
Università degli Studi di Trento

Facoltà di Scienze Matematiche Fisiche e Naturali
Dipartimento di Matematica

Dottorato in Matematica
Ciclo XXI

On algebraic and statistical properties of
AES-like ciphers

Anna Rimoldi

Supervisor: Prof. M. Sala

Head of PhD School: Prof. A. Valli

Università degli Studi di Trento

Facoltà di Scienze Matematiche Fisiche e Naturali

Dipartimento di Matematica

Dottorato in Matematica
Ciclo XXI

On algebraic and statistical properties of
AES-like ciphers

Ph.D.Thesis of:
Anna Rimoldi

Supervisors:
Prof. M. Sala

Head of PhD School:
Prof. A. Valli

Contents

I Preliminaries 1

1 Preliminaries and notation 3
1.1 Algebraic background . 3

1.1.1 Finite Fields . 4
1.1.2 Permutation polynomials . 4

1.2 Block ciphers . 5
1.2.1 Perfect secrecy . 10
1.2.2 What do we mean by a “good” Block Cipher? 11
1.2.3 Cryptanalytic scenarios . 13

1.3 Cryptographic hash functions . 16
1.4 Statistical tests . 18

2 A description of AES, SERPENT and PRESENT 23
2.1 The AES cryptosystem . 25

2.1.1 SubBytes . 26
2.1.2 Mixing Layer . 27
2.1.3 Key schedule . 28
2.1.4 Small scale variants of the AES 29

2.2 The SERPENT cryptosystem . 30
2.2.1 A SERPENT round . 30
2.2.2 The Linear transformation . 31
2.2.3 The SERPENT’s key schedule 32

2.3 PRESENT: an ultra-lightweight block cipher 33
2.3.1 sBoxLayer . 33
2.3.2 pLayer . 33

3 On the AES cryptanalysis 35
3.1 Statistical attacks . 35

3.1.1 Distinguishing Attacks . 36
3.2 Structural attacks . 37

3.2.1 Square attack . 38

i

3.2.2 Partial Sum . 40
3.2.3 Impossible Differentials . 42
3.2.4 Collision Attacks . 42
3.2.5 Boomerang attack . 42

3.3 First algebraic attacks . 46
3.3.1 Continued fractions . 47
3.3.2 Polynomial system approach 48

3.4 Alternative representations . 50
3.4.1 BES . 50
3.4.2 Polynomial system . 54
3.4.3 Toli-Zanoni’s remark . 56

3.5 Dual ciphers . 57
3.5.1 Square dual ciphers . 58
3.5.2 Dual ciphers modifying the irreducible polynomial 60
3.5.3 Logarithmic dual ciphers . 60
3.5.4 Self-dual ciphers . 61

3.6 S-boxes equivalence . 62
3.6.1 Linear equivalence . 64
3.6.2 Affine equivalence . 64
3.6.3 Extension . 65
3.6.4 Equivalences in the AES cryptosystem 66

II Our Results 67

4 A new representation 69
4.1 Some preliminary results . 70
4.2 A first representation . 73

4.2.1 Application to AES . 77
4.2.2 Application to PRESENT . 79
4.2.3 Application to SERPENT . 80

4.3 An “orbit” representation . 81
4.3.1 Application to AES . 85
4.3.2 Application to PRESENT . 86
4.3.3 Application to SERPENT . 86

4.4 Other representations of this kind . 87
4.5 Further remarks . 87

4.5.1 First approach . 89
4.5.2 Using the order of the elements 90

ii

4.6 Some results on a weaker notion of linearity 92

5 A related-key attack 97
5.1 Related-key distinguishing attacks . 97
5.2 Our setting . 97
5.3 The AES case . 99
5.4 Numerical results . 100
5.5 Comments . 105

6 Appendix 109

Bibliography 116

iii

Acknowledgment

First of all, I would like to express sincere gratitude to my supervisor Prof. Mas-
similiano Sala for his encouragement, his advice and research support throughout my
Master’s and PhD studies.

I am grateful to my thesis defense Committee, Prof. Carlo Traverso, Prof. Teo
Mora and Dr. Ludovic Perret, for their helpful suggestions.

I would like to thank the whole Department of Mathematics of University of
Trento for its support, especially Prof. Andrea Caranti, Prof. Marco Sabatini and
Prof. Alberto Valli.

Furthermore, thanks to Dr. Giacomo Aletti, Dr. Guido Bertoni, Prof. Francesca
Dalla Volta, Dr. Lilli Fragneto, Dr. Ilia Toli for their helpful comments.

Sincere thanks to Dr. Fabrizio Caruso for helping me in the more computational
part of this work and for many interesting discussions.

I want to thank all my fellow PhD students and in particular Federica, Elisa,
Stefano e Philipp; I want also thank Lara Maines for her scientific contributions and
all the fantastic guys in our group.

My last but important acknowledgment is for my family and for my friends Clau-
dia, Marco, Paolo and Roberto and Yudis.

v

Some Notation

N = {0, 1, 2, . . .}
Fq finite field with q elements
V = (Fq)r vector space over Fq of dimension r
Sym(V) symmetric group on V
Alt(V) alternating group on V
GL(V) group of all linear permutations of V
C⊥ the orthogonal space of any vector space C < V w.r.t. the standard

scalar product in V
Im(f) image of any function f : S → T , with S, T any sets.
w(v) Hamming weight of the vector v ∈ (Fq)r

m Rijndael polynomial, m = x8 + x4 + x3 + x+ 1 ∈ F2[x]

d`e is min{n ∈ Z|n ≥ `} (ceiling)
o(σ) the order of permutation σ
i.e. id est
e.g. exempli gratia
w.l.o.g. without loss of generality
w.r.t. with respect to
s.t. such that
NIST National Institute for Standards and Technology (US)

vii

Introduction

The Advanced Encryption Standard (AES) is nowadays the most widespread block
cipher in commercial applications. It represents the state-of-art in block cipher de-
sign and provides an unparalleled level of assurance against all known cryptanalytic
techniques, except for its reduced versions. Moreover, there is no known efficient way
to distinguish it from a set of random permutations.

The AES (and other modern block ciphers) presents a highly algebraic structure,
which led researchers to exploit it for novel algebraic attacks. These tries have been
unsuccessful, except for academic reduced versions.

Starting from an intuition by I. Toli, we have developed a mixed algebraic-statistical
attack. Using the internal algebraic structure of any AES-like cipher, we build an alge-
braic setting where a related-key (statistical) distinguishing attack can be mounted.
Our data reveals a significant deviation of the full AES-128 from a set of random
permutations. Although there are recent successful related-key attacks on the full
AES-192 and the full AES-256 (with non-practical complexity), our attack would be
the first-ever practical distinguishing attack on the full AES-128 (to the best of our
knowledge).

In Part I we provide some preliminaries and sketch a survey of known attacks on
the AES versions, in particular on AES-128.

In Chapter 1 we give some basic algebraic background and we summarize the
notion of a block cipher, with its link to hash functions. In particular, we introduce the
class of translation based cryptosystems, which are ciphers enjoying some interesting
algebraic properties.

In Chapter 2 we describe the three main translation-based cryptosystems: AES,
SERPENT and PRESENT.

In Chapter 3 we briefly report on known attacks on AES, including structural,
statistical and algebraic attacks. This chapter can be skipped in a first reading of
this thesis.

ix

In Part II we present our attack and its algebraic setting.
In Chapter 4 we give some algebraic embeddings of a translation based cipher into

a much larger cipher. These embeddings are designed to lower the non-linearity of
the encryption functions. Two of them are practical and can be applied in principle
to AES, PRESENT and SERPENT. In particular, the orbit representation works well
with AES-128 and PRESENT. However, with group theory proofs we also show that
no representation/embedding can completely linearize the full AES-128.

In Chapter 5 we use the orbit representation for AES-128 and we are able to
find sets of related matrices with related keys such that the encryption action can be
shown to differ significantly from the behavior of a set of random permutations. Our
attack may be seen as an extremely refined version of a Marsaglia Diehard test.

x

Part I

Preliminaries

1

Preliminaries and notation

In this chapter we recall well-known results in group theory and finite field theory
[LN97] in order to fix the notation we will use in the sequel.
We also outline some basic ideas about block ciphers, their security level and their
cryptanalysis. Definitions and results are mainly from [Sti95], [CW09] and [DR02].
In the last section we will give an overview of the statistical tests adopted by NIST
[NIS00] to evaluate the random behavior of the AES candidates.

1.1 Algebraic background

Let n ≥ 2 be an integer. Let V = (F2)n be the vector space over the finite field F2

of dimension n. We denote by Sym(V) and Alt(V), respectively, the symmetric and
alternating group on V . We denote by GL(V) the group of all linear permutations of
V . We recall the well-known formulas:

|Sym(V)| = 2n!, |Alt(V)| = 2n!

2
|GL(V)| =

n−1∏
h=0

(2n − 2h) < 2n
2

.

Given a finite groupG, we say thatG can be linearized if there is an injective morphism
ρ : G→ GL(V) (this is called a “faithful representation” in representation theory).

Definition 1.1.1. A (linear) representation of a group G over a vector space V is a
group homomorphism ρ : G→ GL(V). If ρ is injective, it is called faithful.

If G can be linearized, then, for any element g ∈ G, we can compute a matrix
Mg corresponding to the action of g over V (via ρ). The matrix computation is easy,
since it is enough to evaluate g on a basis of V .
If ρ : G → GL(V) is a representation of G on V , then we often write gv instead
of ρ(g)v, if no confusion arises. Also, G is said to act linearly on V , and V is
called a G-module. The degree of the representation is by definition the dimension
of V . By taking V = 2|G| we can always linearize G over V via the so-called regular
representation, but of course this is huge and usually impractical.

Definition 1.1.2. Let G = {g1, . . . , gn} be a finite group. Let V be a vector space
with basis {eg1 , . . . , egn}. The regular representation ρ : G → GL(V) is defined by
ρ(gi)(egj) = egigj (where gigj is the group product).

3

Chapter 1. Preliminaries and notation

Definition 1.1.3 (Equivalence of Representations). Two representations ρ1 and ρ2

over a vector space V are said to be equivalent if they are related by conjugation, i.e.
there is h ∈ GL(V) such that ρ2(g) = h(ρ1(g))h−1, ∀g ∈ G.

1.1.1 Finite Fields

For any prime p and any positive m ∈ N, Fpm is the field with pm elements
(unique up to field isomorphism). It contains an isomorphic copy of Fp and can thus
be thought as an extension of Fp. On the other hand, we can construct any Fqs from
Fq with q = pm elements, as follows.
Let f ∈ Fq[x] be an irreducible polynomial of degree m. We can consider the quotient
R = Fq[x]/(f), where (f) is the ideal generated by f in Fq[x]. By considering the
natural projection π : Fq[x]→ R, we call α = π(x) and clearly any element of R can
be uniquely expressed as a polynomial in α of degree less than m:

R =

{
m−1∑
i=0

aiα
i | ai ∈ Fq

}

with the condition f(α) = 0.

Theorem 1.1.4. R = Fq[x]/(f) is a field and R ∼= Fqm.

We denote by F∗q the multiplicative group of non-zero elements of Fq.

Theorem 1.1.5. For any finite field Fq, the multiplicative group F∗q is cyclic.

A generator of the cyclic group F∗q is called a primitive element of Fq.

Definition 1.1.6. An irreducible polynomial f ∈ Fq[x] is primitive if its roots are
primitive elements.

We conclude this subsection by observing that for any q and m there are indeed
irreducible polynomials of degree m over Fq and some of them are primitive.

1.1.2 Permutation polynomials

Definition 1.1.7. A polynomial f ∈ Fq[x] is a permutation polynomial of Fq if the
associated polynomial function f : c 7→ f(c) from Fq into Fq is a permutation of Fq.

If f is an affine map f : x 7→ ax+ b (a 6= 0), we say that f is a linear polynomial.

4

1.2. Block ciphers

We note the following easy results:

1. Every linear polynomial over Fq is a permutation polynomial of Fq.

2. The monomial xn is a permutation polynomial of Fq if and only if

gcd(n, q − 1) = 1.

Permutation polynomials of Fq of degree less then q can be combined by the operation
of composition and subsequent reduction modulo xq − x. The set of permutation
polynomials of Fq of degree less then q forms a group, which is isomorphic to Sym(Fq).
Then, the symmetric group Sym(Fq) and its subgroups can be represented as groups
of permutation polynomials.

Theorem 1.1.8. For q > 2, the symmetric group Sym(Fq) is generated by xq−2 and
all linear polynomials over Fq.

1.2 Block ciphers

Block ciphers form an important class of cryptosystems in symmetric key cryp-
tography. Stream ciphers [Rue92] form another class. We are interested only in
cryptosystems of type block ciphers. These are algorithms that encrypt and decrypt
blocks of data (with fixed length1) according to a shared secret key. They are com-
monly used to provide confidentiality during information transmission and storage.
We can formally describe such a cryptosystem using the following definition:

Definition 1.2.1. A cryptosystem is a pair (M,K), where:

• M is a finite set of possible messages (plaintexts, ciphertexts);

• K, the key-space, is a finite set of possible keys;

• we have encryption and decryption functions for any key k ∈ K:

φk :M→M, ψk :M→M, φk, ψk ∈ Sym(M)

such that
ψk = (φk)

−1.

Following the most used structure in modern ciphers, in the previous definition
we set that the plaintext space coincides with the ciphertext space. W.l.o.g, we can
consider M = (Fq)r and K = (Fq)`, with r and ` positive integers, and we change
slightly our previous definition.

1Actually, there is a recent approach that allows a slight change of the block length [CYK09]

5

Chapter 1. Preliminaries and notation

Definition 1.2.2. Let r and ` be natural numbers. Let φ be any function

φ : (Fq)r × (Fq)` → (Fq)r.

For any k ∈ (Fq)`, we denote by φk the function

φk : (Fq)r → (Fq)r, φk(x) = φ(x, k).

We say that φ is a algebraic block cipher if φk is a permutation of (Fq)r for any key
k ∈ (Fq)`.

Under this conditions, we can also consider a block cipher as an indexed set of permu-
tations (Fq)` → Sym((Fq)r). Any key k ∈ K induces a permutation φk onM. Since
M is usually V = (F2)r for some r ∈ N, we can consider φk ∈ Sym(V).

We recall a typical communication scheme between two parties (traditionally
known as Alice and Bob):

• Alice and Bob agree on the key k ∈ K;

• Alice chooses a plaintext x ∈ M, uses the encryption function φk to encrypt x
and sends Bob the ciphertext y = φk(x) (where y ∈M);

• Bob knows the key k and hence the decryption function ψk, so that he recovers
the original message x:

ψk(y) = ψk(φk(x)) = x .

When Eve (the eavesdropper) intercepts the ciphertext, she should not be able to
find easily the plaintext, because she does not know the key. Otherwise the system
would be “weak” or “insecure”. (For more details, see Subsection 1.2.1).

To achieve the desired security, most modern block ciphers are iterated ciphers that
typically incorporate sequences of permutation and substitution operations. In fact,
according to the ideas that Shannon proposed in his seminal paper [Sha49], the en-
cryption process takes as input a plaintext and a random key and so proceeds through
N similar rounds. In each round (except possibly for a couple, which may be slightly
different) the iterated ciphers perform a non-linear substitution operation (or S-box)
on disjoint parts of the input that provides “confusion”, followed by a permutation
(usually a linear/affine transformation) on the whole data that provides “diffusion”.
A cryptosystem reaches “confusion” if the relationship between plaintext, ciphertext
and key is very complicated. The “diffusion” idea consists of spreading the influence

6

1.2. Block ciphers

of all parts of the input (plaintext and key) to all parts of the ciphertext. The op-
erations performed in a round form the round function. The round function at the
ρ-th round (1 ≤ ρ ≤ N) takes as inputs both the output of the (ρ− 1)-th round and
the subkey k(ρ) (also called round-key). Any round key k(ρ) is constructed starting
from a master key2 k of some specified length, e.g. k ∈ K = (F2)` (nowadays we have
264 ≤ |K| ≤ 2256). The key schedule is a public algorithm (strictly dependent on the
cipher) which constructs N + 1 subkeys (k(0), . . . , k(N)).

