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Abstract

Non-malleable zero-knowledge (NMZK), originally introduced in the seminal work of Dolev, Dwork,
and Naor (STOC 91), is a fundamental concept for modeling the security of proof systems against
man-in-the-middle attacks.

Recently, Kim, Liang, and Pandey (CRYPTO 2022) presented the first efficient constant-round NMZK
argument system based solely on symmetric-key cryptography. Their construction relies on a non-black-
box use of the involved cryptographic primitives and on multiple executions of Ligero (CCS 2017) that
affect both the round complexity and the computational efficiency of their protocol. Their work left open
the natural important challenge of achieving NMZK using the underlying primitives only in a black-box
fashion (regardless of the number of rounds and actual efficiency).

In this paper, we solve the aforementioned open problem by presenting the first NMZK argument
system based on the black-box use of cryptographic primitives. Our work is optimal in the use of
primitives since we only need one-way functions, and asymptotically optimal in the number of rounds
since we only require a constant number of rounds. Our argument system is non-malleable with respect
to the strong “simulation-extractability” flavor of non-malleability.

Furthermore, we also show that our construction can be efficiently instantiated in Minicrypt, signif-
icantly improving upon the work of Kim et al., both in terms of round complexity and computational
efficiency.

1 Introduction

Non-malleable zero-knowledge argument systems [DDN91] (NMZK) can be built by relying solely on one-
way functions (OWFs) with only four rounds of communication [COSV17], precisely as it is known for
zero-knowledge (ZK) arguments [BJY97].
However, when considering also the black-box use of the underlying cryptographic primitives the situa-

tion is very different. Indeed, while ZK arguments can be achieved in 5 (resp., 4) rounds relying on the
black-box use of one-way functions (resp. 1-1 one-way functions) [KOS18, HV18], the gap in case of non-
malleability is substantial since no construction is known, regardless of the round complexity and of the

∗botta@di.uniroma1.it; part of the work was done while working at Warsaw University.
†michele.ciampi@ed.ac.uk
‡emmanuela.orsini@unibocconi.it
§luisi@dtu.dk
¶ivan.visconti@uniroma1.it; work mainly done while working at the University of Salerno.”

1



used primitive. It is particularly that, instead, non-malleable commitments based on the black-box use of
one-way functions exist even in constant rounds [GLOV12] (and only in 4 rounds with black-box use of 1-1
one-way functions [COS22]). Still, according to [KLP22a], black-box constructions1 of NMZK arguments
from non-malleable commitments are (surprisingly) not known.

The prior attempt of [JP14]. In [JP14], Jain and Pandey focus on the difficult problem of constructing
black-box NMZK arguments, even when relying on constant-round black-box non-malleable commitment
schemes. They succeed in showing a black-box construction for argument systems that is secure w.r.t.
a partial notion of non-malleability, commonly referred to as simulation soundness. Furthermore, in the
introduction of their work, they discuss the hardness of obtaining black-box NMZK and informally suggest
a generic construction that uses black-box non-malleable commitments. However, they note that all proof
approaches they explored were unsuccessful, leading them to abandon the protocol, therefore leaving open
the question of the existence of a black-box NMZK argument system (even under the assumption of black-box
non-malleable commitments).

Open problem. The state of the art leaves the following questions open.

Can we construct NMZK argument systems by only relying on the black-box use of cryptographic
primitives? Can we construct them in constant rounds? Can we rely on one-way functions only?

Motivated by the theoretical interest and practical relevance of designing non-malleable schemes, we
investigate the efficiency of NMZK arguments with restrictions on the available cryptographic primitives.
Specifically, we focus on the recent non-black-box NMZK argument system of [KLP22b] based on one-
way functions, which introduces new techniques to achieve efficiency while living in Minicrypt. The work
of [KLP22b] relies on (and actually is affected by) the need of multiple executions of Ligero [AHIV17] to
prove statements about computations performed during their protocol. The overhead due to multiple runs of
Ligero highly dominates the overall amount of computations of their protocol and strongly affects its round
complexity. This motivates the following additional open question:

If we are living in Minicrypt, can we still construct an efficient NMZK argument system therefore reducing
or even avoiding the use of expensive generic ZK arguments (like Ligero)?

1.1 Our Contribution

In this work we provide a positive answer to all the above questions. We show the first NMZK argument
system that only requires black-box use of cryptographic primitives. Moreover, our construction only needs
one-way functions and can be instantiated in a (small) constant number of rounds. Our protocol outperforms
previous work in terms of both efficiency and assumptions. In addition, it exhibits better concrete efficiency
in Minicrypt when considering results described in [KLP22b]. In fact, we establish the following result.
Theorem (informal). Assuming OWFs, there exists a 10-round (resp. 9-round) NMZK argument system
that makes black-box use of OWFs (resp., 1-1 OWFs) only. Moreover, the protocol admits an efficient
instantiation in Minicrypt.
We prove the above theorem by presenting a protocol ΠNM which can be viewed as a compiler from 3-round

public-coin special honest-verifier zero-knowledge (SHVZK) ΠSHVZK to NMZK. Interestingly, ΠNM can be seen
as a concrete, specific and optimized instantiation of the generic approach proposed and discarded in [JP14].
We manage to bypass the obstacles that stopped [JP14] with a highly non-trivial proof approach. Moreover,
an additional major contribution of our work is in particular due to way we manage to obtain an efficient
construction. Indeed, since known constructions of black-box non-malleable commitments are not efficient
enough, we embark on an even more challenging task requiring as a subprotocol a commitment scheme that

1In this paper when using the term “black-box” for a protocol we mean that the protocol uses the underlying cryptographic
primitives in a black-box fashion. Another meaning of the term “black-box” can be associated to the ZK simulator. Both
in [KLP22a] and in our construction the simulator is black-box, but we will not insist on remarking this property, therefore
avoiding to include twice the keyword “black-box”.
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enjoys a weaker form of non-malleability. Thanks to the lighter security requirement but higher efficiency of
this building block (that however introduces various other challenges to tackle in our security proofs), we will
provide an efficient instantiation based on the black-box use of OWFs. [Wee10, Goy11] already proposed a
weakening of non-malleable commitments to achieve a black-box extractable commitment scheme from any
OWF. These commitments are used to obtain round efficient multi-party computation protocols with black-
box access to 1-1 OWFs. The commitment proposed in [Wee10] has a logarithmic number of rounds, while
[Goy11] proposed a notion called non-malleability w.r.t. replacement that provides security only against
synchronizing adversaries. As explained later in Section 1.2, our resulting scheme ΠNM is significantly
simpler than the protocol given by Kim et al. in [KLP22b], which we will denote by ΠKLP hereafter. The
protocol ΠKLP relies on symmetric cryptographic primitives and along the way the authors designed a new
primitive, called instance-based non-malleable commitment (IB-NMC), which can be seen as an efficient
instantiation of the non-malleable commitment scheme of [GRRV14, BGR+15]. Indeed, they construct their
IB-NMC scheme by modifying the scheme from [GRRV14, BGR+15], denoted as ΠBGRRV. This scheme itself
comprises a three-round commit phase followed by a proof phase used to demonstrate the consistency of
the commit phase. ΠKLP instantiates ΠBGRRV by employing, as the proof phase, an adapted version of the
OR-composition protocol introduced by [CDS94], applied to two instances of the Ligero protocol [AHIV17].
However, since Ligero is not a Σ-protocol, [KLP22b] needs to instantiate a variant of the OR-composition
of argument systems, incurring an additional cost in both computations and communication. Consequently,
the main drawbacks that limit the efficiency of ΠKLP are the large round complexity and the cost of running
Ligero multiple times. A crude (i.e., without trying to parallelize subprotocols as this would require a new
security analysis) calculation of the number of rounds required by ΠKLP indicates that 4 rounds are needed
for the commitment phase, more than 20 rounds are required for the proof phase and the OR composition,
and an additional 4 rounds must be exchanged to fix a trapdoor statement for the prover and verifier. We
refer the reader to [KLP22b] for a full description of ΠKLP.
We deviate from the approach of ΠKLP since we manage to use a subprotocol of the non-malleable com-

mitment schemes of [GRRV14, BGR+15] that is associated to a special and partial extractor. It is special
because it has some extraction capabilities against a man-in-the-middle (MiM) without rewinding the honest
sender; it is partial because the quality of the extraction is not as good as that provided by an extractor of
a classical extractable commitment scheme.
The subprotocol of the non-malleable commitment scheme of ΠBGRRV that we will use consists only of the

first 3 rounds of their commit phase and that we denote by Π3R
BGRRV. This choice enables us to circumvent

the complex and expensive computations of ΠKLP, as these computations are due to the subsequent rounds
(from the 4th round onwards) of the commit phase of ΠBGRRV.

The special and partial extractor, given a transcript where the MiM mauls a commitment of a message
m producing a well-formed commitment of a related message m̃, succeeds in polynomial time and with
non-negligible probability in extracting m̃ without rewinding the honest sender. For simplicity, in this
introduction we will refer to the property of a commitment scheme of admitting such a special and partial
extractor as weak non-malleability2. We stress that in the formal part of the paper we will not explicitly
define weak non-malleability; instead, we will formally refer to the existence of the above special and partial
extractor introduced in [GRRV14, BGR+15] and used in our work. The subprotocol Π3R

BGRRV by itself is not
an extractable commitment scheme in the classical sense3 since the special and partial extractor can fail
with non-negligible probability in extracting the committed message on well-formed transcripts that can be
sampled with non-negligible probability.
Our construction will require also classical extractability from such commitment scheme. Indeed, the

simulator must be sure to obtain the actual message committed by the adversary. Therefore, we add a
classical extractable commitment scheme Π3Ext to Π3R

BGRRV obtaining a 5-round commitment scheme that is
both extractable in the classical sense and weak non-malleable (i.e., it admits a specific and partial extractor

2Notice that the special and partial extractor we use does not offer any guarantees when the commitment computed by the
MiM is not well-formed. Therefore it is unclear if this definition implies the standard non-malleability property.

3A classical extractable commitment scheme requires an expected PPT extractor that works against an adversarial sender,
there is no MiM, and the extractor produces transcripts identically distributed to the real game, providing when the commitment
is well formed, also the committed message except with negligible probability.
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that works against a MiM adversary).
Looking ahead, for generic statements, the computations required by our protocol mainly consist of three

components: 1) One run of a classical 3-round public-coin SHVZK (e.g., ZKBoo/ZKB++ introduced by
[GMO16, CDG+17] or Σ-protocols like Schnorr’s protocol [Sch90]); 2) One run of a 3-round extractable
commitment scheme Π3Ext; 3) One run of the weak-non-malleable commitment scheme Π3R

BGRRV. Notice that
both Π3Ext and Π3R

BGRRV require black-box use of any one-way function only, and have been used and efficiently
instantiated in [KLP22b, BGR+15].
The efficiency of our protocol depends on the particular instantiation of the 3-round public-coin honest-

verifier zero-knowledge ΠSHVZK. More concretely, if ΠSHVZK is ZKBoo/ZKB++, then when proving the
preimage of a SHA-256 output, the cost of our construction is dominated by a single run of ZKBoo/ZKB++
on this statement; instead, to prove the same claim on a SHA-256 output, the protocol of [KLP22b] adds
several executions of Ligero [AHIV17] to prove other statements4. When proving for instance knowledge
of a discrete logarithm using Schnorr’s protocol, the cost of running our scheme is dominated by Π3Ext

and Π3R
BGRRV and we can completely avoid expensive tools like ZKBoo/ZKB++/Ligero. In contrast, the

construction of [KLP22b] would still require, in addition to Π3Ext and ΠBGRRV, multiple executions of Ligero
on various statements that in turn impose to run the prover of Ligero in some cases and the special honest-
verifier zero-knowledge simulator of Ligero in other cases. As shown in [KLP22b], the costs for these runs of
Ligero strongly dominate all other costs.
Finally, without specific optimizations, we notice that our construction requires at most 9 rounds while the

one of [KLP22b] requires more than 20 rounds. We give a detailed comparison in terms of efficiency between
our scheme ΠNM and ΠKLP in Section 1.3. In particular, we show that to verify one instance of a SHA-256
preimage with 40-bit of statistical security, our scheme requires less than 100ms for the prover and less than
5MB of communication. This represents a 15× improvement in computation time and a 4× improvement
in communication over ΠKLP which requires 20MB of communication and 1680ms of running time for the
same circuit and security level. Finally, it is natural to expect that our significantly better round complexity
would highly speed up the execution of the protocol when run on the Internet.

