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Principal Component Analysis as a Tool for
Analyzing Beat-to-Beat Changes in ECG Features:
Application to ECG-Derived Respiration

Philip Langley*, Emma J. Bowers, and Alan Murray

Abstract—An algorithm for analyzing changes in ECG morphol-
ogy based on principal component analysis (PCA) is presented
and applied to the derivation of surrogate respiratory signals from
single-lead ECGs. The respiratory-induced variability of ECG fea-
tures, P waves, QRS complexes, and T waves are described by the
PCA. We assessed which ECG features and which principal compo-
nents yielded the best surrogate for the respiratory signal. Twenty
subjects performed controlled breathing for 180 s at 4, 6, 8, 10,
12, and 14 breaths per minute and normal breathing. ECG and
breathing signals were recorded. Respiration was derived from the
ECG by three algorithms: the PCA-based algorithm and two es-
tablished algorithms, based on RR intervals and QRS amplitudes.
ECG-derived respiration was compared to the recorded breathing
signal by magnitude squared coherence and cross-correlation. The
top ranking algorithm for both coherence and correlation was the
PCA algorithm applied to QRS complexes. Coherence and cor-
relation were significantly larger for this algorithm than the RR
algorithm (p < 0.05 and p < 0.0001, respectively) but were not
significantly different from the amplitude algorithm. PCA provides
a novel algorithm for analysis of both respiratory and nonrespira-
tory related beat-to-beat changes in different ECG features.

Index Terms—ECG-derived respiration (EDR), principal com-
ponent analysis (PCA).

1. INTRODUCTION

E PRESENT an algorithm for analyzing beat-to-beat
W changes in features such as P waves, QRS complexes,
and T waves from single-lead ECGs. The algorithm has poten-
tial use in identifying abnormal changes in these features, for
example, T wave alternans, but here we seek to quantify the
sensitivity of the algorithm to respiratory-induced variability of
ECG features. We aim to show that the algorithm is able to
track beat-to-beat changes in different ECG features and in do-
ing so provides a surrogate respiratory signal comparable with
other algorithms for ECG-derived respiration (EDR). EDR has
been the focus of much research over the last 20 years [1]. This
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research is driven by the desire to reduce the number of sensors
connected to patients during clinical studies, which require both
respiratory and cardiac monitoring, for example, polysomnog-
raphy [2]. The benefits include reduced complexity of instru-
mentation and increased patient comfort. Reducing the number
of sensors is an important consideration in home and tele-based
monitoring applications. Additionally, EDR allows the estima-
tion of respiratory rate from archives of ECG databases where
respiration was not recorded but subsequently has become an
important parameter to measure. For example, baroreflex stud-
ies are highly sensitive to respiration rate but respiration has not
been routinely recorded in many studies [3].

A. Respiratory-Induced Modulation of ECG

Respiratory-induced changes in the ECG arise due to sev-
eral mechanisms. First, the electrical impedance of the thorax
changes due to changes in lung volume [4]. Second, the heart
vector changes due to changes in the displacement and orienta-
tion of the heart with respect to the ECG electrodes [5]. Third,
heart rate changes due to respiratory-induced changes to the
autonomic nervous system [6]. These factors give rise to mor-
phological variation in ECG features related to the breathing
cycle that we hope to capture in our algorithm.

B. ECG-Derived Respiration Algorithms

A number of algorithms for deriving respiration from the
ECG have been described in the literature. These algorithms
exploit the respiratory-induced changes of the ECG to provide
a surrogate respiratory signal. By this we mean a signal with
varying amplitude corresponding to the different phases of res-
piration [1]. From this, the respiratory rate and temporal pattern
of breathing can be estimated. Many of these algorithms em-
ploy a multilead approach, which provide robust estimates of
respiration, but can be implemented only where multilead ECG
recordings are available [1]. The simplest single-lead EDR al-
gorithms measure the beat-to-beat amplitude variation of the
QRS complex [7], [8] or T wave [9] that are associated with
the respiratory-induced variation in thoracic impedance [10].
However, such algorithms are susceptible to errors due to the
inherent uncertainty in measuring amplitude when the ECG
contains noise. A development to overcome the susceptibil-
ity of the amplitude-based algorithms to noise was the EDR
algorithm based on the area under the QRS complex. This
can be employed in single and multilead applications but re-
quires accurate estimation of ECG baseline amplitude [11].
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Respiratory-induced variations in heart rate provide another
simple surrogate for respiration [1], but cannot be used in
patients with abnormal heart rhythms or pacemakers.