Several independent formal definitions have been proposed for iterated block ci-
phers (or subclasses of them). Here we present three of them.
Stinson in [Sti95] gives the following definition of substitution permutation network
(SPN for short):

Definition 1.2.3 (SPN). Let m, b, N be positive integers. Let r = mb. Let πS :

(F2)m → (F2)m and πP : {1, . . . , r} → {1, . . . , r} be permutations. Let M = (F2)r

and let K′ ⊂ ({0, 1}r)N+1 consist of all possible key schedules that can be derived from
a master key k using the key scheduling. For any key schedule (k0, . . . , kN) we encrypt
the plaintext x using the following algorithm 3:

Require: x, πS, πP , (k0, . . . , kN)

w0 ← x

for r ← 0 to N − 2 do
ur ← wr−1 ⊕ kr

for i← 1 to b do
vri ← πS(uri)

end for
wr ←

(
vrπP (1), . . . , v

r
πP (mb)

)
end for
uN−1 ← wN−2 ⊕ kN−1

for i← 1 to b do
vN−1
i ← πS(uN−1

i)

end for
y ← vN−1 ⊕ kN

Algorithm 1: SPN Encryption

2also called session key.
3Only in the 8-th row of the following algorithm we have considered the bit components of vr.

7

Chapter 1. Preliminaries and notation

The author notes that this definition is too restricted and suggests some variations,
as for example:

- to use more than one S-box (as for DES [Nat77], in which 8 different S-boxes
are employed in each round);

- to include an invertible linear transformation in each round, either as a replace-
ment for, or in addition to, a permutation operation (as for instance for AES
(see Section 2.1)).

In [DR02] we can find another class of iterated block cipher, called the key-
alternating block ciphers. This kind of ciphers are characterized by the following
properties:

• Alternation: the cipher is defined as the alternated application of key inde-
pendent round transformations and key additions; the first round key is added
before the first round and the last round key is added after the last round.

• Simple key addition: the round keys are added to the state (the intermediate
value) by means of a simple XOR. We have

B[k] = σ[k(r)] ◦ ρ(r) ◦ σ[k(r−1)] ◦ · · ·σ[k(1)] ◦ ρ(1) ◦ σ[k(0)]

where σ[k(i)] is the key addition using the i-th round key k(i), ρ(i) is the i-th
round transformation.

A special class of key-alternating block ciphers are the key-iterated block ciphers, in
which all rounds (except possibly for a couple of those) use the same round trans-
formation. An advantage of this class of ciphers is the fact that allows efficient
implementations. We note that this kind of characterization is very general. It is
therefore quite difficult to obtain general theoretical results.

Finally, we consider a more recent definition [CDVSar] that defines a class (see
Definition 1.2.5), large enough to include some common ciphers, yet restricted enough
to have simple criteria guaranteeing an interesting property of the cipher (for details
see Section 4.5).

Let V = (F2)r with r = mb, b ≥ 2. The vector space V is a direct sum

V = V1 ⊕ · · · ⊕ Vb,

where each Vi has the same dimension m (over F2). For any v ∈ V , we will write
v = v1 ⊕ · · · ⊕ vb, where vi ∈ Vi. Also, we consider the projections πi : V → Vi

mapping v 7→ vi.

8

1.2. Block ciphers

Any γ ∈ Sym(V) that acts as vγ = v1γ1 ⊕ · · · ⊕ vbγb, for some γi ∈ Sym(Vi), is
a bricklayer transformation (a “parallel map”) and any γi is a brick. The maps γi’s are
traditionally called S-boxes and map γ is called a “parallel S-box”. A linear (or affine)
map λ : V → V is traditionally called a “Mixing Layer” when used in composition
with parallel maps. We denote by σv a translation over V .

Definition 1.2.4. A linear map λ ∈ GL(V) is a proper mixing layer if no sum of
some of the Vi (except {0} and V) is invariant under λ.

We can characterize the “translation based” class by the following

Definition 1.2.5. We say that C is translation based (tb) if:

• it is the composition of a finite number of rounds, such that any round τk can
be written4 as γλσk̄, where

– γ is a round-dependent bricklayer transformation (but it does not depend
on k),

– λ is a round-dependent linear map (but it does not depend on k),

– k̄ is in V and depends on both k and the round (k̄ is called a “round key”);

• for at least one round we have (at the same time) that λ is proper and that the
map K → V , k 7→ k̄, is surjective (a “proper” round).

In [CDVSar] the authors gave several non-trivial remarks that can be useful. Let
us recall the principal ones.

Remark 1.2.6. A generalization is obtained by allowing a key-independent permuta-
tion at the beginning and/or another at the end. This is the case for example for the
SERPENT cipher. Since these permutations have no influence on the cryptanalysis
of a cipher, they can be ignored.

Remark 1.2.7. A round consisting of only a translation is still acceptable, by assuming
γ = λ = 1V (the identity map on V), although obviously it is not proper. Indeed, we
can always assume that the first round is of this kind, otherwise we can remove its γ
and λ (Remark 1.2.6). Then, we can also assume that 0γ = 0, since we can add 0γ

to the round key of the previous round (if the previous round is proper, it remains
proper since σ0γ is a permutation over V).

Remark 1.2.8. To allow affine mixing layers, rather than linear mixing layers, seems a
generalization. However, this case is indeed already present in Definition 1.2.5, since
it is enough to change σv to incorporate the “translation part” of the mixing layer.

4we drop round indexes.

9

Chapter 1. Preliminaries and notation

Remark 1.2.9. A generalization can be obtained by only requiring at least one of
the rounds to be of the prescribed form (with a proper mixing layer). Although the
authors’ results still hold in this more general case, we do not know any interesting
cipher of this kind.

Note that some famous ciphers, such as the DES, KASUMI and IDEA ciphers,
cannot be seen easily as tb ciphers. Some of them (e.g. DES and KASUMI) are of
Feistel type. They modify only one half of the cipher state in each round. It has been
suggested that the Feistel ciphers suffer from a slow speed of diffusion compared to
SPN (or key-iterated) ciphers.

1.2.1 Perfect secrecy

The concept of perfect secrecy (or unconditional security) has been formalized
several decades ago by Shannon in [Sha49]. The perfect ciphers (for instance, the
One Time Pad) are ciphers with a very strong model because one assumes that Eve’s
computational power is infinite. They are impractical for a real use, as they require
at least as many key bits as the message length.
We are going to give a mathematical definition of perfect ciphers.
Let P be the plaintext space, C be the ciphertext space5 and we assume that a
particular key k̄ ∈ K is used for only one encryption φk̄. Suppose that there exists a
probability distribution on P . Let X be the random variable defined by the plaintexts
and we denote by Pr[X = x] the probability that the plaintext x occurs. Let Y be
the random variable defined by the ciphertexts and we denote by Pr[Y = y] the
probability that the ciphertext y occurs. We assume that Alice and Bob have chosen
the key k̄ using some fixed probability distribution and we denote by Pr[K = k̄] the
probability that the key k̄ is chosen. We observe that the key k ∈ K is often chosen at
random. This guarantees that all the keys are equiprobable, which is what we really
need, but the random choice per se is irrelevant in the model we are describing. Since
Alice and Bob agree on the keys before Alice knows her plaintext, we can assume that
key and plaintext are independent random variables. Moreover, the two probability
distributions on P and K induce a probability distribution on C, and we consider
Pr[Y = y] where y = φk̄(x).

Definition 1.2.10. A cryptosystem is said to have the property of perfect secrecy if,
for all x ∈ P and y ∈ C, the two probability distributions satisfy

Pr[X = x|Y = y] = Pr[X = x].

5We note that, only in this subsection, the plaintext space and the ciphertest space are not
necessarily the same space.

10

1.2. Block ciphers

Perfect secrecy means that the a posteriori distribution of the plaintext x after
viewing the ciphertext y is identical to the a priori distribution of the plaintext. In
other words, it means that Eve learns nothing more about the plaintext after having
viewed the ciphertext than she knew before.

Let us consider a perfect cipher. Let x̄ be a fixed plaintext in P . For each y ∈ C,
the probability Pr[x̄|y] = Pr[y] is positive and so there must be at least one key k
such that φk(x̄) = y. Hence |K| ≥ |C|. Since the encoding function is injective, we
have |C| ≥ |P| and so |K| ≥ |P|. In other words, in a perfect cipher the key must be
at least as large as the plaintext. Shannon gave a characterization of perfect secrecy,
in case |K| = |C| = |P|, as follows

Theorem 1.2.11. Suppose that |P| = |C| = |K|. A cryptosystem provides perfect
secrecy if and only if every key is used with equal probability 1/|K| and, for every
x ∈ P and y ∈ C, there is a unique key k̄ such that φk̄ = y.

Remark 1.2.12. We have restricted our attention to the particular case in which a key
k is used for only one encryption. In order to tell something about “perfect secrecy”
when more and more plaintexts are encrypted using the same key k, Shannon used
the concept of entropy. The reader can see this kind of description in [Sha49].

Remark 1.2.13. Theorem 1.2.11 can be rephrased in group theory notations as
Theorem: Suppose that |P| = |C| = |K|. A cryptosystem provides perfect secrecy if
and only if every key is used with equal probability 1/|K| and the action of {φk̄}k̄∈K
on P = C is a regular action.

1.2.2 What do we mean by a “good” Block Cipher?

Up to now, there is no received definition of “good block cipher”, but there are
several criteria that contribute to the evaluation of a cipher. We list some of them.
Security
The most important criterion in the evaluation of a block cipher consists of estimating
its security level. Obviously, the security of a block cipher is highly dependent on the
properties of the different components:

- substitution layer consisting of a number of highly non-linear S-boxes (which
are Boolean functions, see [Carar]),

- affine or linear invertible transformations.

11

Chapter 1. Preliminaries and notation

However, there is no mathematical method to prove the security of a given block
cipher, although it is sometimes possible to prove the insecurity of such a cipher. What
usually happens is that a relative measure of the security of a block cipher (for instance
the K-security in [DR02]) is given. Some necessary requests on the ciphers are made
and it is a very hard problem to determine the sufficient conditions that guarantee the
security. To evaluate the security, an additional concept is often considered: practical
security. According to this concept, a block cipher is considered secure if the best-
known attack requires too many resources by a suitable and acceptable margin. One
can test the block cipher with different known attacks and assign a certain security
level to it. Obviously, it is impossible to predict the security of the underlying block
cipher with respect to yet unknown attacks.

Remark 1.2.14. Some authors believe that also the concept of historical security
should be taken into consideration when assessing a cipher security. This is derived
according to the amount of cryptanalytic work on the ciphers performed over the
years. An old block cipher which has resisted to all cryptanalytical attacks for a long
time will inevitably inspire a larger security feeling than a new block cipher which
has not been extensively cryptanalyzed.

Efficiency
It refers to the amount of resources required to perform φ or ψ. In fact, in software im-
plementations the speed of φ/ψ and the required amount of working memory/memory
storage are relevant.
When quoting the speed of a cipher, one often makes the silent assumption that a
large amount of data is encrypted with the same key. In that case, the key schedule
can be neglected. However, if a cipher key is used to secure only a few messages, the
amount of cycles taken by the computation of the key-schedule becomes important.
The ability to efficiently change keys is called key agility.
Block ciphers are often used to encrypt large amounts of data; this makes data
throughput an important evaluation criterion as well. One often differentiates hard-
ware and software cases, the speed of the algorithm setup, the key setup, a key change
and the encryption and decryption operations.
Flexibility
An expected important property of a block cipher is that it offers a large flexibility.
For instance, a flexible algorithm may offer several possible block and key sizes, allow-
ing to tailor an instance of the block cipher to precise external requirements. Another
flexibility form concerns implementation issues. Finally, a block cipher can be used
as a building block in various cryptographic constructions (like a hash function, an
authentication code, or a stream cipher); if it offers an acceptable security level in all
of these situations, then one can consider that it is a flexible block cipher.

12

1.2. Block ciphers

Some authors (for instance see [DR02]) claim that other design criteria should be
considered, such as the simplicity. A powerful tool for introducing simplicity is the
symmetry.

Security and efficiency are applied by all ciphers designers. There are cases in
which efficiency is neglected to obtain a higher security margin. The challenge is to
come up with a cipher design that offers a reasonable security margin while optimizing
efficiency. Flexibility is not felt as necessary as the others, since in some cases the
cipher is meant for a particular application and will be implemented on a specific
platform.

1.2.3 Cryptanalytic scenarios

Traditionally, the goal of Eve consists of recovering the plaintext or even the key.
According to the possibilities and the capabilities of Eve, we can classify the different
modes of attack (from the most practical to the most hypothetical, or equivalently,
from the least powerful to the most powerful) as follows:

• Ciphertext-only: Eve tries to deduce some information about the key (or about
the plaintext) starting from the sole knowledge of several ciphertexts and, usu-
ally, assuming some properties about the distribution of the plaintexts. This is
a very unlikely scenario for modern block ciphers.

• Known-plaintext: in this kind of attack, we assume that Eve knows a certain
amount of (plaintext,ciphertext) pairs in order to recover the key. This is a
realistic scenario, where Eve can observe encrypted version of well-known data
and, for instance, exploit the fact that messages often have a lot of redundancy.
Linear cryptanalysis [Mat93] is a typical example of such an attack.

• Chosen-plaintext or ciphertext: when performing this kind of attack, Eve is able
to choose plaintexts and obtain the corresponding ciphertexts. Subsequently,
Eve uses any information deduced in order to recover either the key, or plaintexts
corresponding to previously unseen ciphertexts. A typical example is differential
cryptanalysis [AC08].

• Adaptive chosen-plaintext or ciphertext: such an attack consists of a chosen-
plaintext (or chosen-ciphertext) attack wherein the choice of the plaintext (or
ciphertext) depends on the information learned during the attack.

• Combined chosen-plaintext and chosen-ciphertext: this is a powerful type of
adaptive attack which assumes that Eve can encrypt and decrypt arbitrary mes-
sages as she desires. A typical example of such an attack is Wagner’s boomerang
attack (see [Wag99], or Section 3.2.5).

13

Chapter 1. Preliminaries and notation

• Related-key: in this model, Eve knows (or can choose) additionally some math-
ematical relations between the keys used for encryption, but not their values.
This is usually employed in conjunction with some of the scenarios above. Even
if in itself this attack may not be considered to be a practical threat against a
block cipher (because it lives in a too strong threat model), it may be practical
when a block cipher is used as a primitive for a hash function.

By considering one of the attacks described above and according to the type of infor-
mation recovered during it, the possible outcomes of an attack could be classified as
follows. We describe only the main outcomes from the least favorable for Eve to the
most favorable. (For more details, see e.g. Knudsen [Knu99]).

• Distinguishing attack: Eve is able to tell whether the attacked block cipher
is a permutation (chosen uniformly at random from the set of all permuta-
tions) or one of the permutations {φk}k∈K. Infact, most modern block ciphers
are designed to model a random permutation. Even if distinguishing attacks
are considered as the least serious threat in practice, they often indicate some
structural weaknesses of the cipher and they might be transformed into a Key
recovery (or a Global deduction).

• Local deduction: Eve finds the plaintext (or ciphertext) of an intercepted ci-
phertext (or plaintext) which she did not obtain from the legitimate sender. If
the number of likely plaintexts (or ciphertexts) is small, such an attack may be
fatal for the cryptosystem.

• Partial Key Recovery: Eve is able to get some information on the key k (e.g.
some relations, some bits, . . .). An efficient partial key recovery is very unde-
sirable because it could be used to determine the remaining bits of the key.

• Global deduction: Eve finds an algorithm functionally equivalent to φ or ψ,
without knowing the actual value of the key k. For instance, a possibility of
global deduction is that an attack is able to recover the round subkeys but not
the key.