1.2 Overview of Techniques

We first propose a simple but insecure protocol, explaining why it fails. This is instrumental to better
understand our more elaborated construction and its security properties.

1.2.1 A näıve protocol.

We start with a 3-round public-coin special honest-verifier zero-knowledge (SHVZK) proof of knowledge
ΠSHVZK for x ∈ L, where x is the common input and (π1, π2, π3) is the transcript of an execution of ΠSHVZK.
The classical approach to make such a protocol secure against malicious verifiers consists of allowing the
simulator (that does not know the witness for x) to decide the challenge π2 of the transcript (π1, π2, π3)
upfront. This can be achieved by computing π2 as the xor of two sub-challenges c0 and c1 obtained as
follows. The former, c0, is chosen by the verifier and committed through an extractable commitment scheme
Π3Ext right after π1 is played; the latter, c1, is chosen and sent by the prover right after the commitment
phase of Π3Ext is over. The opening to c0 is played right after c1 is sent. After receiving the opening to c0
the prover can compute and send π3 to the verifier. In this way, the simulator will be able to decide the
challenge π2 by running the extractor of Π3Ext and computing c1 adaptively (i.e., c1 = π2 ⊕ c0).

While the exchange of messages just described provides zero knowledge, all the above components are
obviously malleable and therefore the protocol as it is can not be a NMZK argument. A well known approach
for proving non-malleability consists of showing an even stronger property called simulation-extractability .
According to this stronger notion, it is required to show an efficient simulator that can extract a witness
for the statement proved by the adversary in a so-called right session, while the adversary is receiving a
simulated proof acting as a verifier (in a so-called left session). Such approach would allow claiming that

4Some of Ligero’s executions are computed using the special honest-verifier zero-knowledge simulator, which is faster than
the honest prover procedure.
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the protocol satisfies simulation-extractability, which clearly implies non-malleability5. The extraction of a
witness for the instance proved by the adversary is in theory possible by running the proof of knowledge
extractor of ΠSHVZK. Unfortunately, this approach fails as we explain in the next paragraph.

Failure of the extractor while simulating. For simplicity, we will use γ to denote a message played
in a round of the left session (where the adversary AMiM acts as the verifier) and γ̃ to denote the message
corresponding to the same round of γ that is played in the right session (where AMiM acts as the prover).
We assume that ΠSHVZK is associated with a canonical extractor that, starting from an accepting transcript
(π̃1, π̃2, π̃3) through rewinds, tries to obtain a constant number of additional pairs (π̃i

2, π̃
i
3), so that (π̃1, π̃

i
2, π̃

i
3)

is also accepting and values π̃i
2 are all distinct with respect to each other and to π̃2. We need to argue that

the above extractor is successful, even in the event where in the left session we are simulating the messages of
ΠSHVZK. In particular, note that the simulator decides the challenge π2 (used to run the SHVZK simulator of
ΠSHVZK to obtain (π1, π2, π2)) and will force π2 in all the simulated transcripts as described above. In order
to force the challenge π2, the simulator does the following. Upon receiving the extractable commitment, it
extracts the underlying message (let us say c0) and sends c1 = c0 ⊕ π2 to the receiver (the adversary in this
case).
Since all components of the above protocol are malleable, an adversary could mimic what the simulator

does and, in turn, the adversary could manage to force the same value π̃2 in all the runs (i.e., π̃i
2 = π̃2)

invoked by the extractor on the right session, thus preventing the completion of the extraction.

1.2.2 Our NMZK Argument ΠNM via Our Commitment Scheme Π5Ext.

To solve the above malleability issue, we design our NMZK argument ΠNM replacing the extractable commit-
ment scheme Π3Ext used by the verifier to send the commitment of a share c̃0 of π̃2 with a new commitment
scheme with special properties. Specifically, we start with scheme given by the first three rounds of ΠBGRRV

[BGR+15], which we denote by Π3R
BGRRV. This is a 3-round commitment scheme that has the special and

partial extractor discussed earlier and we informally call weak non-malleability the corresponding property.
Note that Π3R

BGRRV is not an extractable commitment in the classical sense and this limitation would hurt
the simulator. As such, we will enhance Π3R

BGRRV by adding also a run of Π3Ext to it, so that the resulting
5-round commitment scheme, that we denote with Π5Ext, is both extractable in the classical sense and enjoys
the special and partial extractability property (we refer the reader to the next paragraph for a more detailed
description of Π5Ext).
We can now return to the previous attempt of relying on the canonical extractor of ΠSHVZK. While trying

to obtain an additional accepting transcript π̃1, π̃
′
2, π̃

′
3 with a new π̃′

2, a new sub-challenge c̃′0 will be played
(recall that the extractor of ΠNM acts as a verifier, and as such, it can sample c̃′0). In more detail, the
extractor of ΠNM completes a full execution on the right session committing via Π5Ext to a random string c̃0.
Upon collecting the accepting transcript π̃1, π̃2, π̃3 (we recall that π̃2 = c̃0⊕ c̃1), the extractor of ΠNM rewinds
the adversary and changes the message committed via Π5Ext, from c̃0 to a new random c̃′0, and completes
this execution collecting the new transcript π̃1, π̃

′
2, π̃

′
3. We need to argue that π̃′

2 ̸= π̃2, as this would allow
the extractor of ΠNM to invoke the underlying extractor of ΠSHVZK, enabling the extraction of the witness
for the statement proven in the right session by AMiM.
The event where the MiMAMiM of ΠNM manages with non-negligible probability to choose the sub-challenge

c̃′1 so that π̃′
2 = c̃′0 ⊕ c̃′1 = π̃2 (i.e., the challenge of ΠSHVZK does not change during the rewinds) can now

be leveraged to contradict the hiding of Π5Ext using its weak non-malleability (i.e., relying on the existence
of a special and partial extractor that outputs with non-negligible probability the message committed by a
MiM without rewinding the honest sender). Indeed, we will show that the above successful AMiM can be
embedded in a successful MiM of Π5Ext and this let us rely on the special and partial extractor.

The reduction to the hiding of Π5Ext includes a few values such as π1, π2, π̃1, π̃2 that ensure that in the
end, with non-negligible probability, it will happen that c̃′1 is such that π̃′

2 = c̃′0 ⊕ c̃′1 = π̃2. Notice that π1

5This holds since the simulator with access to the adversary is a stand-alone adversary that can prove the statement to an
external verifier using the extracted witness.
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and π̃1 are known before Π5Ext on the right session starts, and the pair (π2, π̃2) exists by contradiction since
otherwise, the adversary would force the same challenge in the right session with negligible probability only,
in which case we would not even need this reduction.
The reduction itself runs a modified experiment that does not use the extractor of the classical extractabil-

ity property of Π5Ext, but it uses instead the special and partial extractor associated to the weak non-
malleability of Π5Ext. Moreover, the reduction stops the execution of ΠNM when the adversary sends c̃1 since
this provides enough information to break the hiding of Π5Ext.

The goal of forcing a specific value for π2 on the left will be achieved by attempting an extraction of c0
through the special and partial extractor of Π5Ext. While this partial extractor is not guaranteed to succeed
with overwhelming probability, it outputs the correct c0 with non-negligible probability, and this is sufficient
for our purposes. The reduction embeds AMiM and starts its interaction with the challenger of the hiding of
Π5Ext, picking the two different challenge messages m0,m1 that are two random λ-bit strings. The challenger
now samples a bit b← {0, 1} and commits to mb. The reduction now acts as a proxy between the messages
generated by the challenger and those generated by AMiM with respect to Π5Ext. Upon receiving c̃′1 from
the adversary, the reduction computes π̃2 ⊕ c̃′1 = candidate. We now observe the following. We assumed
that, conditioned on π2 being the challenge on the left, with non-negligible probability AMiM manages to
send a value c̃′1, such that the xor of c̃′1 with the message committed by the challenger via Π5Ext is equal to
π̃2. Notice that π2 will be the actual challenge of Π in the left session with non-negligible probability since
the partial extractor succeeds extracting c0 with non-negligible probability. In turn, this will imply that
also π̃2 will be the challenge of Π in the right session and thus, candidate, with non-negligible probability,
represents the message committed by the challenger of hiding (i.e., mb = candidate). Note that candidate
may, (still with non-negligible but not overwhelming probability) differ from both m0 and m1. In this case
(i.e., candidate is neither equal to m0 nor m1), the reduction will make a random guess. Note that whenever
candidate is instead equal to mb′ (with b′ ∈ {0, 1}), the reduction is sure that b′ = b. This is because m0 and
m1 are two random strings unknown to AMiM, hence, the probability that the challenger is committing to
mb, and we instead obtain candidate = m1−b is negligible (i.e., the adversary can only hope to guess m1−b,
as m1−b does not appear in the view of the adversary, but this is going to be negligible when the message
space is large enough). For these reasons, we can then conclude that our reduction is successful.
Summing up, we rely on the classical extractability property of a commitment scheme to obtain a transcript

that is indistinguishable from a real game. Next, we rely on the classical witness extraction procedure
consisting of changing π̃2 on the right while forcing the same π2 on the left, and if this succeeds, the
simulator-extractor ends adding to the above transcript also a correct witness. If the simulator-extractor
fails, then through hybrid games we can show that the failure of the simulator-extractor can be reduced to
an adversary breaking the hiding of Π5Ext. This reduction will use the weak non-malleability of Π5Ext.

Finally, we observe that a crucial reason why weak-non-malleability of the commitment scheme suffices is
that a successful adversary of ΠNM must complete the right session committing and correctly opening the
commitment. Therefore a malleability attack producing a badly-formed commitment (that is a commitment
for which the special and partial extractor would fail) would not correspond to a succeeding adversary in
our NMZK argument system.

1.2.3 Making Π3R
BGRRV extractable obtaining Π5Ext.

In the above discussion we have assumed that Π5Ext is weak-non-malleable, and enjoys classical extractabil-
ity. By classical extractability here we mean that, given an initial transcript of Π5Ext, generated from an
interaction between a corrupted sender and an honest receiver, it is possible to rewind the sender to obtain
a message m, such that if the commitment generated by the sender admits a valid opening, this opening will
correspond to m. If instead, the commitment does not admit an opening, then we have no guarantee about
the correctness of the extracted message. Π3R

BGRRV does not satisfy this notion of extractability. To see why
this is the case, we recall how, at a very high level, Π3R

BGRRV works. Let m be the message that we want to
commit to. The sender sends a non-interactive commitment of m and of a random group element r. The
receiver sends a random group element α, and in the third round, the sender replies with a = rα+m.
Consider now a corrupted sender that computes a well-formed commitment (following the steps described
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above). A candidate extractor then could work by sending a new second round α′, thus obtaining a′. At
this point, the extractor can interpolate the points (a, α), (a′, α′) thus obtaining a message m′. Note that
in the rewinding thread, the adversary could have used completely different values of r and m to compute
a′, hence, it can happen that the extracted value is m′ with m′ ̸= m. The hiding of the non-interactive
commitment prevents the extractor from understanding whether it is extracting the correct value. Hence,
even if the original commitment generated by the sender is valid, the extractor we have described fails.
It is not clear whether there is a succeeding extraction procedure, hence, we modify Π3R

BGRRV, to make it
extractable obtaining Π5Ext.
Let us now see how to add classical extractability. We modify Π3R

BGRRV obtaining a 5-round protocol
that we denote by Π5Ext. This new protocol is obtained via a simple modification. We replace the non-
interactive commitments of Π3R

BGRRV, with a three-round extractable commitment Π3Ext. It is clear that this
new commitment scheme is now extractable. In particular, the extractor of Π5Ext can run the extractor of
Π3Ext to obtain and return m. The extraction is successfully conditioned (i.e., it outputs the committed
message with non-negligible probability) on the adversarial sender providing a well-formed commitment.
We need also to argue that the obtained scheme is still weak-non-malleable (i.e., it admits a special

and partial extractor). We first observe that the scheme is hiding. Then we prove that it is weak-non-
malleable, via a reduction to its hiding property. The reduction works as follows, an external challenger acts
as a committer against (in the left session) a MiM, and we define an extractor that extracts the message
committed by MiM (on the right session) either by running the partial extractor of Π3R

BGRRV (which exists
due to the weak-non-malleability of the scheme), or by running the extractor of Π3Ext. The choice of which
extractors to run depends on the message schedule. In particular, there are two main cases of message
schedule to consider: case 1) the right-session messages of Π3R

BGRRV align with the messages of Π3Ext in the
left session; case 2) any other message schedule where case (1) does not occur.
In case (1), we can not extract from Π3R

BGRRV, as the rewinds would, in turn, rewind the messages of Π3Ext

generated from the challenger (which would compromise the hiding of the entire scheme). Hence, in this
case, the extraction is performed using the extractor of Π3Ext. Note that this does not cause a problem, as
in this message schedule, the second and third rounds of Π3Ext in the right session could (in the worst case)
be aligned with the second and third rounds of Π3R

BGRRV in the left session. But we will argue that this does
not cause issues in the reduction as we can generate locally valid third-round messages for Π3R

BGRRV (i.e., the
third round of Π3R

BGRRV can be randomly generated).
For all schedules that fall in (2) instead, the extraction can be performed by simply running the partial

extractor of Π3R
BGRRV (that exists from the weak-non-malleability). Due to the way we have defined (2), the

rewinds performed on the right session can only rewind the messages of Π3R
BGRRV, but as discussed, this is

something that Π3R
BGRRV can deal with. This concludes this high-level description of the proof, but we refer

the reader to Section 5 for a formal proof.

