the Generalized Special Linear group over OL as
GSL2(OL) := {M ∈ GL2(OL)| det(M) ∈ µ(L)} and the projective group of it is
PGSL2(OL) := GSL2(OL)/µ(L)I2.

Let Q ∈ S>0
n (OL) be a positive definite quadratic form over OL, and let [Q]

denote the set of quadratic forms equivalent to Q, i.e., [Q]sl := {V∗QV : V ∈
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SLn(OL)}, [Q]gsl := {V∗QV : V ∈ GSLn(OL)} 1. A group action (PGSLn(OL), [Q]gsl, ⋆)
can then be defined as 2:

Q′ ⋆V = V∗Q′V for any V ∈ PGSLn(OL),Q
′ ∈ [Q]gsl. (1)

This group action is closely related to free module lattice isomorphisms and
automorphisms.

Here we focus on the case when n=2 and Q = I2. When U ∈ GSL2(OL) and
Q := U∗U , we have [Q]gsl = [I2]gsl = [I2]sl ≜ [I2]. And then the Stabilizer of Q
under the group action is just AutL(Q)/µ(L)In and its corresponding s-GASP
i.e. finding a non-trivial element in Stab(Q) is equivalent to finding a non-trivial
module lattice automorphism of Q and is equivalent to finding U i.e. O2

L-LIP by
Theorem 3.1.

As mentioned earlier, the main difficulty in structuring the instantiation in
[5] lies in constructing a suitable Re-randomize algorithm. We make adaptations
to the construction in [2] for self-reduction to obtain the required Re-randomize
algorithm.

We first provide a sufficient condition for a better use of the re-randomize
algorithm.

Lemma 4.1 For a group action (G,X, ⋆), a algorithm R is a re-randomized
algorithm if it takes as input x ∈ X and outputs a pair (g ⋆ x, g) ∈ X × G
according to a distribution, denoted as R(x), such that:

– For any x ∈ X, h ∈ G, the distributions of R(h ⋆ x)[2] and R(x)[2] · h−1 are
same.

Proof. If R has the property: for any x ∈ X, h, g ∈ G, the distributions of
R(h ⋆ x)[2] and R(x)[2] · h−1 are same. This means for any x ∈ X, h, g ∈ G,
Pr[R(h ⋆ x)[2] = gh−1] = Pr[R(x)[2] · h−1 = gh−1] = Pr[R(x)[2] = g] .

For any x ∈ X, x′ ∈ O(x), and (x′′, g)← R(x), assume f ∈ I(x, x′).
Firstly,

Pr[R(x)[1] = x′′] = Pr[R(x)[2] ∈ I(x, x′′)]

=
∑

h∈I(x,x′′)

Pr[R(x)[2] = h] =
∑

h∈I(x,x′′)

Pr[R(f ⋆ x)[2] = h · f−1]

=
∑

t∈I(x′,x′′)

Pr[R(x′)[2] = t] = Pr[R(x)[1] = x′].

1 Here, there is a subtle difference in notation compared to that in A. In A, to align
with the conventional notation for left group actions, the left and right sides of
the congruence transformation were swapped. However, in this context, to maintain
consistency with the standard notation for module lattice isomorphisms, we do not
perform the same swap as in A. This difference does not cause any substantive
impact.

2 The choice of representative in GSLn(OL)/µ(L)In does not matter for this group
action since V∗QV = (ξV)∗Q(ξV) for any ξ ∈ µ(L).
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The third equality uses the property, and the fourth equality uses I(x′, x′′) =
I(x, x′′) · f−1.
Secondly�for any g′ ∈ I(x, x′′), we have Pr[R(x)[2] = g′] = Pr[R((g−1 ·g′)⋆x)[2] =
g′ · (g−1 · g′)−1] = Pr[R(x)[2] = g]. ut

The following lemma, although not a direct consequence of the original
lemma, can be directly derived by reviewing its proof and construction.

Lemma 4.2 ([2, Section 6 Lemma 4]) There exists an heuristic efficient ran-
domized algorithm R0 that takes any Q ∈ S>0

2 (OL) as input and outputs (R,U)
such that (R = U∗QU,U) ∈ [Q]sl × SL2(OL). The distribution of R0(Q)[2] is
given by:

– For any U = (u1|u2) ∈ SL2(OL),

Pr[R0(Q)[2] = U] =

{
DQ,σ(u1), if u2 is reduced with respect to u1 and Q;

0, otherwise,

with the following property:

– For any V ∈ SL2(OL), the distribution of V−1 ·R0(Q)[2] is the same as that
of R0(V

∗QV)[2].

Here, we say y is reduced with respect to x and Q if
⌈
x∗·Q·y
x∗·Q·x

⌋
in which d·c :

a0 + a1X + · · ·+ an−1X
n−1 7→ da0c+ da1cX + · · ·+ dan−1cXn−1.

There are some observation about the randomized algorithm R0.

Lemma 4.3 For any ξ ∈ µ(L), let X =

(
1 0
0 ξ

)
and Y =

(
ξ 0
0 ξ−1

)
. Then for

any U ∈ SL2(OL), we have Pr[R0(I2)[2] = X−1UX] = Pr[R0(I2)[2] = U] =
Pr[R0(I2)[2] = UY]

Proof. Write U as
(
a b
c d

)
, then X−1UX =

(
a ξb

ξ−1c d

)
and UY =

(
ξa ξ−1b
ξc ξ−1d

)
.

Note Dσ(

(
a
c

)
) = Dσ(

(
a

ξ−1c

)
) = Dσ(

(
ξa
ξc

)
) and(

ξb
d

)
is reduced with respect to

(
a

ξ−1c

)
and I2 iff

(
b
d

)
is reduced with respect

to
(
a
c

)
and I2 iff

(
ξ−1b
ξ−1d

)
is reduced with respect to

(
ξa
ξc

)
and I2. These are

all because the action of multiplying by ξ can be viewed as a sign permutation
on the coefficients.