• Key recovery (Total break): Eve is able to recover (or reconstruct) the secret
key k ∈ K, thus reaching the highest goal of the attacker.

A modern cipher is considered totally secure if it can withstand all chosen plaintext
attacks, including distinguishing attack. It is only considered secure if it can with-
stand all chosen plaintext attacks, except possibly distinguishing attacks. However,
distinguishing attacks might be transformed into a key-recovery attack.

14

1.2. Block ciphers

The security of a cipher against the types of attack described above is in practice
measured by several additional parameters that are necessary:

• time complexity: it measures the computational processing required to perform
an attack, i.e. it is closely related to the input. Usually, the choice of the
computational unit is done to compare the attack with an exhaustive key search.

• data complexity: it is the number of data (like ciphertexts, (known/chosen)-
plaintext, . . .) required to perform an attack, according to a specific model.

• success probability: it measures the frequency at which the attack is successful
when repeated a certain number of times in a statistically independent way.

• memory complexity: it measures the amount of memory units necessary to store
pre-computed/obtained data necessary to perform the attack.

Usually, an attack is considered to be successful (and the attacked block cipher is
considered to be broken) if the time complexity is significantly smaller than 2` eval-
uations of the block ciphers, with K = (F2)`. A block cipher is considered to be
partially broken if some of the plaintext bits can be discovered in time faster than an
exhaustive search. Moreover, a block cipher can be completely characterized if, using
a fixed key k, the encryption via φk of all 2r plaintexts is available. This puts an upper
bound on the data complexity. Quoting NESSIE’s final security report [CGC03],
“A block cipher is considered secure if no attack requires both time and data com-
plexity significantly less than 2` and 2r, respectively.”

Exhaustive key search

One of the simplest way to attack a block cipher consists in trying one key after
the other until the right one is found. Typically, for a block cipher with key-size
` and a block-size r, and provided that a very small number of known plaintext-
ciphertext pairs (slightly more than

⌈
`
r

⌉
) are encrypted using the same key k, it is

possible to recover the key k by exhaustive search. In the worst case, this operation
has time complexity equal to 2` evaluations and an average time complexity of 2`−1.
Moreover, if the plaintext space is known to contain some redundancy, then one
can even consider a ciphertext-only exhaustive search. The success probability of an
exhaustive key search is equal to the fraction of the key space searched; for instance,
if one searches one tenth of the key space, then one has roughly a 10% probability to
succeed. Therefore, a fixed key of size ` defines an upper bound on the security of a
block cipher. Thus, for any secure block cipher, ` should be large enough to prevent
exhaustive key search attacks.

15

Chapter 1. Preliminaries and notation

As it is often difficult (or it may even be impossible) to exhibit an attack against
the full version of an iterative block cipher, another common mean to assess its
security consists in taking into account the maximal number of rounds for which an
attack is known. This can give some feeling about the security margin of such a block
cipher. For instance, we summarize in Section 3.2 the currently best known attacks
on various reduced-round versions of AES.

Remark 1.2.15. There exist attacks against block ciphers that can be applied without
attacking the internal structure of the cipher: the Black-box attacks. These are attacks
which treat the block cipher as a black box taking plaintexts and keys in input and
outputting ciphertexts; their complexity depends only on parameters like the key
length ` and the block length r of the block ciphers under consideration. Note that
these attacks include, for instance, the exhaustive key search.

1.3 Cryptographic hash functions

Cryptographic hash functions are a useful building block for several cryptographic
applications. The most important are the protection of information authentication
and digital signatures. Such functions are also used to construct pseudo-random
number generators. Hash functions appeared in cryptographic literature when it was
realized that the encryption of information is not sufficient to protect its authenticity.
They are functions that map (compress) an input of arbitrary length to a result
string with fixed length, the hashcode. If these mappings satisfy some additional
cryptographic conditions, they are a very powerful tool in the design of techniques to
protect the integrity of information.
The most commonly used hash functions are MD5 [Riv92], designed by Ronald Rivest,
and SHA-1 , designed by the National Security Agency (NSA). In practice, a hash
function is a fixed function that maps arbitrary strings into binary strings of fixed
length. In theory, we usually consider (keyed) hash functions, as in the following
definition:

Definition 1.3.1. A hash family is the tuple (M,Y ,K,H), where the following con-
ditions hold:

1. M is the set of possible messages;

2. Y is the set of possible hash values or authentication tags;

3. K is the key space (the finite set of all possible keys);

4. for any k ∈ K, there is a hash function hk ∈ H, were hk :M→ Y.

16

1.3. Cryptographic hash functions

In the previous definition, the set M could be finite or infinite but Y is always
a finite set. If M is a finite set, a hash function is sometimes called a compression
function and we will always assume that |M| ≥ |Y|. A pair (x, y) ∈ M× Y is said
to be a valid pair, under the key k, if hk(x) = y.
In some cryptographic application, it is desirable that the hash function is a one-way
function:

Definition 1.3.2. A Hash function h is one-way if, for random key k and an n-bit
string y, it is hard for the attacker presented with k,y to find x so that hk(x) = y.

Remark 1.3.3. The rigor of this definition is questioned and no one way functions has
been found.

If a hash function is to be considered secure, it should be the case that the fol-
lowing three problems are difficult to solve.
Preimage: given y ∈ Y , to find an x ∈M such that h(x) = y.
Second Preimage: given x ∈M, to find an x′ ∈M such that x′ 6= x and h(x′) = h(x).
Collision: to find x, x′ ∈M such that x′ 6= x and h(x′) = h(x).

It is easy to see that Collision resistance implies Second Preimage resistance.
The Second Preimage resistance and one-wayness are incomparable (the properties
do not follow from one another), although construction which are one-way but not
Second Preimage resistant are quite contrived. In practice, Collision resistance is the
strongest property of all three, hardest to satisfy and easiest to breach, and breaking
it is the goal of most attacks on hash functions.

Hash function based on a block cipher

Two arguments can be indicated for designers of cryptographically secure hash
functions to base their schemes on existing encryption algorithms. The first argu-
ment is the minimization of the design and implementation effort: hash functions
and block ciphers that are both efficient and secure are hard to design. Moreover,
existing software and hardware implementations can be reused, which will decrease
the cost. The main advantage is that the trust in existing encryption algorithms can
be transferred to a hash function. Moreover, a limited number of design principles
for encryption algorithms are also valid for hash functions. The main disadvantage of
this approach is that dedicated hash functions are likely to be more efficient. Finally
we note that block ciphers may exhibit some weaknesses that can be exploited only
if used in a hashing mode.

17

Chapter 1. Preliminaries and notation

1.4 Statistical tests

When a statistical test on data from a cryptographic algorithm is performed, we
wish to test whether the data “seem” random or not. It seems impossible to design
a test that gives decisive answer. However, there are many different properties of
randomness and non-randomness, and it is possible to design tests for these specific
properties, as we are going to explain in this section.

There are two basic types of generators used to produce random sequences: ran-
dom number generators and pseudo-random number generators. For cryptographic
applications, both types produce a stream of zeros and ones that may be divided
into sub-streams or blocks of random numbers. If a pseudo-random sequence is prop-
erly constructed, each value in the sequence is produced from the previous value via
transformations which appear to introduce additional randomness. A series of such
transformations can eliminate statistical autocorrelations between input and output.

Typically the random properties of binary sequences to be tested are the following:

• Uniformity: at any point in the generation of a sequence of bits, the occurrence
of a zero or one is equally likely, i.e., the probability of each is exactly 1/2. The
expected number of zeros (or ones) is n/2, where n is the sequence length.

• Scalability: Any test applicable to a sequence can also be applied to subse-
quences extracted at random. If a sequence is random, then any such extracted
subsequence should also be random. Hence, any extracted subsequence should
pass any test for randomness.

• Consistency: The behavior of a generator must be consistent across starting
values (seeds). It is inadequate to test a pseudo-random number generator
based on the output from a single seed, or a random number generators on the
basis of an output produced from a single physical output.

Although there are many tests for disproving the randomness of a sequence, no
specific finite set of tests is deemed “complete.” We focus on the statistical testing
that the NIST has conducted on the AES candidate algorithms to evaluate their
suitability as random number generators. The NIST Test Suite [NIS00] is a statis-
tical package consisting of 16 tests that were developed to test the randomness of
(arbitrarily long) binary sequences produced by either hardware or software based
cryptographic random or pseudorandom number generators. These tests focus on a
variety of different types of non-randomness that could exist in a sequence. We give
a sketch (see also [Sot98]) of the objective of sixteen such tests.

18

1.4. Statistical tests

1. The Frequency (Monobit) Test: it determines whether the number of ones and
zeros in a sequence are “approximately” the same as it would be expected for a
truly random sequence. All subsequent tests are conditioned on having passed
this first basic test.

2. Frequency Test within a Block: it determines whether the frequency of m-bit
blocks in a sequence appears as often as would be expected for a truly random
sequence; the frequency of ones in anm-bit block should be approximatelym/2.

3. The Runs Test: a run of length k consists of exactly k identical bits and is
bounded before and after with a bit of the opposite value. The purpose of
the runs test is to determine whether the number of runs of ones and zeros of
various lengths is as expected for a random sequence. In particular, this test
determines whether the oscillation between such zeros and ones is too fast or
too slow.

4. Test for the Longest-Run-of-Ones in a Block: it determines whether the distri-
bution of long runs of ones agrees with the theoretical probabilities. Note that
an irregularity in the expected length of the longest run of ones implies that
there is also an irregularity in the expected length of the longest run of zeros.
Therefore, only a test for ones is necessary.

5. The Binary Matrix Rank Test6: it determines whether the distribution of the
rank of (32× 32) bit matrices, constructed with bits coming from the sequence,
agrees with the theoretical probabilities.

6. The Discrete Fourier Transform (Spectral) Test: it determines whether the
spectral frequency of the binary sequence agrees with what would be expected
for a truly random sequence.

7. The Non-overlapping Template Matching Test: it determines whether the num-
ber of occurrences for a specified non-periodic template agrees with the number
expected for a truly random sequence.

8. The Overlapping Template Matching Test: it determines whether the number
of occurrences for a template of all ones agrees with what is expected for a truly
random sequence.

9. Maurer’s “Universal Statistical” Test: it determines whether a binary sequence
does not compress beyond what is expected of a truly random sequence.

6We will use a variation of this test in Chapter 5.

19

Chapter 1. Preliminaries and notation

10. The Lempel-Ziv Compression Test: the focus of this test is the number of cu-
mulatively distinct patterns (words) in the sequence. It determines how far
the tested sequence can be compressed with the Lempel-Ziv algorithm. The
sequence is considered to be non-random if it can be significantly compressed.
A random sequence will have a characteristic number of distinct patterns.

11. The Linear Complexity Test: it determines whether or not the sequence is com-
plex enough to be considered random.

12. The Serial Test: it determines whether the number of occurrences of the 2m

m-bit overlapping patterns is approximately the same as would be expected for
a random sequence. Random sequences have uniformity; that is, every m-bit
pattern has the same chance of appearing as every other m-bit pattern.

13. The Approximate Entropy Test: it compares the frequency of overlapping blocks
of two consecutive/adjacent lengths (m and m+ 1) against the expected result
for a normally distributed sequence. It determines whether a sequence appears
more regular than is expected from a truly random sequence.

14. The Cumulative Sums Test: it determines whether the maximum of the cumu-
lative sums in a sequence is too large or too small; indicative of too many ones
or zeros in the early (late) stages.

15. The Random Excursions Test: it examines the number of cycles within a se-
quence and determine whether the number of visits to a given state, [−4,−1]

and [1, 4], exceeds the expected for a truly random sequence.

16. The Random Excursions Variant Test: it determines if the total number of visits
to states between [−9,−1] and [1, 9] exceeds the expected for a truly random
sequence.

These tests may be useful as a first step in determining whether or not a generator is
suitable for a particular cryptographic application. However, no set of statistical tests
can absolutely certify a generator as appropriate for usage in a particular application,
i.e., statistical testing cannot serve as a substitute for cryptanalysis. In terms of
testing encryption algorithms, these two errors can be described as follows:

• Type I Error: The statistical test classifies a “good” encryption algorithm as
“bad”.

• Type II Error: The statistical test classifies a “bad” encryption algorithm as
“good”.

20

1.4. Statistical tests

Using the previous tests, the NIST analyzed nine different Categories of Data:

1. 128-Bit Key Avalanche;

2. Plaintext Avalanche;

3. Plaintext/Ciphertext Correlation;

4. Cipher Block Chaining Mode;

5. Random Plaintext/Random 128-Bit Keys;

6. Low Density Plaintext;

7. Low Density 128-Bit Keys;

8. High Density Plaintext;

9. High Density 128-Bit Keys;

Based on the version of the NIST statistical tests we are considering, each of
the AES candidates algorithms was evaluated [Sot98]. Those algorithms that did
not demonstrate deviation from randomness include CAST-256, DFC, E2, LOKI-97,
MAGENTA, MARS, Rijndael, SAFER+, and SERPENT. The remaining algorithms
(CRYPTON, DEAL, FROG, HPC, RC6 and TWOFISH) appeared to have displayed
deviation from randomness.

The results suggest that data flagged as non-random for the TWOFISH and RC6
algorithms should be treated as statistical anomalies. Similarly, due to the natural
filtering process for the random excursion test, small sample sizes may incorrectly
lead one to commit a type I error.

21

A description of AES, SERPENT and PRESENT

In this chapter we describe three well-known iterated (algebraic) block ciphers:
Rijndael, SERPENT and PRESENT. They belong to all the three classes of iterated
ciphers described in the previous chapter. In fact they satisfy both the SPN structure
(with a slight change in the last round), the “key-iterated block cipher” structure and
the “translation based” approach. SERPENT and PRESENT are so similar to AES
that people talk loosely of “AES-like ciphers”. In the following section we propose,
respectively, the encryption of Rijndael, SERPENT and PRESENT according to the
definition of “translation based” (Section 1.2.5).

Rijndael and SERPENT were designed as candidates for the Advanced Encryption
Standard (AES) competition. They were two of the five finalists (joint with MARS
[BCD+98], RC6 [RRY00], and Twofish [Sch98]) and were all felt to be secure. All the
AES candidates were evaluated for their suitability according to criteria as security,
cost, properties of the algorithm and the corresponding implementation. Security of
the proposed algorithms was claimed essential; in fact any algorithm found insecure
would not be considered any further. Cost refers to the computational efficiency (in
particular, speed and memory requirements) of various types of implementations, in-
cluding software, hardware and smart cards. Among other factors, algorithm and
implementation characteristics include flexibility and algorithm simplicity. We refer
the reader to Section 1.2.2 for a description of all these criteria.

Rijndael [DR98], designed by Daemen and Rijmen, was chosen to be the Ad-
vanced Encryption Standard (AES) because its combination of security, performance,
efficiency, implementability and flexibility was judged to be superior to the other fi-
nalists. The AES (Rijndael) is secure against all previously-known attacks. Various
aspects of its design incorporate specific features that help provide security against
specific attacks. For example, the use of the finite field inversion operation in the con-
struction of the S-box yields linear approximation and difference distribution tables
in which the entries are close to uniform. This provides security against differential
and linear attacks. The linear transformation, makes it impossible to find differential
and linear attacks that involve few active S-boxes.

23

Chapter 2. A description of AES, SERPENT and PRESENT

There are three variants of the AES: AES-128, AES-192, AES-256. They are similar,
but different in some details:

• AES-128 has a 128-bit key and uses 10 rounds,

• AES-192 has a 192-bit key and uses 12 rounds,

• AES-256 has a 256-bit key and uses 14 rounds.

There are (non-practical) attacks on the full AES-192 and the full AES-256, but
there are apparently no known attacks on (the full) AES-128 (faster than exhaustive
search). We will mainly consider only the AES-128 and so, from now, we will write
AES instead of Rijndael cryptosystem with a 128-bit key. The best attacks on the
AES are applied to small scale variants of the cipher in which the number of rounds
(or the cipher size) is reduced (see Section 2.1.4 and Section 3.2).