1.3 Efficiency and Comparison with Previous Results

Here we analyze the efficiency of our main protocol ΠNM and compare it to state-of-the-art NMZK argument
systems. We want to stress that the goal of this section is not to provide a precise evaluation of the efficiency
of our construction; instead we aim to compare it with the current state of the art.

Instantiation and efficiency of the main building blocks of ΠNM. At a high level, our scheme
consists of two main building blocks, namely the 5-round extractable commitment scheme, Π5Ext, obtained
by compiling the 3-round weak-non-malleable commitment scheme of [BGR+15], that we denote by Π3R

BGRRV

(see Section 3 for a complete description), and a SHVZK protocol ΠSHVZK that we can instantiate for example
with an optimized version of ZKBoo [GMO16, CDG+17] or Schnorr’s protocol.

We examine these two components separately, and follow the analysis given in [KLP22b] for the first
building block. However, as mentioned before, compared to [KLP22b], we only need to instantiate Π3R

BGRRV

deduced from the first three rounds of [BGR+15] and thus we avoid the consistency proof of the committed
phase.
The perfect binding commitment scheme used in the first round of Π5Ext is instantiated with Naor’s
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Scheme #AESλ #SHA-256λ Comm Rounds BB

ΠKLP [KLP22b] λ 2|C|+
√
|Ccons| · log(|Ccons|) + λ · (λ+ k2 + 2

√
|C|)+ > 20 ✗√

|Ceq| · log(|Ceq|) + 2|Ceq| λ · (
√
|Ccons|+ 3

√
Ceq + 2

√
CSHA)

ΠNM (our work) λ λ ·m λ · (3λ+ k2 + log2 3 + 2λm) 9 ✓

Table 1: Asymptotic complexity of Michele: quale e’ la differenza tra m e Cmult? [KLP22b] and our NMZK
scheme. |C| is the size of the circuit being proved and m is its multiplicative complexity; from [KLP22b],
we have |Ccons| = O(k · (|Cadd(2λ)|+ 2|Cmul(2λ)|+ 3|CAES(2λ)))|, where k is a parameter of ΠBGRRV related to
the use of tags, and |Ceq| = |CAESλ

|+ λ.

commitment scheme [Nao90] for messages longer that one bit, where the PRGs used to mask the message
can be implemented using AES in CTR mode. Denoting by AESλ an evaluation of AES on a λ-bit string,
the extractable commitment scheme requires roughly 3λ AESλ in the commitment phase and 2λ AESλ in
the decommitment stage. In addition, the verifier needs to evaluate λ dot-products on vectors of length 2λ
over Zq, with q ≈ 2λ.

For the second building block, we choose an improved version of the ZKBoo protocol described by [GMO16].
This is a 3-round SHVZK argument system based on the MPC-in-the-head paradigm of [IKOS07]. ZKBoo is
only based on symmetric assumptions and has been successfully used to build efficient post-quantum secure
signature schemes. We recall that ZKBoo, like almost all MPC-in-the-head protocols, require a certain
number ρ of parallel repetitions to achieve the desired soundness error of 2−σ, where σ is the statistical
security parameters.
In our analysis, we also use the version of the protocol proposed by Chase et al. [CDG+17] that presents

several optimizations especially in communication complexity. As done in [KLP22b] with Ligero, we use
ZKBoo figures to estimate the concrete efficiency of our protocol. Notice, both Ligero and ZKBoo instantiate
their main components similarly, i.e., random tapes are generated using AES in CTR mode; commitments
are implemented using SHA-256, under the assumption that SHA-256 is a collision-resistant hash function
and SHA-256(r||·) is a PRF (with key r)). Alternatively, to avoid random-oracle-based commitments we
should use the commitment scheme proposed by Halevi and Micali [HM96]. In more details, we denote by
|C| the size of the circuit C being evaluated and by m the number of its multiplication gates; we measure
the complexity of our protocol for a given circuit C in terms of number of AESλ and SHA-256λ, where, as
previously mentioned, AESλ (or SHA-256λ) indicates an evaluation of the AES block cipher (resp. SHA-256)
evaluations on a λ-bit string, similarly to what is done in [KLP22b]. Since the number of views needed for
the MPC emulations in the ZKBoo protocol is only 3, overall this protocol requires roughly 3 ·m · ρ AESλ
and m · ρ SHA-256λ.

Communication Complexity. A main advantage of our approach is the very low round complexity
compared to ΠKLP, which makes our protocol significantly better than previous ones especially in the WAN
setting. Let C be a circuit over Z2ℓ , where ℓ = 2λ, with |inp| input wires and m multiplication gates. To
estimate the communication complexity, again we consider the main components of our scheme. We report
the optimized overall cost of ZKBoo as given in [CDG+17]:

CostZKB ≈ ⌈σ(log2 3− 1)⌉ ·
(
256 + 2λ+ log2 3 + ℓ(2/3|inp|+m)

)
In the extractable commitment step, we need to communicate approximatively 4λ2 bits for commitments
and again λ2 challenge bits.
We summarized the analysis of the costs and comparison to [KLP22b] in Table 1. While the table only
considers asymptotic complexity, we can have a more concrete idea of the different complexity of the two
protocols by considering the case C= SHA-256 (i.e., by estimating the circuits in the table when proving
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knowledge of preimages of SHA-256). We use the “Bristol fashion” circuit6 representation for SHA-256,
AES-128 and AES-256 and set k = 32 [KLP22b]. This will give |C| ≈ 120000, |Ccons| ≈ 5 ·106, |Ceq| ≈ 30000
and m ≈ 22600. We can see that our scheme achieves a significant improvement compared to the scheme of
Kim et al. with less than half rounds.
In addition to this analysis, and in support of it, we can also try to estimate the running time of our

scheme by considering the running time of its main building blocks. Once again, we follow the same analysis
done in [KLP22b], which also gives estimated figures by using for all the Ligero executions the figures given
in [AHIV17]. Specifically, we adopt the same efficiency approximation for AES and SHA-256 as described in
[KLP22b]. Additionally, we consider the single-threaded version of the implementation of ZKBoo, provided
by [GMO16]. The work of Giacomelli et al. reports that proving SHA-256 takes roughly 30.81ms for the
prover and 34.16ms for the verifier with communication of ≈ 193KB when σ = 40, and 54.63ms for the prover
and 67.74ms for the verifier and requires communication of roughly 383KB when the statistical security
parameter σ = 80. Consequently, using ΠZKBoo

NM for proving SHA-256 with a statistical security parameter σ
set to 40 (or 80) results in a runtime of less than 100ms (or 300ms), along with communication requirements
of less than 5MB. This is in stark contrast to the ΠKLP protocol, which necessitates approximately 1680ms
(or 5000ms) and communication of around 20MB for the same security levels.

2 Preliminaries

Throughout this paper, we will use λ to denote the security parameter and negl(λ) to denote any function
which tends to zero faster that λ−c, for any constant c. We write [n] to denote the set {1, . . . , n}. We use
the abbreviation ppt to denote probabilistic polynomial time. We use boldface to denote vectors, and ⟨·, ·⟩
to denote inner product of vectors.
Let A and B be two interactive machines, we denote by (A,B) an interactive protocol between them. We

denote by ⟨A(a), B(b)⟩ (x) the interaction between A and B on common input x and private input a for
A and private input b for B. We denote by τ the transcript generated by ⟨A(a), B(b)⟩ (x). We denote by
OutA(⟨A(a), B(b)⟩ (x)) the output of A after the execution of the protocol and OutB(⟨A(a), B(b)⟩ (x)) the
output of B after the execution of the protocol.
We denote by AB(x) the output of A on input x and given oracle access to B.

2.1 Commitment Scheme

A commitment scheme Πcom = (C,R) is a two-phase protocol between two ppt interactive algorithms, a
committer C and a receiver R. In the first phase, called commit phase, C on input a message m and a
randomness rc interacts with R on input rr. Let τ = ⟨C(m, rc),R(rr)⟩ denote the commitment transcript
with committer input m, committer randomness rc and receiver randomness rr. In the second phase, called
decommitment phase, the committer C reveals m′ and R accepts the value committed in τ to be m′ if and
only if C proves that τ can be produced on input m′. We only consider commitment schemes where the
decommitment phase consists of a single message from the committer to the receiver. Let Dec(τ,m, rc)
denote the polynomial time deterministic algorithm that on input a commitment transcript τ , committer
message m and randomness rc outputs 1 or 0 to denote whether or not the decommitment was accepted. We
report the classic definitions of completeness, binding and hiding. We refer the reader to [Gol01] for more
details.

Definition 2.1 (Completeness). A commitment scheme (C,R) is said to be complete if for any message m,
committer randomness rc and receiver randomness rr, Dec on input (τ,m, rc), where τ = ⟨C(m, rc),R(rr)⟩,
outputs 1.

Definition 2.2 (Statistical Binding). A commitment scheme (C,R) is said to be statistically binding if for
every C∗ there exists a negligible function ν such that C∗ succeeds in the following game with probability at
most ν(λ):

6https://nigelsmart.github.io/MPC-Circuits/
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• On input the security parameter λ, C∗ interacts with R in the commit stage and R obtains the com-
mitment τ .

• C∗ outputs pairs (m0, r0) and (m1, r1).

• C∗ succeeds if Dec(τ,m0, r0) = Dec(τ,m1, r1) = 1 and m0 ̸= m1.

If ν(λ) = 0 we refer to a perfectly binding commitment scheme.

Definition 2.3 (Computational Hiding). A commitment scheme (C,R) is said to be computationally hiding
if for every ppt R∗, and every two messages m0, m1, the view of R∗ after a commitment phase where C
committed to m0 is computationally indistinguishable from the view of R∗ after participating a commitment
phase where C committed to m1.

2.2 Extractable Commitments

Informally, a commitment scheme is said to be extractable (with over-extraction) if there exists a ppt
extractor that extracts the committed value conditioned on the commitment being well-formed. Formally,
we report the definition of [PW09].

Definition 2.4. Consider any statistically binding, computationally hiding commitment scheme ΠcomExt =
(C,R). Then ΠcomExt is said to be extractable if there exists an expected ppt oracle algorithm Ext (the
extractor) that, given oracle access to any ppt committer C∗, outputs a transcript τ and a message m
such that the following holds: (i) τ is identically distributed to the view of C∗ when interacting with an
honest receiver R in commitment phase; (ii) the probability that τ is a well-formed transcript and m = ⊥ is
negligible; (iii) if m ̸= ⊥ then Pr[(∃m̃ ̸= m, r̃c) : Dec(τ, m̃, r̃c) = 1] ≤ negl(λ).

We also add the following definition that we use later in Section 5.

Definition 2.5 (2-Extractable Commitments). A 3-round (resp. 4-round, resp. 5-round) commitment
scheme is said to be 2-extractable if, there exists a polynomial-time extractor algorithm Ext that given a set of
2 well-formed transcripts {a, ci, zi}i∈[2] (resp. {γ, a, ci, zi}i∈[2], resp. {α, γ, a, ci, zi}i∈[2]) of the commitment
phase w.r.t. the same committed message, where for each j, j′ ∈ [2], j ̸= j′, cj ̸= cj′ , outputs the value
committed in {a, c1, z1} (resp. {γ, a, c1, z1}, resp. {α, γ, a, c1, z1}) except with negligible probability.