C. Principal Component Analysis

Principal component analysis (PCA) is a technique that is
generally used for reducing the dimensionality of multivariate
datasets [12]. Considering a vector of n random variables x
for which the covariance matrix is X, the principal components
(PCs) can be defined by

z=Ax (1

where z is the vector of n PCs and A is the n X n orthogonal
matrix with rows that are the eigenvectors of 3 [12]. The eigen-
values of 3 are proportional to the fraction of the total variance
accounted for by the corresponding eigenvectors, so that the
PCs explaining most of the variance in the original variables
can be identified. If, as is usually the case, some of the original
variables are correlated, a small subset of the PCs describes a
large proportion of the variance of the original data. PCA has
found widespread application in ECG signal processing [13].
These applications include noise estimation [14] and source
separation applied to fetal ECG [15] and atrial fibrillation [16].

We hypothesize that beat-to-beat changes in ECG features
such as QRS complex, T wave, or P wave could be identified
by PCA from multibeat, single-lead ECG recordings. This hy-
pothesis is based on the knowledge that beat-to-beat changes in
ECG features result in a change in the correlation between these
features at different beats. Since respiration is the main effect
that modulates the ECG, our aim was to investigate whether
PCA could detect respiratory-induced changes to ECG features
and to assess PCA as a tool for deriving the respiratory signal
from the single-lead ECG.

II. METHODS
A. ECG and Respiratory Recordings

1) Subjects and Data Acquisition: Twenty subjects with no
known cardiac and respiratory diseases were recruited. The
group comprised an equal number of male and female sub-
jects. The mean age was 36 years with range of 21-60 years.
ECG lead II and the respiratory signal were recorded from the
subjects during controlled and natural breathing. The respira-
tory signal was obtained from magnetic displacement sensors
placed on the back and chest of the subject that provided an
indication of the respiratory cycle. ECG and the respiratory sig-
nal were digitally sampled at 500 Hz and stored on computer
for subsequent analysis. During recordings, patients remained
in the semisupine position. The data for one subject could not be
analyzed because the high-amplitude QRS complexes exceeded
the amplitude limit of the acquisition system causing clipping
of this feature. One recording contained ectopic beats and was
analyzed separately.

2) Breathing Patterns: All subjects were asked to breathe at
six different rates: 4, 6, 8, 10, 12, and 14 breaths per minute
(bpm). Controlled breathing was facilitated by a display screen

that displayed a scrolling triangular waveform at the specific
breathing rate. The upward slope of the waveform indicated in-
spiration and the downward slope indicated exhalation. The sub-
jects maintained each breathing pattern for 180 s, and ECG and
respiration sensor output were recorded during these intervals.
An additional recording during natural breathing was obtained
for each subject. All subjects followed the same breathing pat-
terns but the order of the breathing patterns was randomized to
avoid any bias arising from a training effect of the breathing
sequence or fatigue.

B. ECG-Derived Respiration

Three algorithms for deriving the respiratory signal from the
ECG were implemented: the PCA-based algorithm and two es-
tablished algorithms, one based on RR intervals and one based
on QRS amplitude. The established algorithms, alongside the
direct respiratory measurements, provided an objective assess-
ment of the accuracy of the respiratory signals obtained from the
PCA algorithm and facilitated comparisons of this algorithm’s
performance against the other algorithms.