SERPENT [BAK98] was designed by Ross Anderson, Eli Biham and Lars Knud-
sen. It was widely viewed as taking a more conservative approach to security than the
other AES finalists, opting for a larger security margin. For example, the designers
deemed 16 rounds to be sufficient against known attacks, but they specified 32 rounds
as insurance against possible future discoveries in cryptanalysis. Initially Anderson,
Biham and Knudsen decided to use S-boxes from DES in a new structure optimized
for efficient implementation on modern processor, designing an algorithm (known as
Serpent 0) that was as fast as DES and apparently more secure than three key DES
(triple DES). Then they selected new (presumably stronger S-boxes) and changed the
key schedule slightly, obtaining what now is called SERPENT.

PRESENT [ABKL+07] was proposed by Bogdanov et al. at CHES 2007 conference
as an ultra-lightweight block cipher, suitable for RFIDs and similar devices. The
authors claim that, besides security and efficient implementation, the main goal when
designed PRESENT was simplicity (see Section 1.2.2). Moreover, another goal that
they had in mind was to design an ultra-lightweight block cipher that offers a level
of security commensurate with a 64-bit block size and an 80-bit key.

24

2.1. The AES cryptosystem

2.1 The AES cryptosystem

Let M = K = V = (F2)r with r = 128 and let x ∈ M be our plaintext, k ∈ K
our random key and y = φk(x) the corresponding ciphertext. Before describing the
individual components γ, λ and σk of the round function, we recall (see Section
1.1) that it is possible to identify (F2)8 with the field F28 , via the quotient map
F28 ↔ F2[x]/〈m〉, where m ∈ F2[x] is an irreducible polynomial such that deg(m) = 8.
The irreducible (but not primitive) AES polynomial is m = x8 + x4 + x3 + x+ 1.

It is also useful to recall a particular concept that is inherent in the structure of
the AES: the State. Internally, the AES algorithm’s operations are performed on a
two-dimensional array of bytes, called the State. It consists of 4 rows and 4 columns
and each element of this matrix is one byte (i.e. an element of F28 = F256).
At the start of the encryption process, the input x (the plaintext) is a vector in V

and it is first changed into a 16-byte vector:

ν : (F2)128 → (F256)16, x 7→ y.

Then its 16 bytes are “rolled down” to the State.

Figure 2.1: Wrapping and unwrapping the State

Each round performs its operations on the State and after the last round the State
is “unwrapped” and “fills up” the output vector.

A preliminary translation σk(0) , where k(0) ∈ (F2)r is the first round key, is applied
to the plaintext to form the input to the (Round 1). It means that we can consider
a preliminary round (Round 0) such that γ = 1V and λ = 1V (see Remark 1.2.7).
In order to obtain the ciphertext, other N = 10 rounds follow.

25

Chapter 2. A description of AES, SERPENT and PRESENT

Let 1 ≤ ρ ≤ N − 1. A typical round (Round ρ) can be written as the composition1

γλσk(ρ) , where

• the parallel map γ is called SubBytes and it works in parallel to each of the 16

bytes of the data;

• the affine map λ is the composition of two operations known as ShiftRows and
MixColumns;

• σk(ρ) is the translation with the session key k(ρ) (this operation is called
AddRoundKey).

The last round (Round N) is atypical and is characterized by γλ̄σk(N) where the
affine map λ̄ is only made by the ShiftRows operation. So we obtain our ciphertext
y = φk(x).
In the following, we analyze the structure of each component of the round function.

2.1.1 SubBytes

The vector space V is the direct sum V = V1 ⊕ · · · ⊕ V16 where each Vi = (F2)8

(1 ≤ i ≤ 16). Any parallel map γ ∈ Sym(V) acts on an element v ∈ V as
vγ = v1γ1⊕ . . .⊕v16γ16, where vi ∈ Vi and γi ∈ Sym(Vi). The SubBytes operation γ is
composed by two transformations: the inversion in F28 and an affine transformation.
The inversion operation is the patched inversion2 in F28 (i.e. ϕ(x) = x254).
The affine transformation over F2 consists of a linear mapping ξ : (F2)8 → (F2)8,
specified by an 8× 8 circulant matrix over F2, plus a translation. The result of inver-
sion is regarded as a vector in (F2)8 and the output is given by y = ξ(x), where

y7

y6

y5

y4

y3

y2

y1

y0


=



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





x7

x6

x5

x4

x3

x2

x1

x0


+



0

1

1

0

0

0

1

1



1Note that the order of the operation is exactly: γ, λ, and then σk.
2Since the AES consists of 10 rounds and each round requires 16 S-box computations, the prob-

ability of there being no 0-inversions during an encryption is (255/256)160 ≈ 0.53.

26

2.1. The AES cryptosystem

Remark 2.1.1. The inversion resists standard cryptanalysis, while the other compo-
nents in the S-box are meant to disguise its algebraic simplicity and to provide a
complicated algebraic expression if combined with the inverse mapping. This should
provide resistance to interpolation and similar attacks. Furthermore, the S-box con-
stants was chosen is such a way that the S-box has no fixed points and no opposite
fixed points. (See Section 3.5)

2.1.2 Mixing Layer

The map λ : V → V is a composition of two linear operations: ShiftRows and
MixColumns. The ShiftRows operation is performed as follows. Any byte (an element
of F28) in row i of the State, where 0 ≤ i ≤ 3, is cyclically shifted (towards left) by i
positions, as follows:

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

→ ShiftRows →

s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11

In other words, we can describe the ShiftRows operation by the map

sh : (F28)16 → (F28)16

(s0, s1, · · · , s15) 7→ (s0, s5, s10, s15, s4, s9, s14, s3, s8, s13, s2, s7, s12, s1, s6, s11).

We can also represent the ShiftRows operation with the following 16 × 16 block
diagonal matrix

S =


I 0 0 0

0 R 0 0

0 0 R2 0

0 0 0 R3

 R =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


where the matrix R is a permutation matrix over F28 that represents the shift of one
row by one position.

In order to describe the MixColumns operation, each column of the State can be
treated as a four-term polynomial in F256[z]. Let c(z) be one such polynomial. Then
each column is replaced by the result of the multiplication in F256[z]/(z4 + 1) by a(z),
c 7→ c · a mod (z4 + 1),

(c1, c2, c3, c4) −→ (c1 · a, c2 · a, c3 · a, c3 · a) .

27

Chapter 2. A description of AES, SERPENT and PRESENT

Note that a(z) is invertible in F256[z]/(z4 + 1). On the other hand, we can see the
MixColumns operation as 4-block diagonal matrix, each blocks the same MDS matrix
(i.e. all minors are non-zero):

z z + 1 1 1

1 z z + 1 1

1 1 z z + 1

z + 1 1 1 z


Remark 2.1.2. This MDS property is used to ensure that the number of active S-
boxes involved in a differential or linear attack increases rapidly, and the security of
the AES against these particular attacks can be established.

Obviously, we can also see the whole Mixing Layer (λ linear operation) as a matrix
M. We observe that the order of this matrix is quite small, i.e. M8 = 1. (Also, both
the order of ShiftRows and MixColumns are equal to 4.)

2.1.3 Key schedule

We need N + 1 = 11 round keys, each of which consists of 16 bytes. The key
schedule algorithm is word-oriented (a word consists of 4 bytes). Therefore each
round key is comprised of four words. In the following figure we summarize the
technique to create the round key k(ρ+1), starting from the round key k(ρ).

Figure 2.2: The AES Key Schedule

The non-linear function Fi consists of applying the S-box to all components of the
input, a rotation of bytes and the addition of a round-specific constant. The reader
can find details in [DR98].

28

2.1. The AES cryptosystem

2.1.4 Small scale variants of the AES

For most methods of cryptanalysis it is quite straightforward to perform experi-
ments on reduced versions of the cipher to understand how the attack might perform.
For new algebraic methods (see Chapter 3.3) it is difficult to design small scale ver-
sions that can replicate the main cryptographic and algebraic properties of the cipher.
Still, experiments on small versions can give an idea about the behavior of algebraic
cryptanalysis on block ciphers.

A family of small scale variants of the AES was proposed by Cid, Murphy and
Robshaw in [CMR05]. They define two sets of small scale variants of the AES; they
differ in the form of the final round. These two sets of variants will be denoted
by SR(N, r, c, e) and SR′(N, r, c, e). Both SR(N, r, c, e) and SR′(N, r, c, e) have the
following parameters:

• N is the number of (encryption) rounds, 1 ≤ N ≤ 10;

• r is the number of rows in the rectangular arrangement of the input, r = 1, 2, 4;

• c is the number of columns in the rectangular arrangement of the input,
c = 1, 2, 4;

• e is the size (in bits) of a word, e = 4, 8.

Both SR(N, r, c, e) and SR′(N, r, c, e) have N rounds and a block size of rce bits,
where a data block is viewed as an array of (r × c) words of e bits. The full AES is
equivalent to SR′(10, 4, 4, 8).

A round of the small scale variants of the AES consists of small scale variants of
these operations. For the last round of the AES, the operation MixColumns is omit-
ted. Similarly, for SR′(N, r, c, e) the final round does not use MixColumns, whereas
MixColumns is retained for the final round of SR(N, r, c, e). The AES is thus identical
to SR′(10, 4, 4, 8).
Note that the two ciphertexts produced by SR(N, r, c, e) and SR′(N, r, c, e) when en-
crypting the same plaintext under the same key are related by an affine mapping. A
solution of the system of equations for one cipher would immediately give a solution
for the other and so, without loss of generality, we can only consider SR(N, r, c, e).

29

Chapter 2. A description of AES, SERPENT and PRESENT

2.2 The SERPENT cryptosystem

SERPENT is a translation-based cryptosystem, like AES.
Let M = V = (F2)r, with r = 128. We consider K = (F2)`, with the fixed length
` = 128, although the key is designed with variable length.
The encryption φ proceeds by N = 32 similar rounds and it works as follows:

• a preliminary permutation is applied π : V → V (this is not used for security,
rather to ease the implementation);

• there is a preliminary translation with the first round key;

• N − 1 rounds with the same structure are applied, but using a different permu-
tation, each composed of a key translation σk, a parallel S-box γ and a linear
mixing-layer λ (we denote the round ρ by Round ρ, with ρ = 1, ..., 31);

• the last round (Round 32) follows and it consists of the composition γλσk where
λ = 1V ;

• a final permutation π−1 : V → V is performed.

The decryption process is easily obtained by inverting every step of the encryp-
tion, using the inverse of the S-boxes, the inverse of the mixing-layer and the reverse
order of the round keys.

2.2.1 A SERPENT round

Let ρ be a natural number such that 1 ≤ ρ ≤ 31. In order to describe a typical
round (Round ρ) we have to specify how the components γ, λ and σk are applied. We
note that, after the permutation π : V → V , we perform a preliminary translation
σk(0) , where k(0) ∈ (F2)r is the first round key.
Let V = V1⊕· · ·⊕V32, where , for any 1 ≤ j ≤ 32, each Vj = (F2)4. Any γ ∈ Sym(V)

acts as vγ = v1γ1 ⊕ . . . ⊕ v32γ32, where vj ∈ Vj and γj ∈ Sym(Vj). We have to
characterize each γj (i.e. we have to construct each S-box).

The S-boxes of SERPENT were built “ad hoc” starting from the 8 fixed S-boxes
of DES (see Appendix) as follows. They were generated using a matrix with 32 arrays
each with 16 entries. The matrix was initialized with the 32 rows of the DES S-boxes
and transformed by swapping the entries in the r-th array depending both on the
value of the entries in the (r+ 1)-st array and on an initial string representing a key.
If the resulting array had some desired (differential and linear) properties, the array
was saved as a SERPENT S-box. The procedure was repeated until the eight S-boxes
S1, . . . , S8 have been generated.

30

2.2. The SERPENT cryptosystem

To each vj we apply the same Si mod 8 S-box, so that Si mod 8(vj) lies in (F2)4.
That is, γ1 = γ2 = · · · = γ32 = Si mod 8.

Then the linear transformation λ (described in the Subsection 2.2.2) and a final
translation σk(ρ) are applied.

The last round (Round 32) is only slightly different. The only difference with a
typical round is the replacing of a linear transformation λ by 1V .

π(plaintext)

. . .

π−1(ciphertext)

k(0)

k(1)

k(31)

k(32)

add Round Key

parallel S-box

MixingLayer

add Round key

parallel S-box

MixingLayer

add Round key

parallel S-box

add Round key

2.2.2 The Linear transformation

The linear transformation occurs in each typical round (1 ≤ i ≤ 31) and works on
v ∈ V , where V is a direct sum V = V1 ⊕ · · · ⊕ V4 with Vj = (F2)32 (1 ≤ j ≤ 4), in
such a way that the input vector at the i-th round is v = v1 ⊕ v2 ⊕ v3 ⊕ v4.
Starting by the initial State (v1, v2, v3, v4), λ the linear transformation is character-
ized by the following operations3:

• we sum to v2 the rotat13(v1) and rotat3(v3), obtaining State 1:

(v1
1, v

1
2, v

1
3, v

1
4) = (rotat13(v1), v2 + rotat13(v1) + rotat3(v3), rotat3(v3), v4);

• we sum to v1
4 the shift3(v1

1) and v1
3, obtaining State 2:

(v2
1, v

2
2, v

2
3, v

2
4) = (v1

1, v
1
2, v

1
3, shift3(v1

1) + v1
3 + v1

4);

3rotat denotes a rotation of the bits and shift denotes a bit shift toward the right

31

Chapter 2. A description of AES, SERPENT and PRESENT

• we sum to v2
1 the rotat1(v2

2) and rotat7(v2
4), obtaining State 3:

(v3
1, v

3
2, v

3
3, v

3
4) = (v2

1 + rotat1(v2
2) + rotat7(v2

4), rotat1(v2
2), v2

3, rotat7(v2
4));

• we sum to v3
3 the shift7(v3

2) and v3
4, obtaining State 4:

(v4
1, v

4
2, v

4
3, v

4
4) = (v3

1, v
2
2, shift7(v3

2) + v3
3 + v3

4, v
3
4);

• we consider the rotat5(v1) and the rotat22(v3), obtaining State 5:

(v5
1, v

5
2, v

5
3, v

5
4) = (rotat5(v4

1), v4
2, rotat22(v4

3), v4
4).

Figure 2.3: Linear transformation of SERPENT

2.2.3 The SERPENT’s key schedule

The round keys of the SERPENT cipher are constructed starting from suitable
“prekeys” (w1, . . . , w131) (for details about the “prekeys” construction, see [BAK98]).
Then the authors use the S-boxes to transform the prekeys wi into words ki of the
round key by dividing the vector of prekeys into 4 section and transforming the i-th
words of each of the 4 sections using S(r+3−i) mod r. In case r = 32, we have

{k0, k33, k66, k99} = S3(w0, w33, w66, w99)

{k1, k34, k67, k100} = S2(w1, w34, w67, w100)
...

{k31, k64, k97, k130} = S4(w31, w64, w97, w130)

{k32, k65, k98, k131} = S3(w32, w65, w98, w131).

Then, the 32-bit values kj are renumbered as 128-bit subkeys Ki, (0 ≤ i ≤ r), as
follows Ki = {k4i, k4i+1, k4i+2, k4i+3}.

32

2.3. PRESENT: an ultra-lightweight block cipher

2.3 PRESENT: an ultra-lightweight block cipher

PRESENT is an iterated block cipher that consists of N = 31 rounds.
LetM = V = (F2)r with r = 64. Let K = (F2)`, where ` may be equal to 80 or 128.
We consider only the PRESENT’s version such that K = (F2)80, since its authors
recommend it in order to have a good performance.
We are going to describe how the round function γλσk(ρ) (in the ρ-th typical round)
is performed.
As in the AES and SERPENT cryptosystems, the encryption process starts with
a preliminary round (Round 0) that consists of a parallel map γ = 1V , a linear
transformation λ = 1V and the translation σk(0) , where k(0) ∈ (F2)r is the first round
key. A typical round consists of the non-linear operation, called sBoxLayer, the linear
transformation, known as pLayer and the sum with the round key.