2.3 Commitment Schemes and Man-in-the-Middle Attacks

Here we report the definition of non-malleable commitment scheme from [GRRV14]. Even though our
construction will not include a non-malleable commitment, still we need to use a commitment scheme with
special properties against a man-in-the-middle (MiM) adversary MIM. Indeed we need a commitment scheme
for which [GRRV14, Theorem 4] holds (we report this theorem in Section 3). Non-malleable commitments
are defined considering two experiments that are required to produce indistinguishable views. We will refer
to a game where a distinguisher would like to guess which among the two experiments is executed as in the
indistinguishability game. The MiM execution is the following. Consider a (MiM) adversary MIM that is
participating in two interactions called the left and the right interactions. In the left interaction, MIM is the
receiver and interacts with an honest committer C, whereas in the right interaction, MIM is the committer
and interacts with an honest receiver R. We denote all the entities used in the right session using the tilde
symbol on the corresponding entities used on the left. So, if m is the value committed by C, m̃ is the value
committed by MIM on the right. We assume C has an identity id ∈ {0, 1}k of its choice, for k = Ω(λ). At
the onset of the commitment phase, C receives the value m in input while MIM receives an auxiliary input
aux. In the left session, the MiM adversary MIM interacts with C receiving a commitment to message m
using identity id. In the right session, MIM interacts with R attempting to commit to a related value m̃
using an identity ĩd of its choice. If the right commitment is invalid, or undefined, the committed value is
set to ⊥. If id = ĩd, we set the committed value to ⊥ (i.e., when the adversary uses the same identity of
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the honest committer the attack is invalid). Let MIM(C,R)(m, aux) be the random variable that describes
(view, m̃), consisting of the values committed by MIM and MIM’s view in the experiment above.

In the simulated execution, a simulator SIM directly interacts withR. Let SIM(C,R)(1
λ, aux) be the random

variable describing (view, m̃), given by the values committed by SIM and its output. As before, whenever
SIM commits in the right interaction a commitment for which the identity is the same as one of the left
interaction, the committed value is set to ⊥. We consider one-one non-malleable commitments, where MIM
participates in one left and one right interaction.
We will denote a ppt MiM adversary MIM participating in the above indistinguishability game as a valid

MiM. We report the following definition from [GRRV14].

Definition 2.6. A valid ppt MiM adversary MIM is successful if there exists a message m and a ppt
distinguisher D such that Pr[D(MIM(C,R)(m, aux)aux∈{0,1}∗) = 1]− Pr[D(SIM(C,R)(1

λ, aux)aux∈{0,1}∗) = 1] ≥
1

p(λ) for some polynomial p and infinitely many λ.

Given a successful MIM as described in Definition 2.6, it holds that for every successful ppt MiM adversary
A there exists a pair of messagesm0,m1 and a ppt distinguisherD such that Pr[(D(MIM(C,R)(m0, aux)aux∈{0,1}∗) =

1]− Pr[D(MIM(C,R)(m1, aux)aux∈{0,1}∗) = 1] ≥ 1
p(λ) for some polynomial p and infinitely many λ.

Definition 2.7. Let MIM be a valid MiM ppt adversary which interacts with an honest sender in the left
session with tag id and an honest receiver in the right session with tag of his choice ĩd in the execution
of an n-round protocol Π = (C,R). Let τ = (com1, . . . , comn, c̃om1, . . . , c̃omn) be the transcript (i.e., the
messages generated in the left and right sessions) obtained at the end of such an interaction. We say that
τ ∈WELLF if (com1, com2, . . . , comn) and (c̃om1, c̃om2, . . . , c̃omn) are both well-formed (i.e., both the right
and left session transcripts represent commitments that admit a valid opening).

2.4 Arguments/Proofs

Informally an interactive argument/proof system for an NP-language L with associated relation RelL is a
pair of ppt interactive algorithms Π = (P,V) for which no cheating P∗ can convince, with non-negligible
probability, an honest verifier on some instance x that does not belong to L.

We say that Π = (P,V) is public coin if, at every round, V simply tosses a predetermined number of coins
(i.e., a random challenge) and sends the outcome to the prover. We denote with π0, π1, . . . , πℓ the messages
of the transcript generated by ⟨P(w),V⟩. For readability we use π0 when the first message is sent by V
otherwise we start to enumerate the messages from 1. Moreover we say that the transcript τ of an execution
⟨P(w),V⟩(x) is accepting if OutV(⟨P(w),V⟩ (x)) = 1.
In the following, we consider the special case in which the number of rounds of Π is 3 (resp. 4), i.e. the

messages of the transcript are (π1, π2, π3) (resp. (π0, π1, π2, π3)). We recall the following definition.

Definition 2.8 (Interactive Argument/Proof System). A pair of ppt interactive algorithms Π = (P,V)
constitutes a proof (resp., argument) system for an NP-language L that is associated with the relation RelL,
if the following conditions hold:

- Completeness: For every x ∈ L and w such that RelL(x,w) = 1, it holds that V accepts the proof
with probability 1.

- Soundness: For every algorithm P∗ (resp. ppt algorithm P∗) there exists a negligible function negl
such that for every x /∈ L and every auxiliary input aux:

Pr [OutV⟨P∗(aux),V⟩(x) = 1] ≤ negl(|x|).

Definition 2.9 (SHVZK). A 3-round (resp. 4-round) proof (resp., argument) system Π = (P,V) as defined
above, is special honest-verifier zero knowledge (SHVZK) if there exists a ppt algorithm Sim that for any
x ∈ L, where L is an NP-language with the associated relation RelL, and any challenge π2 (resp. any
challenges (π0, π2)) works as follow: (π1, π3) ← Sim(x, π2) (resp. (π1, π3) ← Sim(x, π0, π2)). Furthermore,
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the distribution of the output of Sim is (computationally) indistinguishable from the distribution of a transcript
obtained when V sends π2 as challenge (resp. (π0, π2) as challenges) and P runs on common input x and
any w such that RelL(x,w) = 1.

Definition 2.10 (Proof of Knowledge with Canonical Extractability). A 3-round (resp., 4-round) proof
system Π = (P,V) for an NP-language L associated to a relation RelL as defined above, is a proof of
knowledge with canonical extractor if there exists an expected ppt extractor Ext such that, for any ppt
adversarial prover P∗ that interacting with V produces an accepting transcript for a statement x ∈ L with
probability p ≥ 1

|x|c for some constant c, then:

• Ext runs as V with P∗, terminating and giving in output the transcript; if this transcript is not accepting
than Ext stops, otherwise let (π1, π2

1 , π
3
1) (resp. (π0, π1, π2

1 , π
3
1)) be the accepting transcript;

• then Ext rewinding multiple times P∗ and playing each time a new random value instead of π2
1 with

overwhelming probability obtains a constant number k of accepting transcripts all with the same π1

(resp. π0, π1) and different challenges;

• obtained k accepting transcripts (x, π1, π2
i , π

3
i )i∈[k] (resp. (x, π0, π1, π2

i , π
3
i )i∈[k]) such that for each

j, z ∈ [k], j ̸= z, π2
j ̸= π2

z , Ext outputs a witness w such that RelL(x,w) = 1.

2.5 Non-Malleable Interactive Arguments/Proofs

Let {(Pid,Vid)}id∈{0,1}∗ be a family of interactive argument/proof system for an NP language L with the
associated relation RelL. Let x ∈ L such that |x| = λ be the public input of the protocol and w P’s private
input such that RelL(x,w) = 1.
Let MIM be a ppt MiM adversary that is simultaneously participating in one left section with (Pid,Vid)

and one right session with (Pĩd,Vĩd). MIM receives as auxiliary input aux ∈ {0, 1}∗. In the left session MIM
verifies the validity of the statement x by interacting with P using identity id. In the right session MIM
proves the validity of the statement x̃ (chosen adaptively by MIM) to the honest verifier V, using identity ĩd
of MIM’s choice. Let viewMIM(x, aux, id) denote the joint view of MIM(x, aux) and the honest verifier V when
MIM is verifying a statement x in the left execution, using identity id, and proving on the right a statement
x̃ using identity ĩd.

Definition 2.11 (Simulation-Extractability [PR08]). A family of argument/proof systems {(Pid,Vid)}id∈{0,1}∗

for an NP-language L with witness relation RelL is simulation extractable with tags of length m = m(|x|)
if for any MiM adversary MIM that participates in one left session and one right session, there exists an
expected ppt Sim such that:

1. The two ensembles {Sim1(x, aux, id)}x∈L,aux∈{0,1}∗,id∈{0,1}m and {viewMIM(x, aux, id)}x∈L,aux∈{0,1}∗,id∈{0,1}m

are computationally indistinguishable, where Sim1(x, aux, id) denotes the first output of Sim(x, aux, id).
2. Let x ∈ L, aux ∈ {0, 1}∗, id ∈ {0, 1}m and let (view, w̃) denote the output of Sim(x, aux, id). Let x̃ be
the right-session instance appearing in view and let ĩd be the identity used in the right session appearing
in view. If the right session is accepting and id ̸= ĩd, then w̃ is such that (x̃, w̃) ∈ RelL.

Remark. Differently from [KLP22b] that uses the definition of NMZK from [PR05] which in turn is based
on the definition introduced by [DDN91], we use a stronger definition named simulation extractability given
in [PR08]. Notice that, as proved in [PR08, Proposition 3.6] Definition 2.11 implies the tag based NMZK
definition of [PR05].

3 Commitment Scheme Π3R
BGRRV = (C3RBGRRV,R3R

BGRRV)

We recall here the non-malleable commitment scheme presented in [BGR+15]. This scheme consists of
a three-round public-coin commitment, followed by a zero-knowledge proof to ensure that the commit-
ted phase is well formed. The commitment phase of the non-malleable commitment scheme presented
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in [BGR+15] i.e., only the commitment phase from [KLP22b], is reported in Figure 1. We denote it by
Π3R

BGRRV = (C3RBGRRV,R3R
BGRRV). The commitment phase of Π3R

BGRRV makes (black-box) use of a perfectly-binding
commitment scheme Π = (Com,Dec).

Figure 1: Description of Π3R
BGRRV = (C3RBGRRV,R3R

BGRRV)

Public parameters: An identity id ∈ {0, 1}k, for k = Ω(λ), a large prime q, an integer ℓ, and vector
spaces V1, . . . , Vn ⊂ Zℓ

q derived from id. These parameters satisfy the following relation: ℓ = 2(k + 1) and
n = k + 1.
Private input: C3RBGRRV holds a private message m ∈ Zℓ−1

q , where m = (m1, . . . ,mℓ−1).

Commitment phase: It consists of the following steps.

Round 1 (C3RBGRRV → R3R
BGRRV). 1. C3RBGRRV picks at random values r1, . . . , rn ∈ Zq and

s1, . . . , sℓ−1, s
′
1, . . . , s

′
n in {0, 1}λ. This defines vectors z1, . . . ,zn ∈ Zℓ

q, where zi = (ri,m).

2. Let cmm = (Com(m1; s1), . . . ,Com(mℓ−1; sℓ−1)) and cmr = (Com(r1; s
′
1), . . . ,Com(rn; s

′
n)),

C3RBGRRV sends cm = (cmm, cmr) to R3R
BGRRV.

Round 2 (R3R
BGRRV → C3RBGRRV). Upon receiving cm from C3RBGRRV, R3R

BGRRV picks at random challenge vector
α = (α1, . . . , αn), where αi ∈ Vi ⊂ Zℓ

q, and sends α to C3RBGRRV.

Round 3 (C3RBGRRV → R3R
BGRRV). Upon receiving α from R3R

BGRRV, C3RBGRRV compute wi = ⟨αi, zi⟩ ∈ Zq and
send a = (w1, . . . , wn).

Decommitment phase: (C3RBGRRV → R3R
BGRRV). C3RBGRRV sends m and the values r1, . . . , rn and

s1, . . . , sℓ−1, s
′
1, . . . , s

′
n to R3R

BGRRV. R3R
BGRRV checks that cmm = (Com(m1; s1), . . . ,Com(mℓ−1; sℓ−1)) and

cmr = (Com(r1; s
′
1), . . . ,Com(rn; s

′
n))

In the rest of the paper we will use the following theorem proven in [GRRV14], whose key points are also
proven in [BGR+15].