1) Preprocessing of ECG: Each algorithm required the ECG
beats to be detected. An approximate time marker for each beat
was obtained as the maximum rate of change of the ECG by
identifying maxima in the differential of the ECG signal. A
search around these time markers for maximum values in the
ECG provided accurate measurement of R wave time points

r(i),

where n is the number of beats. To validate the detected R waves,
the ECGs were plotted, and accurate detection was confirmed in
all cases by visual inspection. Additionally, ectopic beats were
identified from these plots, and the ECGs containing ectopic
beats were analyzed separately from those without.

2) ECG-Derived Respiration From RR Intervals and QRS
Amplitude: The two established algorithms derived the respira-
tory signal from: 1) RR interval and 2) QRS amplitude. For the
RR interval algorithm, an RR interval time series was generated
for each ECG as

rr(i) =r(@+ 1) —r(),

i=1,2,....n )

i=1,2,....n—1. (3)

For the QRS amplitude algorithm, the amplitude was mea-
sured as the amplitude difference between the foot of the S wave
and peak of the R wave

amp(i) = Tamp (2) — Samp (9), 1=1,2,....,n (4

where 7,,,, and s,,,,, are the amplitudes of the R and S waves,
respectively. s,,,, was measured as the minimum amplitude in
a window of 40 sample points (80 ms) after the R wave peak.
EDR derived from the RS amplitude has been shown to be
more robust than measuring the amplitude with respect to the
baseline [8].

3) ECG Respiration From Principal Component Analysis:
PCA is applied to multivariate datasets. In our application, the
multivariate dataset is the aligned collection of beat features
from single-lead ECG recordings. The algorithm can be applied
to any ECG feature, i.e., P wave, QRS complex, T wave, or
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Fig. 1. Identification of ECG feature x;: in this example, the T wave at beat

i. The feature window is defined by ¢; and to, which are the offsets relative to
the time point of the R wave peak indicated by (7).

the full ECG cycle, so we evaluated the algorithm on all these
features separately.

a) Identifying beat features: The ECG segments contain-
ing the specific feature were identified automatically using a
fixed window relative to the detected R waves

zi(t) = (1)

where x; is the feature at beat ¢, y is the ECG, and ¢; and ¢, are
the time points that define the length of the feature window. An
example is illustrated in Fig. 1. The algorithm did not require
accurate detection of start and end points of the features, so ¢;
and ¢o were fixed for each feature across all beats and across all
subjects.

b) Applying PCA: The collection

X (t) = [z1(t), 22(t), 23(t), ... 2, ()] (6)

is the time-ordered collection of the feature at all beats into a
single matrix to which PCA can be applied. The means of the
x; are removed and the covariance matrix computed.

Defining the covariance matrix

¥ =cov(X) (7

r(@) 4+t <t<r(i)+ty, i=1,2...,n (5

the solution to

Zajz)»ja]-7 j:1,2,...,n (8)

yields the eigenvectors (a;) and eigenvalues (1;), which were
computed using numerical analysis software (MATLAB).
The PCs were obtained using

2j = o,

j=1,2,....,n 9)

and arranged in order of magnitude of eigenvalue. The PCs
are a linear transformation of the beats with transformation
coefficients given by the eigenvectors «;. It is the eigenvectors
that provide the surrogate respiratory signal in our analysis.

In addition to establishing which particular feature of the ECG
provided the best respiratory signal for the PC-based algorithm,

we also sought to establish which PCs yielded the eigenvectors
most sensitive to respiratory changes. PCA provides as many
PCs as there are analyzed beats (for example, approximately
180 in a 180-s recording); however, because these beats are
highly correlated and the respiratory-related ECG changes are
large, most of the variability was expressed by the first few PCs.
Therefore, we assessed the eigenvectors of the first three PCs as
surrogates for the respiratory signal for all ECG features.