2.3.1 sBoxLayer

The parallel map γ ∈ Sym(V) used in PRESENT acts as vγ = v1γ1⊕ . . .⊕v16γ16,
where each vi ∈ (F2)4 and γi ∈ Sym((F2)4) (1 ≤ i ≤ 16). The action of any brick
γi : (F2)4 → (F2)4 is given by the following table, using an hexadecimal notation:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

γ[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.3.2 pLayer

The affine map λ : V → V is a bit permutation as given by the following table,
where the bit i of the intermediate state is moved to the bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

33

Chapter 2. A description of AES, SERPENT and PRESENT

The key schedule

PRESENT supports keys of either 80 or 128 bits. However, we focus on the
version with 80-bit keys. A further useful key is stored in key register K and it is
represented as K79K78 . . . K0. The ρ-th round key consists of the 64 leftmost bits of
the current content of the key register K, i.e. k(ρ) = K63K62 . . . K0 = K79K78 . . . K16.
After extracting the round key k(ρ), the key register K = K79K78 . . . k0 has to be
update. The updating procedure occurs in this way:

1. [K79K78 . . . K1K0] = [K18K17 . . . K20K19]

2. [K79K78K77K76] = γi[K79K78K77K76]

3. [K19K18K17K16K15] = [K19K18K17K16K15]⊕ cr

where cr is a round-counter. Thus, the key register is rotated by 61 bit positions
to the left, the left-most four bits are passed through the present S-box, and the
round-counter value ρ is exclusive xored with bits K19K18K17K16K15 of K with the
least significant bit of cr on the right.

34

On the AES cryptanalysis

In this chapter we give an overview of the known attacks, especially when applied
to the AES cryptosystem. In Section 3.1 we recall that AES is optimized to resist
all known statistical attack. In Section 3.2 we describe some of the structural attacks
that are relevant in the cryptanalysis of reduced variants of AES-128. In Section
3.3, Section 3.4, and Section 3.5, we see how the algebraic attacks could be useful
for a cryptanalyst and we point out some of the alternative representations proposed
for the AES. In particular, we explain the BES representation and the Dual Cipher.
Finally, in Section 3.6 we give a sketch of an approach based on changing the S-boxes.

3.1 Statistical attacks

Differential and Linear cryptanalysis are two conventional methods of attack
against block ciphers. They attempt to construct statistical patterns via many en-
cryptions, in order to distinguish the cipher from a random permutation and get
the key. In the Differential cryptanalysis, the statistical pattern depends on bitwise
differences, instead in Linear cryptanalysis it depends on the correlation among bits.

Linear cryptanalysis, described by Matsui in [Mat93], is a known-plaintext attack.
It requires to find a set of linear approximations of the S-boxes that can be used to
derive a linear approximation of the whole cipher. The S-boxes used in the approx-
imations are called active S-boxes. Suppose that it is possible to find a probabilistic
linear relationship between a subset of plaintext-bits and a subset of state-bits im-
mediately preceding the substitutions performed in the last round. We assume that
Eve has a large number of (plaintext, ciphertext) pairs encrypted using the same un-
known key k. For each of the (plaintext, ciphertext) pairs, we will begin to decrypt
the ciphertext, using all possible candidate keys for the last round of the cipher. For
each candidate pair, we compute the values, of the relevant state-bits involved in the
linear relationship and determine if the above mentioned linear relationship holds.
Whenever it does, we increment a counter corresponding to a particular “candidate
key”. At the end of this process, we hope that the candidate key with a frequency
count furthest from half times the number of pairs contains the correct values for
these key bits.

35

Chapter 3. On the AES cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack and was described by Biham
and Shamir in [BS93]. The main difference from the linear cryptanalysis is that it
involves comparing the XOR of two inputs to the XOR of the corresponding two
outputs. Eve encrypts pairs of plaintexts and studies the propagation of differences
between inputs of rounds of the cipher. We assume that Eve has a large number
of tuples (P, P ′, Q,Q′), where the value P ⊕ P ′ is fixed. The plaintext elements P
and P ′ are encrypted using the same unknown key yielding the cyphertexts Q and
Q′ respectively. For each of these tuples, we will begin to decrypt the corresponding
ciphertexts using all possible candidate keys for the last round of the cipher. For each
candidate keys, we compute the values of certain state bits and determine if their
XOR has a certain value. Whenever it does, we increment a counter corresponding to
the particular candidate key. At the end of this process, we hope that the candidate
key having the highest frequency count contains the correct values for these bits.
The Differential cryptanalysis is thwarted by

• careful S-box construction: the probability p of a given bitwise non-zero differ-
ence propagation across an S-box is < 2−6, for DES;

• carefully designed diffusion layer.

The total differential probability behaves as pn; attack requirements are proportional
to 1/pn.

The AES cryptosystem is very resistant to these statistical attacks. For differential
and linear cryptanalysis, attacks over 4 rounds of the AES require at least 25 active
S-boxes. More careful analysis takes account of additional complicated phenomena.
Exploiting differential and linear techniques requires a massive number of (plaintext,
ciphertext) pairs and the complexity usually grows exponentially with the number
of rounds, ensuring that such attacks rapidly become impractical, and so a different
cryptanalytic approach is required.

3.1.1 Distinguishing Attacks

Statistical tools have usually been used with cryptanalytic attacks against block
ciphers. Statistical hypothesis testing is a formal way for distinguishing between
two probability distributions. Starting from some samples coming from these two
distributions, it is possible to compute the probability that the two distributions
differ. In particular, a distinguishing attack on a cipher C relates to the formal model
of security, where an adversary can distinguish between the output of C (with a fixed
key) and the output of a random process, with significant certainty.

Distinguishing attack against block ciphers aim at determining whether a permu-
tation corresponds to a permutation chosen uniformly at random from the set of all

36

3.2. Structural attacks

permutations or one of the permutations specified by a secret key. Of course, there
is always a distinguishing attack against any algorithmic cipher, since it must have
a finite key, and so brute-force key enumeration will yield a distinguishing attack of
complexity 2`−1, where ` is the key length. Being able to identify some distinguishing
characteristic of the output might lead to an attack that reveals information about
the key of the cipher. Any such attack against an iterated block cipher is a serious
threat, since it can usually be transformed into a key-recovery attack, for example by
combining it with an exhaustive search for the last round key.

Let x1, . . . , xn be some plaintexts, let k be a chosen key. We denote by π any
random permutation and by φk the encryption function for the key k; we have to
consider the following situation:

φ

?

xi

?
yi = φk(xi)

k - π

?

xi

?
ȳi = π(xi)

We have to provide an algorithm to see that the ciphertexts y1, . . . , yn do not come
from π.

As of now, the full version1 of the AES-128 is considered very secure, since there
is no successful attack against it, not even a statistical distinguishing attack.

3.2 Structural attacks

The AES is optimized against known statistical attacks. However, its structure
can be used to carry out some innovative analysis. Such attacks tend to have a similar
form:

• they identify a property that holds for a few rounds with a good probability;

• they use special techniques to extend the attack to more round.

Well-known examples of structural attacks are Square Attack, Impossible Differen-
tials, Boomerang Attacks, Related Key and Collision Attacks (and their variants).

1Reduced versions of the AES-128 have been broken, but these attacks are far from being appli-
cable to the full version, since they would require more time than a brute force key check.

37

Chapter 3. On the AES cryptanalysis

The following table summarizes the more successful attacks on reduced versions of
the AES cryptosystem:

Key Rounds Texts Time Type Reference

128 5 211 240 Square attack [DR98]
128 5 229.5 231 Impossible diff. [BK00]
128 5 239 239 Boomerang attack [Wag99]
128 6 232 272 Square attack [DR98]
128 6 234.6 244 Partial Sum [FKL+00]
128 6 291.5 2122 Impossible diff. [CKK+01]
128 6 271 271 Boomerang attack [Wag99]
128 7 2128 − 2119 2120 Partial Sum [FKL+00]
128 7 232 2128 Collision [GM00]
192 7 292 2186 Impossible diff. [Pha04]
192 8 2127 2188 Partial Sum [FKL+00]
192 10 2124 2183 (Related-key) Rectangle [BDK05]
192 12 2123 2176 (Related-key) Ampl. Boomerang [BK09]
256 7 292.5 2250.5 Impossible diff. [Pha04]
256 8 232 2194 Partial Sum [FKL+00]
256 9 285 2126 Partial Sum [FKL+00]
256 10 2114 2173 (Related-key) Rectangle [BDK05]
256 14 2119 2119 (Related-key) Boomerang [BK09]

3.2.1 Square attack

This is a chosen-plaintext attack that works on any cipher with a round structure
similar to that of AES. It was first described in the paper presenting a predecessor of
AES, the block cipher Square [DKR97]. For this reason, it is usually called “Square”
attack. Other names for this attack are Saturation attack and Integral attack or
Structural attack. The original Square attack is able to break reduced variants of
AES up to 6 or 7 rounds faster than exhaustive key search. In 2000 Ferguson et al.
[FKL+00] proposed some optimizations that reduce the work factor of the attack. In
this way, this attack can break up to 9-round of the AES-256 keys with 277 plaintexts
under 256 related keys and 2224 encryptions.

In order to describe the 6-round Square Attack, we first explain the basic attack
on 4 rounds and then we will show how Deamen and Rijmen extended it to the 5-th
and the 6-th rounds in their original proposal [DR98]. This attack is independent of
the specific choices of SubBytes, the multiplication polynomial of MixColumns and the
Key Schedule and works against all block sizes and key sizes.

38

3.2. Structural attacks

Consider a set in which only one byte is active, that is, we change the value of
one bytes only. We can see the following situation

• MixColumns of the 1st round converts the active byte to a complete column of
active bytes.

Figure 3.1: Square attack, first round

• The four active bytes of this column are spread over four distinct columns by
ShiftRows of the 2nd round.

• MixColumns of the 2nd round subsequently converts this to 4 columns of only
active bytes.

Figure 3.2: Square Attack, second round

• Although at the end of the second round all bytes potentially change, we are
still able to recover the first byte by solving a linear system. This is not possible
any more after the input of MixColumns of the 3rd round.

Figure 3.3: Square Attack, third round

39

Chapter 3. On the AES cryptanalysis

We use m(ρ), b(ρ), and t(ρ) to refer to intermediate text values used in round ρ

after the MixColumns, key addition, and ShiftRows operations, respectively. We write
k(ρ) for the subkey in round ρ , and k(ρ)′ for an equivalent subkey value that may be
xored into the state before (instead of after) the MixColumns operation in round ρ .
The idea is to choose a set of plaintexts that results in a set at the output of the 1st
round with a single active S-box. This requires the assumption of values of four bytes
of the Round Key that is applied before the first round.
If the intermediate state after MixColumns of the first round has only a single active
byte, this is also the case for the input of the second round. This imposes the following
conditions on a column of 4 input bytes of MixColumns of the second round: one
particular linear combination of these bytes must range over all 256 possible values
(active) while 3 other particular linear combinations must be constant for all 256

states. This imposes identical conditions on 4 bytes, in different positions at the
input of ShiftRows of the first round. If the corresponding bytes of the first round key
are known, these conditions can be converted to conditions on 4 plaintext bytes.
Now we consider a set of 232 plaintexts, such that one column of bytes at the input
of MixColumns of the first round ranges over all possible values and all other bytes
are constant. Now, an assumption is made for the value of the 4 bytes of the relevant
bytes of the first Round Key. From the set of 232 available plaintexts, a set of 256

plaintexts can be selected that result in a set at the input of round 2. Now the 4-
round attack can be performed.
For the given key assumption, the attack can be repeated for several plaintext sets.
If the byte values of the last Round Key are not consistent, the initial assumption
must have been wrong. A correct assumption for the 32 bytes of the first Round Key
will result in the swift and consistent recuperation of the last Round Key.

3.2.2 Partial Sum

The attack of previous section on 4 rounds of AES can be improved. Instead of
guessing four bytes of k(0) we simply use all 232 plaintexts.
For any value of the first round key, these encryptions consist of 224 groups of 28

encryptions that vary only in a single byte of the output of the MixColumns operation
at first round. All we have to do is to guess the five key bytes at the end of the
cipher, do a partial decrypt to a single byte of b(4), sum this value over all the 232

encryptions, and check for a zero result. Compared to the original version, we guess
only 40 bits of key instead of 72. On the other hand, we have to do 224 times as much
work for each guess. All in all, this improvement reduces the workload by a factor of
28, although it needs about 6 · 232 plaintexts to provide enough sets of 232 plaintexts
to uniquely identify the proper value for the five key bytes.

40

3.2. Structural attacks

We will now look at this attack in more detail.
We have 232 ciphertexts. We guess five key bytes, do a partial decryption from each
of the ciphertexts to a single byte in b(4), and sum this byte over all ciphertexts.
Consider this partial decryption. From any ciphertext, we use four ciphertext bytes.
Each of these is xored with a key byte. We then apply the inverse S-box to each byte,
and multiply each with an appropriate factor from the inverse MDS matrix. The four
bytes are then xored together, a fifth key byte is xored into the result, the inverse
S-box is applied, and the resulting value is summed over all ciphertexts.
Let ci,j be the j-th byte of the i−th ciphertext. (We leave out the i subscript if we
are not talking about any particular ciphertext.) For simplicity we will number the
four bytes of each ciphertext that we use from 0 to 3.
Let k0, . . . , k4 denote the five key bytes that we are guessing. We want to compute
the following∑

i

S−1[S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]⊕ k4]

where S0, . . . , S3 are bijective S-boxes, each of which consists of an inverse AES S-
box followed by a multiplication by a field element from the inverse MDS matrix.
Given 232 ciphertexts and 240 possible key guesses, we have to sum 272 different values,
which corresponds roughly in amount of work to doing about 264 trial encryptions.
We can organize this more efficiently in the following manner. For each k, we associate
a “partial sum” xk to each ciphertext c, defined as follows:

xk :=
k∑
j=0

Sj[cj ⊕ kj]

This gives us a map (c0, c1, c2, c3) 7→ (xk, ck+1, . . . , c3) that we can apply to each ci-
phertext if we know k0, . . . , kk.
We start out with a list of 232 ciphertexts. We guess k0 and k1 and compute how often
each triple (x1, c2, c3) occurs in the list. That is, for each i, we compute the three-byte
value (S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1], ci,2, ci3) as a function of the i-th ciphertext and the
guessed key material, and we count how many times each three-byte value appears
during this computation. As there are only 224 possible values for three bytes, we do
not have to list all (x1, c2, c3) values; rather, we count how often each triple occurs.
We then guess k2 and compute how often each tuple (x2, c3) occurs; and guess k3

and compute how often each value of x3 occurs. Finally, we guess k4 and compute
the desired sum. Because all sums are taken using the XOR operation (and because
z ⊕ z = 0 for all z), it suffices to only count modulo two. Thus, a single bit suffices
for each count, and so the space requirement for the 224 counters is just 224 bits.

41

Chapter 3. On the AES cryptanalysis

How much work has this been? In the first phase we guessed 16 bits and processed
232 ciphertexts, so this phase costs 248 overall. In the next phase, we guessed a total
of 24 bits but we only had to process 224 triples, so this costs 248 as well. This holds
similarly for each of the phases. In total, the entire computation requires the equiv-
alent of about 248 evaluations of equation 1, or about 250 S-box applications.
This is the amount of work required for a single structure of 232 ciphertexts. The first
structure already weeds out the overwhelming majority of the wrong key guesses, but
we still have to do the first steps of our partial sum computation for each of the six
structures that we use. The total number of S-box lookups is thus about 252.
Using our earlier rough equivalence of 28 S-box applications to a trial encryption with
a new key, the 252 S-box applications are comparable to 244 trial encryptions. This is
a significant improvement over the earlier 272 work factor.