Thus, by Lemma 4.2, we obtain the desired conclusion. ut

Note that the matrices in GSL2(OL) can always be uniquely represented as
a product of a matrix in SL2(OL) and a matrix of the form diag(1, ξ). A natural
construction for a re-randomized algorithm on (GSL2(OL), [I2]) is to sample
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the part of SL2(OL) using R0 and uniformly randomly sample the part of the
form diag(1, ξ). Here, we consider the equivalence class [I2], so it can be directly
used as the input for R0. We next prove that such a construction is indeed a
re-randomized algorithm that satisfies the requirement.

Lemma 4.4 (Re-randomize algorithm) If R0 is efficient, there exists an ef-
ficient randomized algorithm R that takes any Q ∈ [I2] as input and outputs
(R,U) such that (R = U∗QU,U) ∈ [I2] × GSL2(OL), with the following prop-
erty:

– For any V ∈ GSL2(OL), the distribution of V−1 · R(Q)[2] is the same as
that of R(V∗QV)[2]

And so does also if we consider the induced group action for PGSL2(OL).

Proof. It’s easy to see its efficiency if R0 is efficient. We only need to prove the
properties.

For the first claim, we want to show that for any U ∈ GSL2(OL), Pr[R(V∗QV)[2] =
U] = Pr[V−1R(Q)[2] = U].

Firstly, we write them as Q = B∗B, V = V0V1, U = U0U1 where
B,V0,U0 ∈ SL2(OL) and V1(resp. U1) =

(
1 0
0 det(V)

)
(resp.

(
1 0
0 det(U)

)
). And

so we can write V∗QV = (V−1
1 BV0V1)

∗(V−1
1 BV0V1). Note that V−1

1 BV0V1 ∈
SL2(OL)

From the construction of R, we can see

Pr[R(V∗QV)[2] = U]

=
1

n
· Pr[R0(V

∗QV)[2] = U0]

=
1

n
· Pr[R0(I2)[2] = (V−1

1 BV0V1)U0].

The last equality holds by Lemma 4.2. Similarly, we have

Pr[V−1R(Q)[2] = U]

=Pr[R(Q)[2] = VU]

=
1

n
· Pr[R0(Q)[2] = V0V1U0V

−1
1 ]

=
1

n
· Pr[R0(I2)[2] = B(V0V1U0V

−1
1 )].

Denote B(V0V1U0V
−1
1 ) by M ∈ SL2(OL), then (V−1

1 BV0V1)U0 = V−1
1 MV1.

By Lemma 4.3, Pr[R0(I2)[2] = M] = Pr[R0(I2)[2] = V−1
1 MV1], so Pr[R(V∗QV)[2] =

U] = Pr[V−1R(Q)[2] = U].
For the second claim, we just need to show that for any U ∈ GSL2(OL),∑

ξ∈µ(L) Pr[R(V
∗QV)[2] = ξI2 ·U] =

∑
ξ∈µ(L) Pr[V

−1R(Q)[2] = ξI2 ·U] which
is which can be directly derived from the previous conclusion. ut



Commitment Schemes Based on Module-LIP 13

Algorithm 1: R: Re-randomization for (GSL2(OL), [I2])

Require: Conductor m = 2κ cyclotomic L, Q ∈ [I2]
Ensure: R ∈ [I2] and U ∈ GSL2(OK) such that R = U∗ ·Q ·U
1: Let (R0,U0)← R0(Q)
2: Parse ξ ←$ µ(L)

3: Let Y =

(
1 0
0 ξ

)
, U = U0Y , and R = U∗QU

4: return (R, U)

Remark 2. We can prove Pr[R(V∗QV)[2] = U] = Pr[R(V∗QV)[2] = ξI2 ·U] for
any ξ ∈ µ(L) by the other equality in Lemma 4.3.

We define DPGSL2(OL),[I2] := R(R(I2)[1]).

Lemma 4.5 For the group action (PGSL2(OL), [I2], ⋆) with distribution DPGSL2(OL),[Q]

on PGSL2(OL) × [Q] and the group M = (〈ζ2d〉 / 〈ζ2d−1〉 ,×) ' ({±1},×), de-
fine E : PGSL2(OL) → M such that E(U) 7→ det(U)/ 〈ζ2d−1〉. Then, E is a
Homomorphic extractor as in Definition 2.7.

Proof. It’s easy to see E is a well-defined group homomorphism. For any Q ∈
[I2], E(Stab(Q)) = det(AutL(Q))/ 〈ζ2d−1〉 = det(U2(OL))/ 〈ζ2d−1〉 = M . Thus,
E is surjective even when restricted to the subgroup Stab(Q). Furthermore,
E(U(Stab(Q))) = U(M) from the invariance of the U(Stab(Q)) to shifts by
elements from that same group.

Then for any Q,Q′ ∈ [I2], assume Y ∈ I(Q,Q′). We have E(U(I(Q,Q′))) =
E(Y · U(Stab(Q))) = E(Y) · U(M) = U(M). ut

Finally, by Lemma 4.4, Lemma 4.5 and Theorem 2.1, under a heuristic as-
sumption, there is an Enhanced Linkable Commitment based on the O2

L-LIP
assumption.

5 Conclusion

The paper introduces a reduction from O2
L-LIP to O2

L-LAP, building on the
framework proposed in [10]. Then we use the theorem given in [5] to construct
a commitment scheme based on O2

L-LAP. Our work highlights the potential of
module lattice structures for enhancing cryptographic protocols.
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