C. Comparisons of ECG-Derived Respiration With
Respiratory Signal

For each subject recording, we computed 14 EDR signals.
These comprised one from the RR algorithm, one from the QRS
amplitude algorithm, and 12 from the PCA algorithm, which
was applied separately to four ECG features (whole beat, P
wave, QRS complex, and T wave), and the eigenvectors from
the first three PCs were analyzed for each feature. These were
labeled RR, Amp, PC}'®, PCY, PC?"® and PCT (j = 1,2,3),
respectively. So, for 19 subjects, each recorded at seven breath-
ing rates, we analyzed a total of 1862 EDR signals. Before
comparing the EDR with the respiratory signal, the beat-wise
samples of the EDR were resampled to the same sample rate
as for the respiratory signal (500 Hz) using linear interpolation.
Similarity in the time domain between EDR and the respiratory
signal was quantified using cross-correlation. The maximum
absolute correlation was determined for each recording; hence,
correlation was unaffected by differences in phase between the
ECG-derived signal and the respiratory signal. The frequency-
domain measure of similarity, the magnitude squared coherence,
was also estimated for each recording

[Py ()

el = 5P )

(10)

where P, and P, are the power spectral densities of the res-
piratory and surrogate respiratory signals and P, is the cross
power spectral density. We determined the maximum coherence
that occurred at the respiratory frequency [17]. The spectra were
calculated using Welch’s method using a 2'* point fast Fourier
transform (FFT) with a periodic Hamming window. The length
of the window was chosen to obtain eight equal sections of input
signal, and 50% overlap was used for computing the spectra.

D. Statistical Analysis

The algorithms (RR, Amp, and 12 variations of the PCA al-
gorithm) were ranked according to the median values of co-
herence and correlation across subjects and breathing rates.
Tests for significant differences in correlation and coherence
between the highest ranking implementation of the PCA algo-
rithm with those for the RR and Amp algorithms were conducted
using the Kruskal-Wallis test, which was compensated for mul-
tiple comparisons by the Tukey’s honestly significant difference
criterion.
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ECG and respiratory sensor signal from a subject breathing at 8 bpm along with the first three PCs and their eigenvectors for each of the ECG features.

In the top panel, the ECG shows clear amplitude modulation corresponding to the respiratory signal obtained from the output of the magnetic respiratory sensor
shown in the second panel. In the remaining panels, the first three PCs and their corresponding eigenvectors obtained from the PCA algorithm when applied to the
whole beat, P wave, QRS complex, and T wave are shown. The eigenvector of the first PC clearly reflects the respiratory pattern for all ECG features.

III. RESULTS
A. EDR From PCA

Fig. 2 provides an example of the first three PCs and their
eigenvectors obtained from different features of the ECG for
a subject breathing at 8§ bpm. Note that the first PC, which is
approximately ten times greater than the other PCs, represents
the “typical” beat morphology for the particular feature across
all the beats. The values of the eigenvector of the first PC are all
positive with cyclic variation corresponding to the respiratory
signal measured from the subject. The second and third PCs
describe subtle morphological differences not described by the
first PC, and some of their eigenvectors also exhibit cyclic vari-
ations corresponding to the respiratory rate. The eigenvectors
can be seen to vary at a rate corresponding to the respiratory
signal for at least one of the PCs for each feature.

B. Comparison of Algorithms

Fig. 3 compares the performance of each algorithm in terms
of coherence and correlation for each breathing pattern. The best

feature for the PCA algorithm was the respiratory estimate from
the first PC of the QRS complex (PC?RS). This was closely
followed by the respiratory estimates from the first PC of the
whole beat (PC‘INB), first PC of the T wave (PClT), and the third
PC of the QRS complex (PC?RS). These implementations of
the PCA algorithm gave results that were either better or the
same as the RR or amplitude-based algorithms, as illustrated in
Table I. The coherence and correlation values for the PCA algo-
rithm (PC?RS) were significantly greater than the RR algorithm
(p < 0.05and p < 0.0001, respectively), but these were not sig-
nificantly different to values for the amplitude algorithm. There
were no significant differences for these algorithms between
the coherence and correlation values obtained for the different
breathing patterns.