Remark 3.2.1. We can extend the previous approach to the 7-round version of this
attack. To express a single byte of b(4) in the key and the ciphertext, we get a formula
similar to equation 1 but with three levels, 16 ciphertext bytes, and 21 key bytes. The
partial sum technique is only helpful during the last part of the computation as it
only saves work if there are more ciphertexts than possible values for the intermediate
result. With 232 plaintext/ciphertext pairs in a structure, these techniques will not
help until the very last part of the computation.

3.2.3 Impossible Differentials

There exists an impossible differential attack on 5 rounds [BK00], requiring 229.5

chosen plaintext, 231 encryptions, 242 bytes of memory and 226 time for pre-computation.
This result was improved and lead to an attack on a 6 round version [CKK+01].

3.2.4 Collision Attacks

This attack has been introduced by Gilbert and Minier in [GM00] and is still the
best attack in the sense that it can break 7 rounds of AES-128, AES-192 and AES-
256. For AES-128 the authors claim that the complexity of the attack is marginally
lower than the complexity of an exhaustive key search.

3.2.5 Boomerang attack

The Boomerang attack is an “adaptive chosen-plaintext” and “adaptive chosen-
ciphertext” attack (see Section 1.2.3) and was introduced by Wagner in [Wag99].
This attack is based on two differentials. The main problem consists of finding “good”
differentials. Suppose we have a block cipher φ : {0, 1}r ×{0, 1}` → {0, 1}r for which

42

3.2. Structural attacks

we know that an input difference α induces an output difference β with probability
p. We use this property to retrieve the round key both in the cipher itself, or if we
are dealing with part of the cipher, in the rounds before and after the part for which
we have a differential. This kind of work is less effective against ciphers where the
probability of the next differential drops very fast with the number of rounds: AES
and SERPENT are such two examples. In the AES cryptosystem there are 1-round
differentials with probability 2−7 and 2-round differentials with probability 2−35. The
probability of the best differential drops faster than exponentially with the number
of rounds. In particular, it can be shown that the best 4-round differential for AES
has probability no more than 2−96.

Sketch of the attack

Let us assume that the encryption function φ is a composition of two parts: φ0

and φ1. Suppose to have a good differential in φ0 : α → β with probability p and
another good differential in φ1 : γ → δ with probability q.
As mentioned before, it is easy to find such short differentials (for parts of the cipher),
but we need to find long differentials with good probability. The question is the
following: how to combine these two differentials to mount an attack against the full
cipher φ?
Let us examine the encryption of the plaintexts P1 and P2 = P1 + α through φ0.
Starting from the differential we have that φ0(P1) + φ0(P2) = β with probability p.
The corresponding ciphertexts are C1 = φ1(φ0(P1)) and C2 = φ1(φ0(P2)).
Now we compute C1 +δ = C3 and C2 +δ = C4. When we partially decrypt the values
of C1 and C3 though φ1, we know that

φ−1
1 (C1) + φ−1

1 (C3) = γ

with probability q. The same holds for C2 and C4:

φ−1
1 (C2) + φ−1

1 (C4) = γ.

Since φ0(P1) = φ−1
1 (C1) and φ0(P2) = φ−1

1 (C2), using the previous equalities, we have

φ0(P1) + φ−1
1 (C3) = φ0(P2) + φ−1

1 (C4)

φ0(P1) + φ0(P2) = φ−1
1 (C3) + φ−1

1 (C4)

β = φ−1
1 (C3) + φ−1

1 (C4)

Hence, if we continue the decryption process, we get P3 +P4 = α with probability q2.
Under the above assumptions, we say that both (P1, P2) and (P3, P4) are right pairs
for the characteristic α → β and that (C1, C2) and (C3, C4) are right pairs for the

43

Chapter 3. On the AES cryptanalysis

characteristic γ → δ. Then, we can use these for retrieving the subkeys in φ0 and φ1

similarly to differential cryptanalysis. The probability for such a quartet to be right
is 2−n.

The Amplified Boomerang attack

Kohno, Kelsey and Scheneir [KKS00] introduced the Amplified Boomerang At-
tack. This method converts the Adaptive Chosen Plaintext and Ciphertext into a
Chosen Plaintext attack. This is done by encrypting many plaintexts pairs with in-
put difference α. If we start with N plaintext pairs (P, P + α), then about Np of
those pairs will have a difference β after φ0.
With probability 2−n the difference between the intermediate encryption value of P1

and P3 is γ. If this is the case, then the difference between the intermediate encryp-
tion values of P2 and P4 is also γ. Then, with probability q for each of these pairs,
we get that the corresponding ciphertexts pairs have difference δ.
Hence, out of the N pairs we started with, we get 2−np2q2N2/2 quadruplets.

The Rectangle attack

The amplified boomerang attack has a major drawback: one needs to check all pos-
sible quadruplets to find the right quadruplets. Unlike the boomerang attack, where
we know exactly what plaintexts we need to compare, in the amplified boomerang
attack, we have no idea about the quadruplets that we need to check.
Another drawback is the very low probability of a quadruplet to be a right quadru-
plet. For example, even if the probabilities of the differentials are 1 (i.e. p = q = 1),
in order to obtain one right quadruplet, we still need 2n/2 pairs.
Biham, Dunkelman and Keller [BK00] introduced the Rectangle Attack. The at-
tack has much higher probability (i.e. the probability of a quadruplet to be a right
quadruplet is higher) and also better attack algorithm (based on more efficient data
structures and attack algorithm).
By examining both the pair (C1, C3) and the pair (C2, C4) for a δ difference, the num-
ber of right quadruplets is multiplied by 2, (as we check N2 different quadruplets).
Moreover it is possible to apply the improvements of the boomerang attack which use
many differentials simultaneously.

Attacks on small scale variants of AES

We describe a generic method of breaking 5 round (using boomerang techniques)
of one AES-like cipher. This structural attack does not use specific properties of the
S-boxes or the Mixing Layer, but it uses only the fact that diffusion is incomplete.

44

3.2. Structural attacks

We also note that the exact constants in the MixColumns matrix will be irrelevant to
the attack.

• Let {Pi}, i = 0, . . . , 232 − 1 be a pool of plaintexts which have all possible
values in four bytes and arbitrary constants in the other bytes. Encrypt each
Pi obtanining a pool of 232 ciphertexts {Ci}.

• Contruct a pool of modified ciphertexts: Di = Ci ⊕∇, where ∇ is a fixed non-
zero difference with only one active S-box. Decrypt the pool {Di} to obtain a
pool {Qi} of 232 new plaintexts.

• Sort the pool {Qi} by the bytes corresponding to eight inactive S-boxes. Pick
only those pairs Qi, Qj which have zero difference in these 8 bytes. If none is
found we have to come back to the first step.

• For each of the right (according to the previous step) quartets Pi, Pj, Qi, Qj,
guess the 32-bit key value that enters the 4 S-boxes corresponding to non-
constants bytes. Using the guessed key value, partially encrypt one round and
check the resulting difference in a single active S-box, which is a 22-bit filtering
condition for each pair (Pi, Pj) and (Qi, Qj). This gives a 44-bit condition in
total for both sides of the boomerang in the case of common 4-tuples to active
S-boxes. However, with half probability we will have no common 4-tuples, i.e.
all the 12 active S-boxes (4 from the (Pi, Pj) pairs and 8 from the (Qi, Qj) pairs)
do not overlap. We will pick key-candidates that are suggested at least twice.

Remark 3.2.2. The attack described above can be extended by one round to the
bottom at the cost of guessing 32-bit of the key of the 6th round.

Figure 3.4: Schematic description for AES reduced to five rounds

45

Chapter 3. On the AES cryptanalysis

3.3 First algebraic attacks

In contrast to conventional block cipher cryptanalysis, algebraic cryptanalysis
exploits the intrinsic algebraic structure of a cipher. In its most common form, a
cryptanalyst describes the encryption transformation as a set of multivariate poly-
nomial equations, which once solved can be used to recover information about the
secret key. The algebraic attacks can be briefly sketched as follows:

• Collecting Step: Eve expresses the cipher as a set of “suitable” equations in one
or more variables. These variables may include bits (or bytes) from the plain-
text, ciphertext and the key. Typically, the variables include also intermediate
computation values and round keys.

• Solving Step: Eve uses some data input, such as the pairs (plaintext, ciphertext);
she substitutes these input values in the corresponding variables (in the set of
equations collected in the previous step) and tries to solve the resulting set of
equations, thereby recovering the key.

Several attempts have been made to construct algebraic attacks for the AES. They
have resulted in small scale variants attacks as yet, and many of the related papers
conclude that more research is required. The most important attempts in this sense
are the following:

• Ferguson, Shroeppel and Whiting in [FSW01] derive a closed formula for AES
that can be seen as a generalization of continued fractions.

• Courtois and Pieprzyck [CP02] observe that the S-box used in the AES can be
described by a number of implicit quadratic Boolean equations.

• Murphy and Robshaw [MR02] define the block cipher BES which operates on
data blocks of 128 bytes instead of bits. According to Murphy and Robshaw,
the algebraic structure of BES is even more elegant and simple than that of the
AES.

• In 2002 Barkan and Biham [BB02b] introduced the concept of Dual ciphers. It
is basically a generalization of the embedding technique.

46

3.3. First algebraic attacks

3.3.1 Continued fractions

Let us consider a typical round of the AES. We write an algebraic expression of
all the steps:

SubBytes: s
(ρ)
i,j = S[a

(ρ)
i,j] =

∑7
dρ=0wdρ(a

(ρ)
i,j)−2dρ

ShiftRows: t
(ρ)
i,j = s

(ρ)
i,i+j

MixColumns: m
(ρ)
i,j =

∑3
eρ=0 vi,eρt

(ρ)
eρ,j

AddRoundKey: a
(ρ+1)
i,j = m

(ρ)
i,j + k

(ρ)
i,j

where wdρ are suitable constants, a(ρ)
i,j is the byte at position (i, j) at the input of

round ρ, vi,j are the coefficients of the MDS matrix and k(ρ)
i,j is the ρ-th round key at

position (i, j). Clearly, we can rewrite the last formula in the following way:

a
(ρ+1)
i,j = k

(ρ)
i,j +

∑
eρ∈E, dρ∈D

wi,eρ,dρ

(aeρ,eρ+j)
2dρ
,

where E := {0, . . . 3} and D := {0, . . . 7}.
What happens after the second round? We get the following expression

a
(3)
i,j = k

(3)
i,j +

∑
e2∈E, d2∈D

wi,e2,d2(
k

(1)
e2,e2+j +

∑
e1∈E, d1∈D

we2,e1,d1

(ae1,e1+e2+j)2
d1

)2d2

or equivalently, we have

a
(3)
i,j = k

(3)
i,j +

∑
e2∈E, d2∈D

wi,e2,d2

(k
(1)
e2,e2+j)

2d2 +
∑

e1∈E, d1∈D
w2d2
e2,e1,d1

(ae1,e1+e2+j)2
d1+d2

.

Note that all the subscripts are known and they are independent of the key or plain-
text. The same holds for all the exponents, that is they are known and independent
of the plaintext and key.
A fully expanded version of any byte of the intermediate result after 5 rounds has 225

terms. Even the full 10 round formula would require only 250 terms or so, which is
certainly computable within the workload allowed for an attack on a 128-bit cipher.
Therefore, the security of AES depends on the following assumption: it is computa-
tionally infeasible to solve equations of this type.
In order to break the AES cryptosystem, Eve could use two equations of this type for
each intermediate byte. The first one would express the intermediate variables after
5 rounds as function of the plaintext bytes. The second equation would cover rounds,
from the 6th to the 10th, by expressing the same intermediate variables as a func-
tion of the ciphertext bytes. Combining both equations would result in an equation

47

Chapter 3. On the AES cryptanalysis

with 226 unknowns. By repeating this equation for 226/16 known pairs (plaintext,
ciphertext), enough information could be gathered to solve for the unknowns, in an
information-theoretic sense. It is currently unknown what practical algorithm might
solve this type of equations.

3.3.2 Polynomial system approach

In this subsection we consider the encryption as a set of multivariate polynomials
equations. Once this system is solved, we can use the corresponding solution to
recover information about the secret key.

Let φ : (F2)r × (F2)` → (F2)r be the encryption function. The components
φ1, · · · , φr of φ are polynomials in F2[x1, . . . , xr, k1, . . . , k`].
Since we are looking for solutions in F2, we have the following relations

(x1)2 = x1

...
(xr)

2 = xr

(k1)2 = k1

...
(k`)

2 = k`

We want to apply the Chosen Plaintext attack. Let x ∈M be a plaintext and let
y ∈M be the corresponding ciphertext. For any pair {(x, y)} we have this system

φ1(x, k) = y1

φ2(x, k) = y2

...
φr(x, k) = yr

Remark 3.3.1. Note that yi and xi (i = 1, . . . , r) are constants and that the compo-
nents of the key k1, . . . , k` are variables.

We denote with εi(k) = φi(k, x) for i = 1, . . . , r. Note that εi is a polynomials in
F2[k1, . . . , k`]. We have to solve the following system

ε1(k) = y1

ε2(k) = y2

...
εr(k) = yr

(k1)2 = k1

(k2)2 = k2

...
(k`)

2 = k`

48

3.3. First algebraic attacks

We overcome the following kinds of Problems:

1. We can describe the encryption function φ but it could be very difficult to find
the components ε1, · · · , εr describing the function as polynomials.

2. Suppose that we know ε1, · · · , εr. The corresponding system can be too dense
to be stored on a computer.

3. Even if we can store the system, to solve it could be very difficult (unless it is
very sparse and it has low degree).

How to solve polynomial systems? Well-known techniques to solve a system are
the following:

• explicit substitutions when possible;

• compute Gröbner basis.

A classical general algorithm for computing a Gröbner basis of polynomial ideal is
Buchberger’s algorithm ([Buc65], [Buc06]). The F4 and F5 algorithms have been
proposed as alternative approaches for computing Gröbner bases. Since the main
computational cost of Buchberger’s algorithm lies in polynomial reductions, which
take place sequentially, the F4 essentially replaces many sequential polynomial re-
ductions with a matrix reduction, F5 algorithm permits in addition to detect useless
polynomial reductions. These algorithms are based on the idea of combining Gröbner
basis computation with Gaussian elimination and work by performing the multivari-
ate division algorithm as a matrix reduction.
For AES-128 [BPW06a], a zero-dimensional Gröbner basis for the key-recovery ideal
can be constructed with minimal computational effort, without performing a single
polynomial reduction. This is achieved by constructing a polynomial system in which
all leading terms are pairwise prime, allowing the first Buchberger criterion to be used
to show that the resulting set of polynomials forms a Gröbner basis. The Gröbner
basis of the key-recovery ideal for AES-128 IAES ∈ RAES [BPW06b] consists of 200

polynomials of degree 254 and 152 linear polynomials in a ring of 352 variables. The
vector space dimension dim(RAES/IAES) unfortunately is 254200, which makes the
Gröbner basis unsuitable for cryptanalysis.

In the real situations the polynomial approach does not work and one can change
the system representation. In practice, a very efficient solver of sparse polynomial
equations over F2 is PolyBori ([pol], [BD07]).

49

Chapter 3. On the AES cryptanalysis

3.4 Alternative representations

Several alternative representations have been proposed for the AES. Let φ be our
original block cipher and φ′ be a new block cipher. We can define a representation
map σ (1-1) and

(Fq)n

φk
��

σ // (FQ)m

φ′k
��

(Fq)n σ // (FQ)m

We say that the block cipher φ′ is an alternative representation of the block cipher φ
if the previous diagram is a commutative diagram.

Murphy and Robshaw defined a new block cipher, the Big Encryption Standard
(BES), which operates on data blocks of 128 bytes instead of bits. The algebraic
structure of BES is even simpler than that of AES. Furthermore, the AES can be
embedded into BES; indeed there exists a map σ such that

AESK(x) = σ−1(BESσ(K)(σ(x))).

Murphy and Robshaw believed that when the XSL method [CKPS00] is applied to
BES, the complexity of the Solving step could be significantly smaller than in the case
where XSL is directly applied to AES. In [LK07] the authors descussed of the XSL
method against BES.
Toli and Zanoni proved in [TZ05] that Murphy and Robshaw’s system is not complete,
because they omitted some indispensable equations and so this reduced-complexity do
not work to attack AES. Note that the BES could still be an interesting representation.