Theorem 3.1 ([GRRV14]). Let MIM be a valid ppt MiM adversary which interacts with an honest sender
in the left session with tag id and an honest receiver in the right session with a tag of his choice ĩd in the
execution of Π3R

BGRRV. Let τ = (cm, c̃m,α, α̃,a, ã) denote the transcript (i.e., the messages generated in the
left and right sessions) obtained at the end of such an interaction and m̃ the message committed in the
right session (i.e., the message that can be successfully opened, ⊥ otherwise). Let 2p̃ be the non-negligible
probability with which MIM is successful according to Definition 2.6. Then there exists a ppt Ext which has
oracle access to MIM such that:

Pr[ExtMIM(τ) ̸= m̃ | τ ∈WELLF] ≤ p̃,

where the probability is over the randomness of Ext and the one used to sample τ ∈WELLF (see Definition 2.7
for the formal definition of WELLF).

Remark on Theorem 3.1. In [GRRV14] the authors state the theorem slightly differently, requiring
τ to be the transcript for which an accepting zero-knowledge proof π has been provided in the left session,
proving that (cm,α,a) is well formed, and also a zero-knowledge proof π̃ is provided on the right session
(again, proving that (c̃m, α̃, ã) is well-formed). In this paper, we will not use such zero-knowledge proofs
and simply require the above special and partial extractor to work correctly over only those transcripts that
are well formed, letting the extractor being undefined on other transcripts. When using such a theorem, we
will restrict to those runs of the special and partial extractor where the transcript given as part of the input
does indeed belong to WELLF.
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Remark on the use of Π3R
BGRRV. In Π3R

BGRRV the commitment in the first round is computed on a message
that corresponds to a tuple of elements in Zq, i.e., m = (m1, . . . ,mℓ−1) ∈ Zℓ−1

q . Looking ahead, in our scheme
ΠNM (described in Section 6) we will only need to commit to a single element of Zq (similarly to [KLP22b,
Protocol 2]). Let m ∈ Zq be the message to be committed in ΠNM, we can consider m = (m,m2, . . . ,mℓ−1),
where m2, . . . ,mℓ−1 are all set to 0.

4 Extractable Commitment Scheme

We use the 3-round public-coin extractable commitment scheme Π3Ext = (C3Ext,R3Ext) presented in [PW09,
Section 4]. Π3Ext is a 3-round public-coin extractable perfectly binding commitment scheme that achieves
2-extractability. Π3Ext is described in detail in Figure 2, where we denote by Com the commitment phase of
a non-interactive perfectly binding commitment scheme. Notice that Com can be obtained relying only on
one-way permutation (i.e., 1-1 OWF).

Figure 2: Description of Π3Ext = (C3Ext,R3Ext)

Notation: Let Com be a statistically-binding commitment scheme.
Public parameters: λ.
Private input: C3Ext holds a private message m ∈ {0, 1}λ.

Commitment phase: It consists of the following steps.

Round 1 (C3Ext → R3Ext). C3Ext commits using Com to λ pairs of strings {(v0
i ,v

1
i )}i∈[λ], such that, for

each i ∈ [λ], (v0
i ,v

1
i ) = (νi,m⊕ νi) and νi are random strings in {0, 1}|m|.

Let c be the list of the resulting λ pairs of commitments, C3Ext sends c to R3Ext.

Round 2 (R3Ext → C3Ext). Upon receiving c from C3Ext, R3Ext sends a random challenge e = (e1, . . . , eλ),
with each ei ∈ {0, 1}, for i ∈ [λ].

Round 3 (C3Ext → R3Ext). Upon receiving e from R3Ext, C3Ext opens the commitments vei
i , i ∈ [λ].

Decommitment phase: (C3Ext → R3Ext): C3Ext sends m and the opening for all λ pairs of strings. R3Ext

checks that m = v0
1 ⊕ v1

1 = . . . = v0
λ ⊕ v1

λ.

Theorem 4.1 ([PW09]). Let Com be a perfectly binding non-interactive commitment scheme obtained from
1-1 OWF, then Π3Ext is a 3-round public-coin extractable perfectly binding commitment scheme that achieves
2-extractability.

Notice that it is possible to rely only on OWF substituting Com with a statistically binding 2-round
commitment scheme from OWF. In this case, the resulting protocol is a 4-round public-coin extractable
statistically-binding commitment scheme that achieves 2-extractability. In the following sections, every time
that we refer to a perfectly-binding non-interactive commitment scheme Com that relies only on 1-1 OWF
it is possible to substitute it with a 2-round statistically-binding commitment scheme assuming only OWF.

5 Our 5-Round Extractable Commitment Scheme Π5Ext

In this section, we construct a 5-round extractable commitment scheme Π5Ext = (C,R) that satisfies Theorem
3.1 as Π3R

BGRRV in Section 3. We use the following building blocks:

• The 3-round 2-extractable, commitment scheme Π3Ext of Section 4.

• The 3-round public-coin, commitment scheme Π3R
BGRRV of [BGR+15], and Ext of Theorem 3.1. We recall

Π3R
BGRRV in Section 3, as we are going to use its components in the design of our Π5Ext.
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• A non-interactive perfect binding commitment Πcom = (Com,Dec).

At a very high-level Π5Ext, shown in Figure 3, follows the commitment phase of Π3R
BGRRV (described in

Section 3), which in the first round takes as input a vector of ℓ− 1 elements and commits to it (using Com)
component-wise. Our only modification is that we commit to the first component of this vector using Π3Ext.

Notice that even though we give here a full description of Π5Ext = (C,R), part of it is useful in the
performance analysis given in Section 1.3, part of it is explicitly used in our security proof and part of it is
implicitly used when referring to the security proofs given in [BGR+15].

Figure 3: Description of Π5Ext = (C,R)

Notation: We denote by (ext1, ext2, ext3) the 3 rounds of Π3Ext. We denote by (cm = (cmm, cmr),α,a)
the 3 messages of Π3R

BGRRV. Notice that the scheme has a tag id as public parameters, it is used to run the
underlying Π3R

BGRRV, for readability, we do not report this input in the algorithms of Π3R
BGRRV.

Public parameters: Same as in Π3R
BGRRV, i.e. an identity id ∈ {0, 1}t, for t = Ω(λ), q, ℓ = 2(t + 1),

n = t+ 1 and λ.
C’s Private input: m ∈ Zq.

Commitment phase: It consists of the following steps.

Round 1 (C → R).

On input the message m to commit, C sets m = (m,m2, . . . ,mℓ−1), where mi = 0 for each i ∈
{2, . . . , ℓ− 1}.

C picks at random values r1, . . . , rn ∈ Zq and s2, . . . , sℓ−1, s
′
1, . . . , s

′
n in {0, 1}λ. This defines vectors

z1, . . . ,zn ∈ Zℓ
q where zi = (ri,m).

C computes the first round of Π3Ext w.r.t. message m obtaining ext1.

Let cmm = (ext1,Com(m2; s2), . . . ,Com(mℓ−1; sℓ−1)) and cmr = (Com(r1; s
′
1), . . . ,Com(rn; s

′
n)); C sends

cm = (cmm, cmr) to R.

Round 2 (R → C).

Upon receiving cm, R computes the 2nd round α of Π3R
BGRRV, namely R picks at random a challenge

vector α = (α1, . . . , αn), where αi ∈ Vi ⊂ Zℓ
q, and sends α to C.

Round 3 (C → R).

Upon receiving α, C computes the 3rd round a of Π3R
BGRRV, namely C sends a = (w1, . . . , wn), where for

i ∈ [n], wi = ⟨αi, zi⟩ ∈ Zq.

Round 4 (R → C).

R, upon receiving a, computes the second round ext2 of Π3Ext. R sends ext2 to C.

Round 5 (C → R).

Upon receiving ext2, C computes the third round ext3 of Π3Ext obtaining decommitment information
decext. C sends ext3 to R.

Decommitment phase (C → R): C sends to R the decommit-
ment value dec = (m, (r1, . . . , rn), (decext, s2, . . . , sℓ−1, s

′
1, . . . , s

′
n)). If

((cm,α,a),m, (r1, . . . , rn), (decext, s2, . . . , sℓ−1, s
′
1, . . . , s

′
n)) is a valid decommitment for Π3R

BGRRV, then R
obtains m.
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Lemma 5.1. Π5Ext described in Figure 3 enjoys the 2-extractability property.

Proof. The lemma follows immediately from the 2-extractability of Π3Ext.

Theorem 5.2. Π5Ext described in Figure 3 is a perfectly binding, computationally hiding 5-round extractable
commitment scheme.

Proof. The perfect binding property of Π5Ext follows from the perfect binding property of Π3R
BGRRV,Π3Ext and

Πcom. The hiding property of Π5Ext follows from the hiding of Π3R
BGRRV,Π3Ext and Πcom. The extractability

follows from the extractability of Π3Ext. Indeed, we can run the extractor of Π3Ext thus obtaining m.

Theorem 5.3. Let MIM be a valid ppt MiM adversary which interacts with an honest sender in the left
session with tag id and an honest receiver in the right session with tag of his choice ĩd in the execution of
Π5Ext (Figure 3). Let τ denote the transcript obtained at the end of such an interaction and m̃ the message
committed in the right session (i.e., the message that can be successfully opened, ⊥ otherwise). Let 2p̃ be
the probability with which MIM is successful in the indistinguishability game according to Definition 2.6, for
some non-negligible p̃ = p̃(λ). Then there exists a non-negligible probability q̃ = q̃(λ) and a ppt Ext5Ext which
has oracle access to MIM such that:

Pr[ExtMIM
5Ext (τ) = m̃ | τ ∈WELLF] ≥ q̃,

where WELLF is the set of well-formed transcripts, the probability is over the randomness of Ext5Ext and the
ones used to sample τ ∈WELLF which is the set of well-formed transcripts of the commitment phase.

The high-level overview of the proof is presented at the end of Section 1.2, while the formal proof follows.

Proof. In this proof, we assume without loss of generality that the man-in-the-middle adversary MIM is
non-aborting with probability at least p̃. Let Ext3RBGRRV be the extractor defined in Theorem 3.1 associated
to Π3R

BGRRV. Ext5Ext on input the transcript τ = (cm,α,a, ext2, ext3, c̃m, α̃, ã, ẽxt2, ẽxt3) and with oracle access
to the man-in-the-middle adversary MIM applies a different extracting strategy based on the schedule of the
messages that yielded the generation of τ . In particular the extractor Ext5Ext distinguishes two classes of
schedules:

Schedule Class of Type (a). The 4th and 5th rounds (namely, ext2, ext3) of the left session are both
played after the 4th round (namely, ẽxt2) and before the 5th round (namely, ẽxt3)) of the right session.
For clarity, we report the graphical description of this scheduling in Figure 4.
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Figure 4: Schedules of type (a)

S MiM R

·
·

·
·

·
·

Round4 : ẽxt2

·
·

Round4 : ext2

Round5 : ext3

Round5 : ẽxt3

Schedule Class of Type (b). All the other types of schedules that do not belong to class (a).

We will describe how Ext5Ext extracts the committed message based on the class of schedules described
above.

Type (a) In this case Ext5Ext interacts with MIM as Ext3RBGRRV would. In a nutshell, the extractor Ext3RBGRRV
produces multiple second rounds of Π3R

BGRRV (which are part of the 2nd round of Π5Ext) in the right
session and expects to receive replies to these (which corresponds to the 3rd round of Π5Ext). On the
left session instead, if Ext3RBGRRV receives a new second round α′ it generates a new a′, without the
needing to know the input-randomness pair used to generate the first round cm. To properly use the
extractor Ext3RBGRRV, we first define a valid adversary MIM3R

BGRRV for such an extractor (who receives
and sends messages for the protocol Π3R

BGRRV). We define MIM3R
BGRRV via an augmented machine that

internally runs MIM and filters the messages of Π3R
BGRRV. We refer to Figure 5 for the formal definition

of this augmented machine/adversary, and to Figure 6 for a detailed description of how the extractor
works.