For most of the recordings, the ECGs showed significant
respiratory-induced QRS amplitude changes. Fig. 4 shows
an example in which the respiratory-induced QRS amplitude
changes were small. This figure shows the ECG, chest sensor
signal, and EDR for RR, amplitude, and eigenvectors of the first
and third PCs of QRS complexes. Clearly, neither the amplitude
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Fig. 3.
algorithm.
TABLE 1
ToP S1Xx RANKING ALGORITHMS FOR COHERENCE AND CORRELATION
Coherence Correlation

Rank Algorithm Value Algorithm Value
1 PC, RS 0.97 PC, %S 0.80
2 pC, VB 0.97 pC, VB 0.78
3 Amp 0.96 Amp 0.78
4 PC," 0.96 PC,T 0.76
5 RR 0.96 PC; RS 0.73
6 PC; RS 0.96 RR 0.66

Values are medians across all subjects and breathing patterns.

algorithm nor the eigenvector of the first PC provided good es-
timates of the respiratory signal with correlations of 0.56 and
0.58 and coherences of 0.77 and 0.89, respectively. However,
the eigenvector of the third PC of QRS complexes achieves a
correlation of 0.78 and coherence of 0.99 that outperformed all
the other algorithms.

C. Effect of Atrial Ectopic Beats

There were no ventricular ectopic beats, but one of the record-
ings contained atrial ectopic beats and this was analyzed sep-
arately to assess the sensitivity of the PCA algorithm to such

beats. The morphology of the ventricular complex of the ectopic
beats was similar to that of the regular beats. Fig. 5 compares
the respiratory signals obtained from the algorithms from this
recording. The artifact introduced into the respiratory signal
derived from the PCA algorithm is much smaller than the res-
piratory variation; hence, the PCA algorithm was robust against
these ectopic beats. As would be expected, the RR-based algo-
rithm is not a robust surrogate for the respiratory signal in the
presence of ectopic beats, and further processing would be re-
quired to remove the effect of the abnormal beat intervals. Since
the morphology of the QRS complex of the atrial ectopic beats
was similar to that of the regular beats, the EDR derived from the
amplitude algorithm showed only slight disturbance due to the
ectopic beats. As is the case for all other EDR algorithms, where
the ectopic beat morphology is substantially different from the
normal beat morphology, for example, premature ventricular
beats, it would be beneficial to remove these beats before ap-
plying the PCA algorithm and to use interpolation to estimate
the missing data in the surrogate respiratory signal.

D. Reconstruction of Beats From Principal Components to
Investigate Respiration-Induced Morphology Changes

We investigated the respiratory-induced morphology changes
to ECG beats by reconstructing two beats, one corresponding
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subject breathing at 12 bpm and the amplitude changes were less than 0.2 mV. The output from the respiratory sensor is shown along with surrogate respiratory
signals derived from RR and amplitude algorithms and PCA algorithm applied to QRS complexes. The respiratory surrogates for the amplitude and from the first
PC are highly correlated and are not good estimates of the respiratory signal. The third PC provides a better estimate.

to the peaks of the respiratory cycle and one corresponding to
the troughs of the respiratory cycle. Using the example shown
in Fig. 2 for the PCA algorithm applied to the whole beat,
we first identified the PCs with eigenvectors that showed the
clearest respiratory-related changes. Using these PCs only, we
performed an inverse transform using transform coefficients
obtained from the peaks and troughs of the eigenvectors to
recreate beats corresponding to different phases of the respira-
tory cycle. The eigenvectors of the first two PCs showed clear
respiratory-related changes and were used in the inverse trans-
formation. Performing the inverse transformation with these PCs
isolated the effect of respiratory-induced ECG changes from
other factors not related to respiration, which were described by
the remaining PCs. The peaks and troughs of the eigenvector
of the first PC were 0.09 (¢ peak) and 0.06 (¢q trough ), respec-
tively. The corresponding values in the eigenvector of the second
PC were 0.1 (¢2 peak) and —0.1 (¢2 trougn). Using these coeffi-
cients, we reconstructed the beats peak and Tirougn, Which are
approximations of the beat morphology at different phases of
the respiratory cycle