3.4.1 BES

The BES cipher, in which AES is embedded using a natural map, involves only
computations in F28 . This fact permits to describe AES using some polynomial equa-
tion systems. Solving them means to find the key or another variable and therefore
to break the cryptosystem.
We denote by A = (F28)16 and B = (F28)128 the state spaces of AES and BES re-
spectively. The basic tool for embedding is the conjugation operation σ, taking eight
successive square powers, for each value in F28 :

(F28)16

AES
��

σ // (F28)128

BES
��

(F28)16 σ // (F28)128

.

50

3.4. Alternative representations

The map σ is defined in the following way

a ∈ F28 7→ σ(a) = (a20

, a21

, . . . , a27

) ∈ (F28)8

a ∈ (F28)n 7→ σ(a) = (σ(a0), . . . , σ(a7)) ∈ (F28)8n

It is easily verified that σ(a + a′) = σ(a) + σ(a′) and σ(a−1) = σ(a)−1 assuming that
0−1 = 0. Moreover, we define BA = σ(A) ⊂ B as the subset of B corresponding to A.

Let p, c ∈ B be the plaintext and the ciphertext, respectively; wi,xi ∈ B , where
0 ≤ i ≤ 9, the state vectors before and after the inversion phases and hi ∈ B the
used key. All the phases of AES algorithm may be translated in B using just linear
algebra in F28 , excepting from inversion, which is done component-wise, as follows.
The matrix LA : (F2)8 → (F2)8 for the affine transformation for one byte in the
SubBytes operation can be represented by the polynomial function f : F28 → F28 :

f(a) =
7∑

k=0

λka
2k

with

λ0 = t2 + 1 λ4 = t7 + t6 + t5 + t4 + t2

λ1 = t3 + 1 λ5 = 1

λ2 = t7 + t6 + t5 + t4 + t3 + 1 λ6 = t7 + t5 + t4 + t2 + 1

λ3 = t5 + t2 + 1 λ7 = t7 + t3 + t2 + t+ 1

It is possible to translate this formulation in the B state space as follows

LB(a) = σ(LA(a)) = (f(a)20

, . . . , f(a)27

).

The successive squares of f are needed, and the answer is given by a simple induction
with basic step

(f(a))2 =
(7∑
k=0

λka
2k
)2

=
7∑

k=0

λ2
ka

2k·2 =
7∑

k=0

λ2
ka

2k+1

.

The resulting matrix, which we still indicate with LB, is

LB = [`ij]i,j=0...7 with `ij = λ2i

(8−i+j) mod 8

If we consider the entire transformation LinB : (F28)128 → (F28)128, we obtain a block
diagonal matrix with 16 blocks equal to LB.

51

Chapter 3. On the AES cryptanalysis

The AES SubBytes constant cA = 63 = t6 + t5 + t+ 1 ∈ F28 maps into

σ(cA) = (63,C2, 35, 66,D3, 2F, 39, 36) = (t6 + t5 + t+ 1, t7 + t6 + t,

t5 + t4 + t2 + 1, t6 + t5 + t2 + 1, t7 + t6 + t4 + t+ 1,

t5 + t3 + t2 + t+ 1, t5 + t4 + t3 + 1, t5 + t4 + t2 + t).

The corresponding BES vector cB is obtained by the juxtaposition of 16 consecutive
copies of σ(cA), cB = σ(cA, . . . , cA) = (σ(cA), . . . , σ(cA)), such that

[cB]i = [σ(cA)]i mod 8.

The AES ShiftRows operation permutes the bytes in the array. Clearly, this process
can be considered as a transformation of the components of a column vector a ∈ A.
It is straightforward to represent this transformation as multiplication of the state
vector a ∈ A by a 16× 16 (F28)-matrix RA : (F28)16 → (F28)16:

RA =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


The corresponding BES matrix is obtained by expanding each 1 in RA with an identity
matrix of the order 8 and each 0 with a zero (8 × 8)-matrix. The result will be
RB : (F28)128 → (F28)128. Moving from RA to RB we only need to ensure that the
vector conjugates are moved as a single entity.

52

3.4. Alternative representations

The AESMixColumnsmay be represented using the following CA : (F28)4 → (F28)4

CA =


t t+ 1 1 1

1 t t+ 1 1

1 1 t t+ 1

t+ 1 1 1 t


The AES transformation is given by the MixA : (F28)16 → (F28)16 block diagonal

matrix having as blocks four copies of CA. In order to obtain the corresponding
matrix, we first need to compute the following matrices CB

(k), for k = 0, . . . , 7:

C
(k)
B =


t2
k

(t+ 1)2k 1 1

1 t2
k

(t+ 1)2k 1

1 1 t2
k

(t+ 1)2k

(t+ 1)2k 1 1 t2
k


with

t2
0

= t t2
4

= t6 + t4 + t3 + t2 + t

t2
1

= t2 t2
5

= t7 + t6 + t5 + t2

t2
2

= t4 t2
6

= t6 + t3 + t2 + 1

t2
3

= t4 + t3 + t+ 1 t2
7

= t7 + t6 + t5 + t4 + t3 + t

from which (t+ 1)2k = t2
k

+ 1 may be very easily computed.
Using an appropriate basis, the resulting matrix MB : (F28)128 → (F28)128 may be
written as a block diagonal one, with four consecutive copies of CB

(k) for all possible
k. The different position of value powers in σ’s image, with respect to our needs,
makes the change of basis necessary. Indeed, if a ∈ (F28)16, then

σ(a) = (a0, . . . , a
27

0 , a1, . . . , a
27

1 , . . . , a15, . . . , a
27

15),

while in order to use the block diagonal representation, we would need the following
vector:

a′ = (a0, . . . , a15, a
2
0, . . . , a

2
15, . . . , a

27

0 , . . . , a
27

15).

This transformation is given by a permutation matrix PermB : (F28)128 → (F28)128.
To represent it easily, suppose to divide it into (16×8) sub-matrices Phk, h = 0, . . . , 7

and k = 0, . . . , 15. Each sub-matrix element (with i = 0, . . . , 15 and j = 0, . . . , 7) is :

[Phk]ij =

{
1 if i = k and j = h

0 else

53

Chapter 3. On the AES cryptanalysis

Key schedule: we can use the same techniques from previous sections to describe the
key schedule for the BES. In fact the key schedule in the AES uses the same opera-
tions as the F2-linear map, component-wise inversion, byte rotation and addition.

Round function of BES: we can write the final formula for the round function for
the BES, supposing that the state at the beginning of the round of the BES is b ∈ B

and the BES round key is kBi ∈ B. We can obtain the following

RoundB(b, (kB)i) = MixB(RB(LinB(b−1) + cB)) + (hB)i

= MB · (b−1) + (CB(cB)(hB)i)

= MB · (b−1) + (kB)i

where

MB = MixB ·RB · LinB, CB = MixB ·RB, (kB)i = CB(cB) + (hB)i.

Note that for the last round, we will have (kB)i = RB(cB) + (hB)i.

3.4.2 Polynomial system

Murphy and Robshaw claimed that recovering an AES key is equivalent to solving
particular systems of extremely sparse multivariate quadratic equations by expressing
a BES (and hence an AES) encryption as such a system. The problem of solving such
systems of equations lies at the heart of several public key cryptosystems and there
has been some progress in providing solutions to such problems.

Courtois and Pieprzyk have suggested the use of a system of multivariate quadratic
equations over F2 to analyze the AES. However, such a F2-system derived directly
from the AES is far more complicated than the F28-system derived from the BES.
A BES encryption is described by the following system of equation, remembering that
the last round differs slightly from the other ones, withM∗

B = RB·LinB = Mix−1
B ·MB,

w = p + k0

xi = w−1
i i = 0, . . . , 9

wi = MBxi−1 + ki i = 1, . . . , 9

c = M∗
Bx9 + k10

If we consider the previous equations component wise, let the (8j+m)th component
of all the vectors be indicated using the indexes expression (j,m) with j = 0, . . . 15

and m = 0, . . . 7. Under the hypothesis that no 0-inversion occurs (true for the 53%
of encryptions and 85% of 128-bit keys), it is possible to expand the above system as

54

3.4. Alternative representations

follows, for all possible values of j and m,
0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = xi,(j,m)w0,(j,m) + 1 i = 0, . . . , 9

0 = wi,(j,m) + (MBxi−1)(j,m) + ki,(j,m) i = 1, . . . , 9

0 = c(j,m) + (M∗
Bx9)(j,m) + k10,(j,m)

The previous system is a collection of simultaneous multivariate quadratic equa-
tions which apparently fully describe a BES encryption. A BES encryption can
therefore be described as a multivariate quadratic system using 2688 equations over
F28 , of which 1280 are (extremely sparse) quadratic equations and 1408 are linear
(diffusion) equations. These equations comprise 5248 terms, made from 2560 state
variables and 1408 key variables.

When we consider an AES encryption embedded in the BES framework, we obtain
more multivariate quadratic equations because the embedded state variables of an
AES encryption are in BA and possess the conjugacy property. Now, let α, β ∈ F28

be the generic coefficients of MB and M∗
B, respectively (polynomials modulo m(t)).

Adding the fact that the above equations should be valid for the BA subset, this is,
the state vectors must have the conjugation property, we finally have (with m + 1

considered modulo 8):

S =



0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = wi,(j,m) + ki,(j,m) +
∑

(j′,m′) α(j,m),(j′,m′)xi−1,(j′,m′) i = 1, . . . , 9

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′)

0 = xi,(j,m)w0,(j,m) + 1 i = 0, . . . , 9

0 = x2
i,(j,m) + xi,(j,m+1) i = 0, . . . , 9

0 = w2
i,(j,m) + wi,(j,m+1) i = 0, . . . , 9

Let S`, ` = 1, . . . , 6 indicate the equations in the `th line of the above system
for all the possible values of i, j and m, and I` the ideal they generate. As we see,
the system is very sparse, with S ′ = {S1, S2, S3} linear and the remaining equations
in S ′′ = {S4, S5, S6} quadratic. We can compare the number of equations with the
number of variables that occur in the previous system:

Line Number of equations
S1 16 · 8 = 128

S2 9 · 16 · 8 = 1152

S3 16 · 8 = 128

S4 10 · 16 · 8 = 1280

S5 10 · 16 · 8 = 1280

S6 10 · 16 · 8 = 1280

S Total = 5248

55

Chapter 3. On the AES cryptanalysis

Block Number of variables
k 11 · 16 · 8 = 1408

x 10 · 16 · 8 = 1280

w 10 · 16 · 8 = 1280

Total = 3968

Remark 3.4.1. Given the BES algebraic formulation, assuming the system S to be
correct, it is clear that an efficient method for the solution of this type of multivari-
ate quadratic system would give a cryptanalysis of the AES with potentially very
few plaintext-ciphertext pair. While the problem of solving generic large systems of
multivariate equations of degree greater than one over a finite field is known to be
NP-complete, it is not entirely unlikely that a technique can be developed which ex-
ploits the particular algebraic structure of the AES and BES systems. In the previous
chapter we presented a few approaches for solving such systems.

Furthermore, the AES key schedule can be expressed as a similar multivariate
quadratic system. In its most sparse form, the key schedule system uses 2560 equa-
tions over F28 , of which 960 are (extremely sparse) quadratic equations and 1600 are
linear equations. These key-schedule equations comprise 2368 terms made from the
2048 variables, of which 1408 are basic key variables and 640 are auxiliary variables.

3.4.3 Toli-Zanoni’s remark

Toli and Zanoni, in [TZ05], rewrote the system S modifying the way the systems
are presented, doing some substitutions and performing Gröbner basis computations
to obtain the final systems. In order to do this, they removed the imposed restriction
about inversion, substituting S4 with an equation expressing the true definition of
the general inversion in F28 and using the field equations.

In this way, they obtained the system of this kind:

S∗ =


0 = w0,j + pj + k0,j

0 = wi,j + ki,j +
∑

(j′,m′) α(j,0),(j′,m′)x
ωm′
i−1,j′ i = 1, . . . , 9

0 = cj + k10,j +
∑

,m′ λm′w
ωm′
9,j′

The system has 16 + 9 · 16 + 16 = 176 equations in 11 · 16 + 10 · 16 = 336

variables. Therefore, it is actually under-defined and so it cannot be solved, unless
by adding enough equations to describe completely the encryption. For example, Toli
and Zanoni show that it is enough to add the field equations. But as soon as they are
added, any known method to solve the system is forced to generate huge intermediate
polynomials (e.g. computing a few S-polynomials and making inter-reductions).

56

3.5. Dual ciphers

3.5 Dual ciphers

Suppose that we take invertible mappings f , g and h. Then, there exists a dual
cipher AES such that:

AESk(x) = f−1AESg(k)(h(x))

where k is the cipher key and x the plaintext.
This means that the dual cipher is equivalent to the original cipher in the sense that
it produces the same ciphertext, for a given plaintext and a given key, by applying
fixed permutations on the plaintext, the key and the output of the dual cipher. As
a consequence, one can implement and cryptanalyze the dual cipher instead of the
original cipher.

Definition 3.5.1. Two ciphers φ and φ′ are called dual ciphers if they are isomorphic,
i.e. if there exist invertible transformations hk, hx and hy such that, ∀x, k,

hy(φk(x)) = φ′hk(k)(hx(x)).

There are two types of trivial dual ciphers. Every cipher is dual to itself with
the identity transformations. The addition of non-cryptographic invertible initial and
final transformations creates a trivial dual cipher.
An interesting question is the following: do non-trivial dual ciphers of widely-used
(or well-known ciphers) exist? However, the existence of dual ciphers for a specific
cipher does not necessarily mean that the security of the cipher is compromised. Dual
ciphers can actually be used to strengthen the cipher against side-channel attacks.
An interesting extension of dual ciphers are semi-dual ciphers:

Definition 3.5.2. A cipher φ′ is called a semi-dual cipher of φ if there exist trans-
formations hk, hx, hy such that, ∀x, k,

hy(φk(x)) = φ′hk(k)(hx(x))

where hy, hx and hy are not necessarily invertible (and even not necessarily length-
preserving).

Semi-dual ciphers potentially reduce the plaintext, the ciphertext and the key
spaces. Thus they may allow to develop efficient attacks on their original ciphers.

Biham and Barkan in [BB02a] identified 240 dual ciphers for AES. No weakness
of these dual ciphers has been reported. They investigated the importance of the
specific choice of constants in a cipher. They asked what happens if they replace all

57

Chapter 3. On the AES cryptanalysis

the constants in AES (including the irreducible polynomial, the coefficients of the
MixColumns operation, the affine transformation in the S-box). They showed that
such replacements create dual ciphers (which are isomorphic to the original one).
The choice of the specific constants raises some natural questions for the cryptanalyst:

1. Does the choice of constants provides the highest level of security?

2. Is there another choice of constants that provides the same or higher level of
security?

3. Does the choice of constants have any relevance to the security of the cipher,
i.e., there is a suitable choice of constants that provides a lower level of security?

Biham and Barkan [BB02b] presented the following kind of dual ciphers for the
AES:

• Square of AES;

• dual ciphers with the irreducible polynomial replaced by primitive polynomials;

• logarithms of AES;

• Non trivial Self-Dual cipher (they can be attacked in a time faster than exhaus-
tive search).

A similar concept, called Rijndael-GF, is defined by Deamen and Rijmen in [DR98]:
it is demonstrated that all the ciphers of the Rijndael-GF family have exactly the
same security level against differential and linear cryptanalysis.
Many of the dual ciphers are alternative AES representations where the mapping of
state and key spaces are algebra isomorphisms of the AES state space algebra. The
resultant ciphers are isomorphic to the AES. The finite field F28 can be constructed
as an extension field of any of its subfields. Isomorphic representations of F28 can
thus be constructed from the chain of subfields

F2 ⊂ F22 ⊂ F24 ⊂ F28 .