We are left with arguing that Ext5Ext (Figure 6) extracts the correct committed value with non-negligible
probability. If a schedule of type (a) occurs with negligible probability, then this part of the proof is
trivially over. If instead, a schedule of type (a) occurs with non-negligible probability p̃2, then we
can observe the following. When Ext3RBGRRV rewinds the adversary, it could happen that the schedule
generated is not of type (a) anymore. This in particular means that the adversary MIM3R

BGRRV (Figure 5)
may not return a reply ã′ and abort instead. Despite this, we can argue that MIM3R

BGRRV is still an
adversary that does not abort with non-negligible probability. This is because we are assuming that
transcript of type (a) occurs with non-negligible probability, hence our MIM3R

BGRRV is non-aborting with
non-negligible probability as well. This allows us to invoke Theorem 3.1, and state that Ext3RBGRRV is
successful with non-negligible probability.

Type (b) In this case we can make use of the 2-extractability property of Π3Ext. Indeed, rewinding from the
5th to the 4th rounds of Π5Ext, which corresponds to the 2nd and 3rd rounds of Π3Ext, we can retrieve
two accepting transcripts for Π3Ext in the right session which share the same first round.

To formally define this extractor, we first define in Figure 7 a valid adversarial sender SExt for the
protocol Π3Ext. This new adversary internally runs MIM filtering the messages related to Π3Ext in
the right session. On the left session instead, SExt sends to MIM the first round of the transcript τ
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(we denoted it with cm), generates the third round message of the left session randomly, and abort
when asked to generate the last round of the left session. In particular, if MIM asks for a new 5th
round message in the left session, SExt simply does not send any message7. Our final extractor Ext5Ext
internally runs SExt, and we formally describe it in Figure 8.

It is important to observe that in the type (b) schedule, MIM will provide a full transcript in the right
session, without the need to receive the last message in the left session (that we recall, consists of the
last round of Π3Ext). Hence, given that type (b) transcripts appear with non-negligible probability,
after the rewind performed by Ext5Ext (Figure 8), we will be again in a type (b) schedule with some
non-negligible probability, hence, in this case SExt does not abort (because it will not be asked to
generate a new last round of the protocol of Π5Ext).

Before concluding this part of the proof, we need to argue that MIM does not distinguish between the
case when it receives well-formed messages in the third round of the left session and the case where the
third round is generated randomly (i.e., inconsistently with the inputs used to generate cm). However,
if such a distinguisher exists, it would contradict the hiding of Πcom and Π3Ext. The same argument is
formalized in [GRRV14, BGR+15].

Given that MIM is providing a transcript τ ∈WELLF with probability p̃, and given that such transcript
is generated via a schedule of type (b) that occurs with non-negligible probability p̃2 ≤ p̃, then our
extractor succeeds with probability p̃22.

Figure 5: MIM3R
BGRRV

MIM3R
BGRRV has a left interface and a right interface where it expects to receive (and return) messages for

the protocol Π3R
BGRRV. MIM3R

BGRRV internally runs MIM (the adversary attacking Π5Ext) and interacts with
it in the left and right sessions as follows.
Left session

1. Upon receiving cm′ from the left interface, send it to MIM.

2. Upon receiving α′ from MIM, forward the message to the left interface.

3. Upon receiving a′ from the left interface, send it to MIM.

4. Upon receiving ext′2 from MIM, if ext2 = ext′2 then send ext3 to MIM, otherwise do not send any
message to MIM.

Right session

1. Upon receiving c̃m′ from MIM, send it to the right interface.

2. Upon receiving α̃′ from the right interface, send it to MIM.

3. Upon receiving ã′ from MIM, send it to the right interface. Generate a random ẽxt′2 and send it to
MIM.

4. Upon receiving ẽxt3 do nothing.

Figure 6: Description of Ext5Ext in case of type (a) scheduling.

Input: τ = (cm,α,a, ext2, ext3, c̃m, α̃, ã, ẽxt2, ẽxt3).

• Run Ext3RBGRRV with the input (cm,α,a, c̃m, α̃, ã), giving oracle access to the adversary MIM3R
BGRRV

7This is because computing a valid new last round would require knowledge of the randomness-input pair used to generate
cm, which the final extractor should not know.
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(Figure 5).

• Upon receiving m̃ from Ext3RBGRRV, return m̃.

Figure 7: SExt

SExt has a right interface where it expects to receive (and send) messages from (and to) a receiver of the
protocol Π3Ext. SExt internally runs MIM (the adversary attacking Π5Ext) and interacts with it in the left
and right sessions as follows.
Left session

1. Send cm to MIM.

2. Upon receiving α′, if α′ = α then send a, else sample a random a′ and send it to MIM.

3. Upon receiving ext′2 do not send any message to MIM.

Right session

1. Upon receiving c̃m′ from MIM, if c̃m′ = c̃m then send α̃ to MIM, else pick a random α̃′ and send it
to MIM.

2. Upon receiving ã′ from MIM wait to receive a message ẽxt′2 on the right interface. Upon receiving
such a message, send it to MIM.

3. Upon receiving ẽxt′3 from MIM, send ẽxt′3 to the right interface.

Figure 8: Description of Ext5Ext in case of type (b) scheduling

Input: Ext5Ext runs on input τ = (cm,α,a, ext2, ext3, c̃m, α̃, ã, ẽxt2, ẽxt3).

• Interact with SExt (Figure 7) as the honest receiver for Π3Ext would thus obtaining the transcript
ext1, ext2, ext3.

• Rewind SExt up to the second round, and send a freshly generated ext′2 with ext′2 ̸= ext2.

• If SExt does not return an accepting ext3, then stop and return ⊥, else obtain m̃ by run Ext2tran on
input the transcripts (ext1, ext2, ext3) and (ext1, ext

′
2, ext

′
3), where Ext2tran is the extractor that exists

by the 2-extractability property of Π3Ext.

• Return m̃.

6 Black-Box Non-Malleable Zero Knowledge

In this section, we describe our black-box NMZK argument system ΠNM. Our construction provides an
efficient transformation from any 3-round public-coin SHVZK proof of knowledge (with canonical extractor)
to a 9-round (resp., 10-round) NMZK argument system only requiring access to 1-1 one-way functions (resp.,
one-way functions) in a black-box fashion. Efficient instantiations can be obtained in Minicrypt through AES
and SHA-256 as already discussed in Section 1.3. The tools used in ΠNM are listed below:

1. The 5-round public-coin 2-extractable commitment scheme Π5Ext = (C,R) of Section 5 which satisfies
Theorem 5.3 and Lemma 5.1.
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2. A 3-round public-coin SHVZK proof of knowledge (with a canonical extractor) Π = (P,V) for the
language L and associated relation RelL.

The protocol is described in Figure 9.

Figure 9: Description of ΠNM = (PNM,VNM)

Notation: Let Π = (P,V) be a 3-round public-coin SHVZK proof of knowledge for the language L and
associated relation RelL. Let (π

1, π2, π3) denote the three round messages of Π. Let Π5Ext be the 5-round
extractable commitment scheme defined in Section 5 which satisfies Theorem 5.3 and Lemma 5.1. Let
us denote with (com1, com2, com3, com4, com5) the transcript of the commit phase of Π5Ext and with dec

the corresponding opening information. Let id be the identifier that will use PNM. For simplicity, we will
implicitly assume that the same identity id used in a session of ΠNM is also used for the execution of the
subprotocol Π5Ext inside the session of ΠNM.
Public parameters: x ∈ L.
PNM’s Private input: w such that (x,w) ∈ RelL.

Round 1. PNM on input (x,w), computes the 1st round π1 of Π and sends π1 to VNM.

Round 2. VNM samples c0 ← {0, 1}λ and computes the 1st round com1 of Π5Ext on input message c0.
VNM sends com1 to PNM.

Round 3. On input com1, PNM computes the 2nd round com2 of Π5Ext and sends com2 to VNM.

Round 4. On input com2, VNM computes the 3rd round com3 of Π5Ext and sends com3 to PNM.

Round 5. On input com3, PNM computes the 4th round com4 of Π5Ext and sends com4 to VNM.

Round 6. On input com4, VNM computes the 5th round com5 and corresponding opening information
dec of Π5Extw.r.t. message c0 (i.e., the committed message is c0). VNM sends com5 to PNM.

Round 7. PNM samples c1 ← {0, 1}λ and sends c1 to VNM.

Round 8. VNM sends (c0, dec) to PNM.

Round 9. On input (c0, dec), PNM acts as follows. If dec is not a valid opening for
(com1, com2, com3, com4, com5) w.r.t. committed message c0 then PNM aborts. Otherwise, PNM

sets π2 = c0 ⊕ c1 and computes the 3rd round π3 of Π. PNM sends π3 to VNM.

Verification procedure. On input π3, VNM computes π2 = c0 ⊕ c1. If (x, π1, π2, π3) is an accepting
transcript for Π, then VNM accepts, otherwise it aborts.

Theorem 6.1. Given a 3-round public-coin SHVZK proof of knowledge Π = (P,V) with canonical extractor
for an NP language L, the 5-round public-coin extractable commitment scheme Π5Ext of Section 5 (which
satisfies Theorem 5.3 and Lemma 5.1), ΠNM (Figure 9) is a simulation-extractable argument system for L
which makes only a black-box use of Π5Ext and Π.

Proof. The completeness of ΠNM follows by inspection.
Computational simulation extractability.
The simulator SimNM is described in Figure 10.

Figure 10: Description of the simulator SimNM

Public parameters: x, id.
SimNM, on input x ∈ L and id ∈ {0, 1}Ω(|x|), simulates an execution between a prover (impersonated by
SimNM) and MIM w.r.t. statement x ∈ L, while in the right session SimNM interacts with the MIM as a
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verifier w.r.t. some statement x∗ ∈ {0, 1}|x| (chosen by MIM before the start of the protocol). We describe
separately the left and the right executions since these two executions can be interleaved in any possible
way.

Left Execution

In the left execution SimNM runs the extractor of Π5Ext to force a pre-selected challenge of Π to run the
SHVZK simulator of Π.

Round 1: SimNM picks a value π2
h ← {0, 1}λ and computes (π1

h, π
3
h) ← SimΠ(x, π

2
h). SimNM sends π1

h to
MIM.

Round 3: Upon receiving com1 from MIM, SimNM computes the 2nd round com2 of Π5Ext and sends com2

to MIM.

Round 5: Upon receiving com3 from MIM, SimNM computes the 4th round com4 of Π5Ext and sends com4

to MIM.

Round 6: If MIM aborts before this stage then SimNM also aborts giving in output the view of MIM.
Otherwise, upon receiving com5 from MIM continue to the following rewinding stage.

Rewinding Stage. Let Ext5com be the extractor of Π5Ext (Definition 2.4). SimNM computes the
following steps.

SimNM invokes Ext5com on input (com1, com2, com3, com4, com5). Then, SimNM continues the
execution acting as malicious committer C∗ w.r.t. Ext5com while internally SimNM is interacting
with MIM (in the left and right executions). In particular, SimNM acting as C∗, receives (multiple
times) a new 4th rounds of Π5Ext, namely com′

4, from Ext5com. Upon receiving com′
4, SimNM

rewinds MIM sending as a new 5th round of ΠNM the message com′
4, then SimNM forwards the

MIM′s response (if any), com′
5, to Ext5com.

In the end of the execution Ext5com outputs c∗0.

Round 7: If c∗0 ̸= ⊥, then SimNM computes c1 = π2 ⊕ c∗0, otherwise it computes c1 as a random λ bit
string; then it sends c1 to MIM.

Round 9: Upon receiving (dec, c0) fromMIM, SimNM checks that the received commitment of Π5Ext opens
to c0 = c∗0. If the check fails then SimNM stops in this left session. Otherwise SimNM sends π3 to
MIM.

Right Execution

In the right execution SimNM acts as an honest verifier that using id commits to a message c̃0 (that
corresponds to the challenge that the canonical extractor ExtΠ of Π would play) until the 9th round in which
SimNM receives from MIM the 3rd round of Π. Let (π̃1, c̃om1, c̃om2, c̃om3, c̃om4, c̃om5, c̃1, (d̃ec, c̃0), π̃

3) be
the messages exchanged in this execution. An Extracting Stage will be run only when the execution of
MIM will be over and the transcript of the right session is accepting for a verifier. Otherwise the transcript
will be given in output adding ⊥ as extracted witness and SimNM stops.
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Extracting Stage: Let ExtΠ be the canonical extractor of Π and let k be the number of transcripts re-
quired to finally compute a witness. SimNM continues as ExtΠ on the accepting transcript (π̃1, π̃2, π̃3, x∗)
acting also (along with MIM) as the prover of Π; SimNM initializes the lists 2R, 3R to empty lists and
performs the following steps.