Tpeak = Z1C1,peak + 22C2 peak

an

Ltrough = Z1C1,trough + 22C2 trough -
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Fig. 5. Respiration sensor output signal and EDR from a subject breathing at

6 bpm for 180 s. There were two atrial ectopic beats as indicated by the spikes
in the RR-derived respiratory signal. The respiratory estimate from the first PC
of QRS complexes was unaffected by the atrial ectopic beats.

The reconstructed beats are illustrated in Fig. 6. The recon-
structed beats clearly show the large amplitude changes that
occurred due to respiration and also the more subtle changes
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Fig.6. Reconstruction of ECG beats to illustrate the beat morphology at differ-

ent phases of the respiratory cycle using the inverse PCA transformation. Solid
line is the ECG beat reconstructed using coefficients corresponding to peaks in
the respiratory cycle and the dashed line is the ECG beat reconstructed using
coefficients at the troughs of the respiratory cycle. The beats were reconstructed
using only PCs whose eigenvectors showed clear respiratory variation (PC}V B
and PC§V By and the coefficients for the inverse transform were obtained from
eigenvector values corresponding to the peaks and troughs of the respiratory
cycle.

to beat morphology, for example, changes in QRS duration and
timing of the peak of the T wave. The amplitude changes were
described by the first PC and its eigenvector and the subtle
morphological changes were described by the second PC and
eigenvector. Note that the eigenvector of the first PC was always
positive and the eigenvector of the second PC contained both
positive and negative values. Hence, the eigenvector of the first
PC always described amplitude changes and the eigenvector of
the second PC described the subtle morphological changes in
the ECG. In this regard, the PCA algorithm can be considered
to take account of and separate both the amplitude and morpho-
logical changes associated with respiration.

E. Nonrespiratory-Related ECG Changes

Our analysis revealed other potential applications of the algo-
rithm for analysis of beat-to-beat changes in the ECG other than
those due to respiration. Fig. 7 illustrates the eigenvectors from
the PCA algorithm applied to P waves from a subject breathing
at 14 bpm. The eigenvectors of the second PC exhibited clear
respiratory variations. The eigenvectors of the first PC exhibited
large variations unrelated to the respiratory signal. These were
found to reflect large variations in P wave amplitudes that oc-
curred throughout the recording, as illustrated in Fig. 7. There
were no corresponding amplitude changes in the other ECG
features and the cause of these P wave amplitude variations
was unknown in this subject, but similar observations of spon-
taneous changes in P waves have been reported previously [18].
This demonstrates the utility of the PCA algorithm for simul-
taneously tracking respiratory and nonrespiratory beat-to-beat
variations in ECG beat features.

IV. DISCUSSION

PCA is a novel approach to EDR. We have demonstrated its
application using the different features of the ECG and obtained
significantly better results than the RR-based algorithm. The
PCA algorithm gave the best surrogate to the respiratory signal
when applied to QRS complexes, and good results were also ob-
tained when applied to other ECG features such as T waves. The
eigenvector of the first PC was sensitive to respiratory changes,
and in most recordings, these were associated with amplitude
changes. However, unlike other algorithms, the PCA algorithm
also extracts the subtle morphological changes to ECG fea-
tures, which were expressed in the second and third PCs. The
PCA-based algorithm also has the advantage that dominant PCs
are relatively noise free because ECG noise is uncorrelated to
the ECG features and is separated into the lower PCs. This is
demonstrated by the reconstructed beats shown in Fig. 6 where
the first two PCs were used to reconstruct the beats at the dif-
ferent phases of the respiratory cycle.