Round 6 (rewound) SimNM samples a random message c̃′0, rewinds MIM to the second round and

recomputes all the messages of Π5Ext thus committing to c̃′0.

Round 8 (rewound) SimNM computes the following steps.

1. If the commitment phase of Π5Ext fails or no message c̃′1 is received from MIM (due to MIM
aborting) then repeat the step described for Round 6 (rewound).

2. If instead the commitment phase of Π5Ext is successful, and MIM does send a message c̃′1,
then do the following.

(a) If π̃2′ = c̃′0 ⊕ c̃′1 is equal to any of the challenges contained in 2R concatenated with π̃2,
SimNM outputs (⊥,⊥) and aborts.

(b) Otherwise, SimNM sends the opening d̃ec for the message c̃′0 to MIM, sets as a random
challenge for the extractor ExtΠ the message π̃2′ = c̃′0 ⊕ c̃′1 and adds π̃2′ to 2R.

Extracting w∗: SimNM computes the following steps.

1. If no message is sent by MIM in Round 9 then SimNM goes back to Round 6 (rewound).

2. If instead a message π̃3′ is sent by MIM then SimNM checks if the transcript of Π is accepting
and in this case adds π̃3′ to 3R, otherwise SimNM (acting as a prover of Π) sends π̃3′ as 3rd
round of Π to ExtΠ; in case ExtΠ stops then SimNM aborts giving in output (⊥,⊥), otherwise,
SimNM goes back to Round 6 (rewound).

3. If |3R| < k SimNM goes to Round 6 (rewound).

4. Otherwise SimNM performs the last computation of ExtΠ therefore computing on input
(π̃1, π̃2, π̃3, 2R, 3R, x∗) a corresponding valid witness w∗.

Output

Once the left and right executions are completed, SimNM outputs (τ, w∗) where τ is the view of MIM in the
main thread (messages of rewinds are discarded) of the left and right executions and w∗ is the extracted
witness.

Let us consider a MIM that in the right session proposes an instance x∗. We will prove that {Sim1
NM(x, aux,

id)}x∈L,aux∈{0,1}∗,id∈{0,1}Ω(|x|) and {viewMIM(x, aux, id)}x∈L,aux∈{0,1}∗,id∈{0,1}Ω(|x|) are computationally indistin-
guishable and only with negligible probability SimNM will output a transcript with an accepting right session
for x∗ but without a corresponding witness w∗.

H1: This is equivalent to the real-world experiment among PNM, MIM, and VNM, where PNM proves to MIM a
statement x ∈ L using a witness w and MIM proves to VNM that x∗ ∈ L, for x∗ ∈ {0, 1}λ. If the proof of
MIM is not accepting, the experiments terminates giving in output (τ,⊥). If instead the proof given by
MIM is accepting, the experiment performs the Extracting Stage described in the right session of Figure
10 (i.e., the experiment acts as SimNM in the Extracting Stage). If the Extracting Stage terminates
before Step 4, the experiment ends giving in output (⊥,⊥). Otherwise, the experiment ends giving in
output (τ, w∗), where τ is the view of MIM in the main thread of the above execution and w∗ is the
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extracted witness for x∗.

H2: This is equal to H1 except that PNM runs th extractor of Π5Ext in the left execution therefore, when
MIM sends the last message of Π5Ext the experiment executes the Rewinding Stage described in the
left session of Figure 10. The same (a run of the extractor of Π5Ext that involves an execution of the
Rewinding Stage) happens in case the commitment sent by MIM through Π5Ext changes during rewinds
performed by the Extracting Stage. If the Rewinding Stage terminates with an output c∗0 and the
adversary correctly opens the commitment played in the left session to a value that is different than
c∗0, then the experiment ends giving in output (⊥,⊥), otherwise it continues as in H1 computing the
output in the same way.

H3: This is equal to H2 except that in the left execution, the experiment fixes a candidate random value
π2 at the onset of the execution on the left session (i.e., before computing π1). Let c∗0 be the value
obtained from the Rewinding Stage of the left session. In Round 7 (after performing the Rewinding
Stage) if c∗0 ̸= ⊥ the experiment sets c1 = π2 ⊕ c∗0. The rest of the experiment proceeds as in H2

computing the output in the same way.

H4: This is equal to H3 except that in Round 1 of the left execution the experiment computes (π1
h, π

3
h) ←

SimΠ(x, π
2
h) where π

2
h corresponds to π2 of H3. The experiment sends π1

h in Round 1 and π3
h in Round

9. The rest of the experiment proceeds as in H3 computing the output in the same way.

Lemma 6.2. H1 terminates with output (⊥,⊥) only with negligible probability.

Proof. Let us assume by contradiction that Lemma 6.2 does not hold. This implies that the Extracting Stage
terminates by giving in the output (⊥,⊥) with probability p ≥ 1

λc for some constant c and infinitely many λ.
Notice that the Extraction Stage is invoked only when an accepting transcript has been generated. Therefore
we have that the probability of getting an accepting transcript is also at least 1

λc and thus, by the proof of
knowledge property of Π it follows that the canonical extractor of Π succeeds giving in output a witness with
overwhelming probability as long as each time the right session is completed in the Extracting Stage the
challenge π̃2 is new. Therefore the only reason why the Extracting Stage still outputs (⊥,⊥) with probability
p (contradicting the above overwhelming probability of success) is due to the fact that the Extracting Stage

fails in collecting (π̃1, π̃2, π̃3, 2R, 3R, x∗) such that the elements in 2̃R = (2R + π̃2) are all distinct8. As a

consequence, with non-negligible probability at least two elements in 2̃R are identical. We can define the
following event, which we call Bad. Let (π̃1, π̃2, π̃3) be the transcript obtained before starting the Extracting
Stage of the right session. Then, Bad is defined as the event that during the Extracting Stage (and thus in
the presence of a different c̃′0), MIM continues the execution of the right session and provides c̃′1 such that

c̃′1 ⊕ c̃′0 is equal to π̃2. Since with non-negligible probability at least two elements in 2̃R are identical, we
have that Bad happens with non-negligible probability. We now use this fact to show a reduction AExpHiding

to the hiding of Π5Ext, therefore reaching a contradiction. Let CExpHiding be the corresponding challenger.
AExpHiding interacts with MIM acting exactly as in hybrid H1. Upon receiving π̃2 from the right session

AExpHiding rewinds MIM at the onset of Round 2 in the right session of ΠNM and continues the execution as
follows.
In the right session of ΠNM, AExpHiding received a value π̃1 from MIM and then AExpHiding chooses two

random values (c̃′0, c̃0) and sends them to CExpHiding. At this point AExpHiding will act as a proxy between
CExpHiding and MIM for the messages of Π5Ext and continuing the rest of the experiment as before, until MIM
sends c̃1 in the right session. At this point, AExpHiding checks if π̃2 = c̃0⊕ c̃1, and in this case AExpHiding sends
b = 0 to CExpHiding. If π̃

2 = c̃′0 ⊕ c̃1 AExpHiding sends b = 1. Otherwise AExpHiding sends a random bit.
Since we are assuming that Bad happens with non-negligible probability then, by noticing that the value

among c̃′0 and c̃0 that is not committed by CExpHiding is information theoretically hidden, we have that
AExpHiding returns the bit b chosen by CExpHiding with probability 1

2 + p̃ where p̃ is non-negligible. This
contradicts the hiding of Π5Ext.

8Abusing the notation we use the symbol “+” to indicate the append operation of lists.
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Finally notice that we did not make any restriction on the scheduling of messages of the right and left
sessions.

Lemma 6.3. H2 is statistically indistinguishable from H1.

Proof. H2 and H1 are statistically indistinguishable for the following reasons. First of all, the extractor of
Π5Ext produces a perfectly indistinguishable transcript of Π5Ext. There can be an additional impact on the
output of the experiment depending on the value extracted by the extractor of Π5Ext and we distinguish
the following cases. In the first case, the message committed in the left session is invalid and the extractor
outputs a valid message (due to over-extraction). Notice that an invalid commitment does not admit a
valid opening, and thus this case corresponds in both hybrids to the left session that reaches at most the
(invalid) opening of the commitment, therefore producing no deviation in the two distributions. The second
case, concerns the fact that the extractor of Π5Ext outputs a legitimate message that could be different from
the one actually opened by the adversary in the left session. While this makes a deviation among the two
hybrids, by the statistical binding of Π5Ext this can happen only with negligible probability. The third case
refers to the extractor giving in output ⊥ while instead the commitment admits a correct opening, therefore
producing again a gap in the outputs of the two hybrids. However this failure in the extraction can happen
by Definition 2.4 only with negligible probability.
Finally, when the extractor of Π5Ext outputs the same message that is then opened by the adversary, the

two hybrids produce identically distributed outputs. Also during the Extracting Stage the messages played
in H2 are identically distributed to the ones of H1. More formally, as shown in the proof of Lemma 6.2 a
failure in extracting a witness implies that the event Bad happens with non-negligible probability. The very
same reduction shown in Lemma 6.2 can be repeated here, running AExpHiding once the transcripts of the
right session is completed, without running the extractor of Π5Ext when the challenger CExpHiding is involved.
Therefore we can conclude that the outputs of the two hybrids are statistically indistinguishable.
We stress that the claim holds regardless of the scheduling of the left execution and right execution. Indeed,

note that the Extracting Stage consists of playing messages that are identically distributed with respect to
the ones of an honest verifier. Similarly, the Rewinding Stage consists of playing messages that are identically
distributed with respect to the ones of an honest receiver. Moreover, each Stage fails only with negligible
probability, and repeating it polynomially many times (as it could be required because of rewinds performed
by the other stage) still leaves negligible the probability of a failure. Therefore, any possible interleaving of
messages between left and right sessions, does not noticeably affect the success probabilities of the extractor
of Π and the extractor of Π5Ext.

Lemma 6.4. H3 is computationally indistinguishable from H2.

Proof. The first output of H3 is identical to the one of H2 since selecting π2 randomly in advance to then
establish c1 = π2 ⊕ c0 is equivalent to randomly selecting c1 and then computing π2. We now focus on
the second value in the output of the experiment. We consider again the event Bad that corresponds to a
failure in computing a witness for the accepting transcript appearing in the right session. Showing that Bad
happens with negligible probability would conclude the proof of this Lemma. Notice that the only difference
between H3 and H2 is that in the left session of H3 the experiment sets a specific value, namely π2, as a
challenge for Π. If the event Bad happens in H3 with non-negligible probability then it must be the case that

MIM manages to force a value π̃2 on the right session that will appear again during the Extracting Stage.
We will contradict the hiding of Π5Ext, using the fact that Π5Ext satisfies Theorem 5.3.

Let π2 be the challenge message of Π for the left session, which is computed as described in H3.

Suppose that Bad happens with non-negligible probability p̃. Let π̃2 be the value that has non-negligible
probability9 to appear again in the right session during the Extracting Stage when π2 is forced on the left

session and π̃1 is fixed.

9It follows by a standard averaging argument that given the non-negligible probability with which the event Bad happens,
we can fix some randomness of the experiment so that the probability that MIM will complete the right session when π1, π̃1, π̃2

are fixed is still non-negligible.
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We split now the proof into two sub-cases based on the schedule of the messages of MIM: schedule of type
(1) in which MIM plays Round 7 (i.e., message c̃1) after the commitment phase is terminated in the left
session; schedule of type (2) in which MIM plays Round 7 (i.e., message c̃1) before the commitment phase is
terminated in the left session. Notice that when the event Bad happens the schedule must be either of type
(1) or type (2).
We proceed now proving that for both types of schedules, the hypothesis that Bad verifies with non-

negligible probability leads to a contradiction.

Case 1: all schedules of type (1). If Bad happens with non-negligible probability p̃ with schedules of
type (1) our first goal is to show a successful man-in-the-middle adversary MIM5Ext and a corresponding
distinguisher D5Ext for Π5Ext. Then we will use them to reach a contradiction to the hiding of Π5Ext.
More in detail, we define the man-in-the-middle MIM5Ext which plays as a receiver in the left session

interacting with an honest sender C5Ext committing either to10 a message m0 or to a message m1 and as a
sender in the right session of Π5Ext against an honest receiver R5Ext.