There was no significant difference between the PCA algo-
rithm (PC?RS) and the amplitude algorithm, which could be
expected since the eigenvector of the first PC is closely as-
sociated with the amplitude of the QRS complex. However,
an interesting finding was that morphological changes in QRS
complexes expressed by the third PC were also highly correlated
to respiration, indicating that the algorithm captures the subtle
morphological beat-to-beat differences as well as the large am-
plitude changes. It was shown that the algorithm was successful
at identifying small changes in ECG features even if there were
no large amplitude variations related to respiration. Although
in general the algorithm when applied to P waves did not give
results as good as the other features or algorithms, there were
examples where the P wave gave results better than the exist-
ing algorithms and suggests that the algorithm could be applied
to investigate respiratory-related changes to the P wave that
have not been investigated previously. More interestingly, in
one subject, in addition to providing a good respiratory surro-
gate from the P wave, the algorithm detected changes in P wave
morphology not related to respiration. This demonstrates the
capability of the algorithm to separate the respiratory and non-
respiratory changes in beat morphology and demonstrates the
wider application of this algorithm as a general tool for analysis
of beat-to-beat changes in ECG features. Such a tool might be
useful in serial ECG analysis. We have already demonstrated
the accuracy of the algorithm applied to the detection of T wave
alternans [19].

Here, our aim was to assess the potential of the new algo-
rithm for providing a surrogate for the respiratory signal in
controlled conditions and to evaluate it against some existing
algorithms. As such, we have restricted our analysis to healthy
individuals and further work will test the algorithm in clini-
cal practice. Future work should assess the sensitivity of the
algorithm to different leads as only a single-lead position was
used in our analysis and choice of lead is an important con-
sideration [11]. In our analysis, we identified the PCs yielding
the respiratory surrogate by comparison with the known respi-
ratory signal from the magnetic chest sensors. In general, the

Authorized licensed use limited to: Newcastle University. Downloaded on May 21,2010 at 13:35:17 UTC from IEEE Xplore. Restrictions apply.



828

0.3

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 4, APRIL 2010

Respiration (mV)
o

0.3

P
PC,

. o
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of the second PC gave a good representation of the respiratory signal (coherence = 0.98, correlation = 0.77). The eigenvector of the first PC showed large variations
unrelated to respiration. These are due to changes in P wave amplitude as illustrated by the ECG segments beneath. The ECG segments are 2 s extracts from the
continuous ECG shown on a 1-mV peak-to-peak scale. Segments are shown that correspond to high and low values of the eigenvector of the first PC. The large
variation in P wave amplitude can be seen in the different segments. The P wave amplitude changes were unrelated to respiration.

eigenvector of the first PC yielded the best surrogate. In the
intended application, without a respiratory sensor, the eigen-
vector of the first PC would be a good candidate for the res-
piratory surrogate. Fortunately, respiratory-induced changes in
ECG features tend to be cyclic (at the respiratory rate), and res-
piratory rate tends to be fairly constant even during natural
breathing. In contrast, nonrespiratory-induced changes in
ECG features are often sporadic, or if regular, outside the
physiological rate for respiration (e.g., T wave alternans).
This facilitates the identification of components containing
respiratory- and nonrespiratory-induced changes. Our algorithm
was robust against atrial ectopic beats where the beat morphol-
ogy was similar to the regular beats but further testing would be
needed for ectopics with different morphologies. It would have
been impractical to evaluate our algorithm against all exist-
ing EDR algorithms, so we chose two well-defined, and hence,
easily reproducible algorithms to test against. These are sim-
ple algorithms and further testing against more sophisticated
algorithms should be undertaken. The clinical utility of our al-
gorithm needs to be investigated but other EDR algorithms have
found application in investigations of sleep disorders where the
number of sensors attached to the patient is an important consid-
eration [9]. Notwithstanding these limitations, our study demon-
strates PCA as a novel algorithm for assessing both respiratory-
and nonrespiratory-related beat-to-beat changes in different fea-
tures of the ECG.
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