When playing as a receiver, therefore getting messages from C5Ext, in the left session of Π5Ext, MIM5Ext

internally runs MIM in a right session of ΠNM where MIM plays the role of a prover and MIM5Ext plays the
role of a verifier. Therefore in the right session of ΠNM, MIM5Ext playing the subprotocol Π5Ext as a sender
will forward the messages of C5Ext to MIM. In the internal execution of ΠNM we have a left session where MIM
will be a sender in the subprotocol Π5Ext, and MIM5Ext will be a receiver. The messages of the subprotocol
Π5Ext that MIM5Ext will receive in this left session of the internal execution of ΠNM will be forwarded to
the honest receiver R5Ext playing in the right session of Π5Ext. Similarly, there will be a symmetric flow of
messages in the opposite direction that for completeness we report now. Messages sent by R5Ext played in
the right execution of Π5Ext will be forwarded by MIM5Ext to MIM in the left session of the internal execution
of ΠNM where indeed MIM is a sender of the subprotocol Π5Ext. In turn, MIM in the right session of the
internal execution of ΠNM will play messages as a receiver of the subprotocol Π5Ext that MIM5Ext will receive
and forward to C5Ext in the left session of Π5Ext. MIM5Ext will play π1 in the left session of the internal
execution of ΠNM precisely as done in H3. Upon finishing the commitment phases of the subprotocol Π5Ext

in the left (resp., right) session of ΠNM (i.e., in the right (resp., left) session of Π5Ext) with MIM, MIM5Ext

sets τ5Ext = (com1, com2, com3, com4, com5) (resp., τ̃5Ext = (c̃om1, c̃om2, c̃om3, c̃om4, c̃om5)). Then MIM5Ext

terminates giving in output view5Ext = (m, τ̃5Ext, τ5Ext, r
∗) where r∗ is its randomness.

Notice that, by definition, D5Ext runs on input the message m̃ committed by MIM5Ext (i.e., the commitment
generated by MIM while acting as a sender in the subprotocol Π5Ext in the left session of ΠNM). Moreover,
D5Ext takes as an input the view given in output by MIM5Ext that includes the randomness r∗ used by MIM5Ext

in the above-described execution of ΠNM. Therefore, the distinguisher D5Ext that we describe now (recall that
our goal is to show a successful pair (MIM5Ext,D5Ext) in the indistinguishability game of the non-malleable
commitment definition) interacts internally with MIM, resumes the execution of ΠNM described above, and
then computes and sends Round 7 of the left session of ΠNM to MIM, namely c1 = π2 ⊕ m̃. D5Ext upon

receiving Round 7 of the right session from MIM (namely, c̃1) does the following: if π̃2 = mb ⊕ c̃1 then D5Ext

outputs b, otherwise D5Ext outputs a random bit, where π̃2 is the value that was already opened by MIM in
the right session of the main thread. MIM5Ext and D5Ext are successful according to Definition 2.6.

Indeed the fact that the event Bad happens with non-negligible probability implies that a run of the
above execution of MIM5Ext when the honest sender commits to mb leads with non-negligible probability to
D5Ext giving in output 1 in addition to flipping the coin in the other cases (i.e., when the event Bad does not
happen). This means that the output of D5Ext is 1 with a probability non-negligibly larger than 1/2. Instead,
when the honest sender does not commit to mb we have that D5Ext outputs 1 with probability non-larger
than 1/2 plus some negligible function.
The existence of the above MIM5Ext therefore implies, as guaranteed by Theorem 5.3 that there exists a

special and partial extractor Ext5Ext that given in input the transcript of the commitment phase of Π5Ext

10Recall that the distribution of the message committed by a MiM is independent of the message committed by the sender
when the commitment scheme is non-malleable.
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generated by MIM5Ext (and with oracle access to MIM5Ext) extracts with non-negligible probability11 the
message committed by MIM5Ext in the right session of Π5Ext, which in turn corresponds to the message
committed by MIM in the left session of the execution of ΠNM that is run internally by MIM5Ext.

We now describe the adversary AExpHiding that breaks the hiding of Π5Ext interacting with a challenger
CExpHiding.

The reduction AExpHiding internally uses MIM5Ext, MIM and Ext5Ext providing them the needed randomness.

Moreover, AExpHiding has hard-coded the value π̃2 that is the value appeared in the main thread in the right
session when π2 is forced on the left session. As such, AExpHiding can recompute all messages of the execution
of ΠNM that is played internally by MIM5Ext with MIM. AExpHiding works again considering two sessions,
we will refer to them following the places where such commitments are played in the sessions of ΠNM; the
right session will see the challenger CExpHiding playing the role of C5Ext, while the left session is the one where
MIM5Ext tries to commit to a related value that will be extracted using Ext5Ext without rewinding CExpHiding.
The reduction works as follows:

1. AExpHiding chooses two messages c̃00 and c̃10 sampled at random from {0, 1}λ and sends them to CExpHiding.
CExpHiding computes c̃om1 w.r.t. c̃b0 for some randomly chosen bit b and sends it to AExpHiding. AExpHiding

obtains c̃om1 from CExpHiding and sends it to MIM5Ext.

2. Upon receiving comi from MIM5Ext in the left execution AExpHiding computes comi+1 as an honest
receiver and send it to MIM5Ext, for i ∈ {1, 3}.

3. Upon receiving c̃omj from MIM5Ext in the right execution AExpHiding asks for c̃omj+1 to CExpHiding and
then AExpHiding forwards it to MIM, for j ∈ {2, 4}.

4. Upon finishing the commitment phase of Π5Ext in the left session, AExpHiding runs Ext5Ext on input the
transcript τ = (com1, . . . , com5) generated in this session, and Ext5Ext will get oracle access to MIM5Ext.

At the end of this phase Ext5Ext outputs c
∗
0 (recall that with non-negligible probability it corresponds to

the value committed by MIM5Ext which in turn corresponds to the share for the challenge of Π played
by MIM in the left execution of ΠNM).

5. AExpHiding continues the execution of the left and right sessions of ΠNM played internally by MIM5Ext

with MIM and that were interrupted when τ was obtained; AExpHiding will use c∗0 as described in H3

and will continue the execution of ΠNM until obtaining c̃1 from MIM.

6. AExpHiding checks if π̃2 = c̃00 ⊕ c̃1, and if so AExpHiding outputs 0. If π̃2 = c̃10 ⊕ c̃1 then AExpHiding outputs
1. Otherwise AExpHiding outputs a random bit.

Note that if the value c∗0 is correct, then it corresponds to the value extracted (through the extractor of Π5Ext)
and then used in H3. Since Ext5Ext succeeds with non-negligible probability, we have that the above run of
AExpHiding with non-negligible probability corresponds to a run of H3. Since we know that in a run of H3

(by contradiction) the event Bad happens with non-negligible probability we have that the reduction with
non-negligible probability will not output a random bit, since it will correctly guess b. At the same time,
we observe that the probability that the reduction will not output a random bit and will instead output the
incorrect bit is negligible since the value c̃1−b

0 is sampled uniformly at random and is unconditionally hidden
in the experiment.
From the above arguments we can conclude that AExpHiding breaks the hiding of Π5Ext with non-negligible

probability and this contradicts the hypothesis that Bad happens with non-negligible probability in H3.
Therefore in H3 the Extracting Stage succeeds in obtaining a witness with a probability that is negligibly
close to the one of H2.

11We recall that in this part of the proof we are assuming that the event Bad happens with non-negligible probability for
schedules of type (1), and Ext5Ext extracts the committed message, for schedules of that type, with non-negligible probability.
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Case 2: all the schedules of type (2). In this type of schedule the event Bad occurs with negligible
probability since otherwise we can again show a reduction to the hiding of Π5Ext. The reduction proceeds
exactly as described in Lemma 6.2 and terminates after obtaining Round 7 of the right session of ΠNM which,
in this case, is scheduled before the end of the commitment phase in the left session12. Therefore there is not
even a need to run an extraction on the left session and thus there is no issue with respect to the challenger
of the hiding property that is instead acting as a sender of the subprotocol Π5Ext played in the right session.

The above two cases cover all possible schedules and this observation concludes the proof of the indistin-
guishability of H2 and H3.

Lemma 6.5. H4 is computationally indistinguishable from H3.

Proof. Assume by contradiction that the claim does not hold, therefore there exists a distinguisher D which
distinguishes the view produced by MIM in H3 from the one produced in H4 with non-negligible probability.
We now show an adversary AExpZK for the SHVZK property of Π.
AExpZK receives in input a transcript (π1, π2, π3) from the challenger w.r.t. an instance x ∈ L. Then,

the reduction proceeds as follows. AExpZK sends π1 to MIM in the left execution of ΠNM. Further, AExpZK

continues the execution with MIM on the left execution of ΠNM and on the right execution of ΠNM following
H4 until Round 7. Next, in Round 7 AExpZK sets c1 = π2 ⊕ c∗0, where c∗0 is the value extracted in the left
execution of ΠNM (specifically, c∗0 is obtained rewinding once MIM from Round 5 to Round 4 of Π5Ext in the
left session and sending to MIM a different message in Round 4 of Π5Ext

13). AExpZK sends c2 to MIM. AExpZK

continues the execution with MIM until Round 9 in both left and right sessions. Next, in Round 9 of the
left execution of ΠNM, AExpZK sends to MIM the value π3 received in input. Notice that if (π1, π2, π3) is
computed by the SHVZK simulator of Π, then the execution corresponds exactly toH4. If instead (π1, π2, π3)
is computed by the prover of Π, then the execution corresponds exactly to H3. Therefore AExpZK runs the
distinguisher D and breaks with non-negligible probability the SHVZK of Π.

The event Bad happens in H4 with negligible probability, otherwise, observe that a run of H4 would lead
with non-negligible probability to the same π̃2 appearing both in the first output of the experiment, and in
the Extraction Stage. As proven in Lemma 6.4, the above event happens only with negligible probability in
H3. Therefore one can again show a reduction to the SHVZK of Π that follows the one just shown, except
that the reduction will succeed by running the experiment until π̃2 is played during the Extraction Stage.
Clearly the reduction will have an advantage in distinguishing between the transcript of a SHVZK simulator
of Π and the one of a prover of Π. Being this reduction to the SHVZK of Π very similar to the previous one,
we omit further details.
Finally, observe that both the proven indistinguishability of the transcripts and the negligible probability

that the event Bad happens apply to any schedule of the left and right sessions. The observations that
the distributions of the views of MIM in H3 and H4 are computationally indistinguishable, and that the
probability of extracting a witness in H4 is negligibly close to the one in H3, conclude the proof.

H5 is equal to SimNM that therefore produces a transcript that is computationally indistinguishable from
a real transcript. Moreover, SimNM fails only with negligible probability in giving in output also a witness
w∗ for the accepting right session appearing the right session of the transcript.

Running time. The running time of SimNM consists of a run of the extractor of Π5Ext on the left session and
a run of the extractor of Π in the right session to get a witness. Note that the two extraction procedures are
independent and in particular, the new messages played in the Extracting Stage are identically distributed
to the ones of an honest verifier. Therefore, even in case the scheduling of the messages is such that rewinds
to get a witness on the right session require each time to simulate from scratch the left session (and thus
to extract again from the extractable commitment in the left session), the overall expected running time
remains polynomial (as discussed in [KL05]).

12Note that the reduction stops before sending Round 7 in the left session, therefore it does need to extract the message
committed by MIM in the left session.

13Note that since MIM is non-aborting with non-negligible probability and Π5Ext satisfies Lemma 5.1, then c∗0 ̸= ⊥ is extracted
with non-negligible probability which is sufficient for terminating the reduction.
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Corollary 6.5.1. Assuming the existence of OWFs (resp., 1-1 OWFs), there exists a 10-round (resp.,
9-round) NMZK, which makes black-box use of OWFs (resp., 1-1 OWFs).

The corollary holds since Π5Ext only uses OWFs (resp., 1-1 OWFs) in a black-box fashion and Π can be
instantiated using [IKOS07] which also uses OWFs (resp., 1-1 OWFs) in a black-box way.
The above corollary differentiates the two cases in terms of round complexity because the 1st round of Π

could need to compute a non-interactive commitment and this requires a preliminary round in order to be
instantiated with OWFs.
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