3.5.1 Square dual ciphers

Given a cipher φ, we define the cipher φ′ by modifying the constants of φ. In
terms of Definition 3.5.1, we set hk = hx = hy = x2, where x2 is squaring each byte of
x in F28 . The notation k2 and x2 denote the square operation of each byte of k and x

(and similarly for any other byte vector). We define φ2 such that φ2
k2(x2) = (φk(x))2.

58

3.5. Dual ciphers

We note that all the operation not involving constants remain unchanged.
In the affine transformation, A is replaced by QAQ−1, where in the case of AES the
matrix Q is the following

Q =



1 0 0 0 1 0 1 0

0 0 0 0 1 0 1 1

0 1 0 0 0 1 0 0

0 0 0 0 1 1 1 1

0 0 1 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 1


It easy to show that Qx = x2 (multiplying by the Boolean matrix Q is actually
squaring). From now on, A2 denote QAQ−1, as for any x,

QAQ−1x2 = QAx = (Ax)2.

The matrices Q and Q−1 depend on the irreducible of F28 . Finally, we replace S(x)

with S2(x), where S2(x) is defined as

S2(x) = QS(Q−1x).

We can now define the dual cipher φ2 of a cipher φ: we take the specifications of the
cipher φ, raise all the constants in the cipher to their second power, replace matrices
A by A2 = QAQ−1 and replace S(x) by S2(x) = QS(Q−1x).
If we take AES as an example of φ, the polynomial of the MixColumns operation
is replaced by a polynomial which coefficients are the squaring of the official AES
polynomial. The affine transformation Ax+b is replaced by the affine transformation
A2x + b2 = QAQ−1x + b2. Then, it is not difficult to show that φ and φ2 are dual
ciphers, with f(x) = x2.

Theorem 3.5.3. For any k and x,

φ2
k2(x2) = (φk(x))2.

Proof. See [BB02b].

Remark 3.5.4. The cipher φ4 = (φ2)2 is a dual cipher of φ2 and thus also of φ.
Moreover, all ciphers φ2i (for all i), i.e. φ, φ2, φ4, φ8, φ16, φ32, φ64 and φ128 are all dual
ciphers of each other (there exist 8 such ciphers as φ28

= φ).
It is interesting to note that any variant of the AES possesses these dual ciphers,
independently of the key size, the block size, the number of rounds and even the
arrangement of operations in the cipher.

59

Chapter 3. On the AES cryptanalysis

3.5.2 Dual ciphers modifying the irreducible polynomial

We show that it is irrelevant if the irreducible polynomial is primitive or not, due
to existence of dual ciphers of AES with any of above irreducible polynomials.
Replacing the irreducible polynomial creates an isomorphic F28 field; the isomorphism
function is linear. We denote this linear function by R.
Let x be a binary vector representing an element under AES’s irreducible polynomial
g(x). The representation of x is under another irreducible polynomial ĝ(x) is given
by R · x, where R is an 8× 8 binary matrix. Moreover, the matrix R is always of the
form R = (1, a, a2, a3, a4, a5, a6, a7), where the columns ai are computed modulo the
irreducible polynomial ĝ(x).

We define a new cipher φR using the new irreducible polynomial ĝ(x), such that
φR is a dual cipher of φ, with hk(x) = hx(x) = hy(x) = R · x.
We define φR using the matrix R in the same way as when we used the matrix Q to
define the square dual cipher. As a result, the operations in φR are identical to the
operations in φ, up to a change of constants. To fully specify φR replace Q with R in
the previous section and replace x2 with R · x. The proof of duality follows.

Remark 3.5.5. Note that the matrix Q is actually a special case of the R matrix,
where ĝ(x) = g(x). For each irreducible polynomial we can define its eight square
dual ciphers. Since there are 30 irreducible polynomials, we get that there are 240

dual cipher for each cipher satisfying suitable operations.The full description of these
240 dual ciphers of AES can be found in The Book of Rijndaels [BB02a].

Due to the existence of a dual cipher with any irreducible polynomial, we conclude
that the choice of the irreducible polynomial of AES is arbitrary. In particular, there
is no advantage in selecting a primitive polynomial over the current polynomial of
AES.

3.5.3 Logarithmic dual ciphers

In this section we sketch another family of dual ciphers: the logarithmic dual
cipher. Let g be a generator of the multiplicative group of F28 . Since the cipher
works on elements of F28 we can write any element x as an exponent of g, i.e. x = gi,
except for x = 0, where we set g−∞. In the logarithmic cipher we use the logarithm
representation of the element instead of the polynomial representation used in the
original description of the cipher.
Let x and y be elements of F28 and let i = logg x and j = logg y. Barkan and Biham
showed that the cipher φlog is a dual cipher of φ, where hk(x) = hx(x) = hy(x) =

logg x. The logarithmic dual cipher is defined by taking the specifications of the cipher
and replacing the operations in a suitable way, as proposed in [BB02b].

60

3.5. Dual ciphers

The following theorem suggests that if x is the plaintext, k is the key and y is the
result of encrypting x under the key k with cipher φ, then the result of encrypting
logg(x) under the key logg(k) with the cipher φlog is necessarily logg(y).

Theorem 3.5.6. Let g be a generator in F28. For any K and x:

(φlogg k)
log(logg x) = logg(φk(x)).

where loggX denotes the logarithm of each byte of X, where X is one of x, y, or k.

Remark 3.5.7. Note that the non-linear part of the SubBytes transformation of AES
in the log dual cipher, i.e. finding the multiplicative inverse of an element, becomes
very simple (and linear). This operation is replaced by negation in the logarithmic
dual cipher:

x→ i⇔ x−1 → −i.

How does the 240 mentioned representation of AES affect the number of logarith-
mic dual ciphers? The group of 240 representations of AES has a single group of 128

logarithmic dual ciphers. Choosing a generator g in AES’s representation generates
the same dual cipher as choosing the generator R·g in another dual cipher. Therefore,
the number of logarithmic dual cipher is the same as the number of generators, i.e.,
there are only 128 logarithmic dual ciphers.

3.5.4 Self-dual ciphers

We mention that any cipher is trivially dual to itself. However, it is possible to
find ciphers that are self-dual in a non trivial way. One such interesting case of self
dual ciphers can be derived from square dual ciphers.
Let φ be a square self dual cipher. It follows that (φk(x))2 = φk2(x2). In other words,
by encrypting the square of x by the square of k under the cipher, we get the square
of the original ciphertext. For that, we require that each constant is the square of
itself.

The self-duality property of a cipher can be used to mount an attack, which reduces
the complexity of exhaustive search by a factor about 8 for a square dual cipher in the
case above (or by a factor of the number of the self-duals in the more general case).
For example, if the key size is 128 bit, exhaustive search requires 2128 applications of
the cipher φ, and the attack we proposed requires about 2125 applications of φ using 8
chosen plaintexts. If we consider the expected time to complete the attack, exhaustive
search takes about 2127 applications of φ, and our attack takes about 2124 applications
of φ. The attack takes advantage of cycles of keys under the squaring operation. The
algorithm of the attack was presented in [BB02b]. It is also interesting to remark

61

Chapter 3. On the AES cryptanalysis

that the number of rounds of the cipher does not affect the complexity of this attack
(in terms of the number of applications of φ). AES is not a self-dual cipher (except
in a trivial sense).

A possible application of dual ciphers is for developing differential and linear
attacks. In such cases the insight gained from the dual ciphers can be used to attack
the dual cipher, an attack which can be easily transformed to the original. A possible
example for such insight might be the simplification of the affine transformation in
the S-box to a triangular matrix, which reduces the effect of modifying bits in the
input on the resultant output of this transformation. Another interesting application
of dual ciphers might be an optimization of the speed of the cipher, as in some cases
the dual cipher might actually be faster to compute than the original cipher. For
example, many ciphers include multiplications by constants. The Hamming weight
and the size of the constants has implications on the implementation efficiency. Thus,
finding a more efficient dual cipher might be a good optimization strategy. Also, in
some cases encryption might be fastest using one dual cipher, and decryption be
fastest using another dual cipher.

The existence of dual ciphers can also be used to protect implementation against
fault analysis and power analysis, by selecting a different dual cipher at random each
time an encryption or decryption is desired.

Wu, Lu and Laih in 2004 [WLL04] generalized the dual AES and proposed a com-
plete setup procedure to determine all dual ciphers and a hardware implementation
of AES based on the combination of dual cipher and composite field. Moreover, they
demonstrated that their AES design not only offer better performance and smaller
area requirement than the design proposed by Wolkerstorfer et al. ([WOL02]) in
which uses a composite field only. Their result also confirms Barkan et al’s conjecture
that it is possible to design an AES cipher more efficiently than ever.

3.6 S-boxes equivalence

Biryukov, De Canniere, Braeken and Preneel presented in [BDCBP03] two algo-
rithms for solving the linear and the affine equivalence problem for arbitrary permu-
tations (S-boxes). 2 For a pair of n × n permutations, the complexity of the linear
equivalence algorithm (LE for short) is O(n32n). The affine equivalence algorithm
(AE for short) has complexity O(n322n). The algorithms are efficient and allow to
study linear and affine equivalences for bijective S-boxes of almost all size. (LE is
efficient up to n ≤ 32).

2The principle of such algorithms has been presented earlier in [PGC98]. We note that the
isomorphism of polynomials is actually (almost) the same problem as the Affine Equivalence.

62

3.6. S-boxes equivalence

Using these tools, new equivalent representations are found for a variety of ciphers
like Rijndael, DES, SERPENT and other ciphers. The algorithms are furthermore
extended for the case of non-bijective n to m-bit S-boxes with a small value of |n−m|
and for the case of almost equivalent S-boxes.
An efficient algorithm tool allows to study the properties of a whole equivalence class
by analyzing a single representative.
The motivations to study this problem are

• deeper understanding of Rijndael,

• recent interest in potential algebraic attacks,

• the discovery of a variety of equivalent representation.

Such representations help to describe ciphers with simpler systems of low-degree equa-
tions, allow more efficient implementations and are very useful in the design of coun-
termeasures against side-channel attacks. They provided algorithms that can quickly
test if two S-boxes S1 and S2 are equivalent; in other words they tested if there exist
a (linear or affine) mappings A1 and A2 such that

A2 ◦ S1 ◦ A1 = S2.

LE and AE will either return the mappings A1 and A2 or detect that the S-boxes
are inequivalent, within O(n32n) for LE and O(n322n) for AE. They solved the affine
equivalence problem using a method of interest in itself that consists of finding unique
representatives for the linear equivalence. The efficiency of the given algorithms allows
to find linear equivalences for n up to 32 and affine equivalences for n up to 17, which
covers most of the S-boxes used in modern symmetric primitives and allows to study
partial function composed of several S-boxes and portions of the mixing layers. They
extended their results for the case of non-bijective S-boxes with n input bits and m
output bits when the input/output deficiency |n−m| is small.
Another interesting extension is the search for almost equivalent S-boxes, which is
as efficient as the basic algorithms. This allows to check quickly if a certain S-box
is close to the set of affine functions or two S-boxes, one with unknown structure
and the other with known algebraic structure are almost equivalent. This approach
induces an interesting metric in the space of affine equivalence classes of S-boxes.
Using this toolbox of algorithms they found that many S-boxes of popular ciphers
are self affine equivalent, which allows to produce equivalent representations of these
ciphers, like AES, DES, SERPENT, etc.

63

Chapter 3. On the AES cryptanalysis

3.6.1 Linear equivalence

Let us consider the problem of checking linear equivalence between two permuta-
tions (S-boxes) S1 and S2. The main problem consist of finding two invertible linear
mapping L1 and L2 such that L1 ◦ S1 ◦ L1 = S2.
We give the following naive approach:

• to guess one of the mappings (L1 for example), such that L2 = S2 ◦ L−1
1 ◦ S−1

1 ;

• to check if it is a linear, invertible mapping. There are O(2n
2
) choices of invert-

ible linear mappings over n−bit vector. For each guess one will need about n3

steps to check for linearity and invertibility using Gaussian elimination.

For n ≤ 32 (which is of main practical interest) we can use 32 bit processor instruc-
tions to bring the complexity to n2 steps. Complexity: O(N32n

2
) steps.

Improving the naive approach:

• we need only n equations in order to check L2 for invertibility and linearity;

• if one guesses only log2 n vectors from L1 one may span a space of n points (by
trying all linear combinations of the guessed vectors);

• evaluate the results through L1, S1 and S2 and have n constraints required to
check for linearity of L2;

• if the n new equations are not independent one will need to guess additional
vectors of L1.

Complexity: Such an algorithm would require guessing of n log2 n bits of L1 and the
total complexity would be O(n32n logn).
In Biryukov et al’s algorithm [BDCBP03] there are two ideas. The first one, a needle-
work effect, in which guesses of portions from L1 provided us with free knowledge of
the values of L2. These new values from L2 permit to extract new free information
about L1, etc.. This process is supported by a second observation, which they call
exponential amplification of guesses, which happens due to the linear (affine) struc-
ture of the mappings. The idea is that knowing k vectors from the mapping L1, we
know 2k linear combinations of these vectors for free.

3.6.2 Affine equivalence

It is possible to generalize the equivalence problem to the affine case. In this case
they wanted an algorithm that takes two n × n- bit S-boxes S1 and S2 as input,
and checks whether there exists a pair of invertible affine mappings A1 and A2 such

64

3.6. S-boxes equivalence

that A2 ◦ S1 ◦ A1 = S2. Each of these affine mappings can be expressed as a linear
transform followed by an addition, which allows us to rewrite the affine equivalence
relation as B−1S1(A · x⊕ a)⊕ b = S2(x), ∀x ∈ {0, 1}n with A and B invertible n× n
bit linear mapping and with n−bit constants a and b.

3.6.3 Extension

Self-Equivalent S-boxes: the affine equivalence algorithm was designed to discover
equivalence relations between different S-boxes, but nothing prevents us from run-
ning the algorithm for a single S-box. In this case, the algorithm will return affine
mappings A1 and A2 such that A2 ◦ S ◦ A1 = S. The number of different solutions
for this equation (denoted by s ≥ 1) can be seen as a measure for the symmetry of
the S−box. We call S−boxes that have at least one non trivial solution (s > 1) self
equivalent S−box.

Equivalence of Non invertible S-boxes: it is possible to extend the equivalence
problem to the non-invertible n to m-bit S-boxes with m < n. This problem becomes
the following: find an (n×n)-bit affine mapping A1 and an (m×m)-bit affine mapping
A2 such that

A2 ◦ S1 ◦ A1 = S2

for two given (n×m)-bit S−boxes S1 and S2.
The main problem when trying to apply the algorithms described above, is that the
exponential amplification process explicity relies on the fact that the S-boxes are
invertible. In cases where the difference n−m is too large, slightly adapted versions
of the algorithms still appear to be very useful.
The difference between the extended and the original algorithm resides in the way
information about A1 is gathered. In the original algorithm, each iteration yields a
number of additional distinct points which can directly be used to complete the affine
mapping A1. This time, the S−boxes are not uniquely invertible and the information
obtained after each iteration will consist of two uncolored sets of about 2n−m values
which are known to be mapped onto each other. In order to continue, the algorithm
first needs to determine which are the corresponding values in both sets. This can be
done exhaustively if 2n−m is not too large, say less than eight. Once the order has
been guessed, 2n−m points are obtained. Since slightly more than n points should
suffice to reject a candidate for the representative, one would expect that the total
complexity is about

n32n(2n−m!)
n

2n−m .

65

Chapter 3. On the AES cryptanalysis

Almost Affine Equivalent S−boxes: another interesting problem related to equiv-
alence is the problem of detecting whether two S−boxes are almost equivalent. The
S−boxes S1 and S2 are called almost equivalent if there exist two affine mappings A1

and A2 such that A2 ◦ S1 ◦ A1 and S2 are equal, except in a few points.

3.6.4 Equivalences in the AES cryptosystem

When this AE tool is run for the 8-bit S-box used, as many as 2040 different
self-equivalence relations are revealed. Considering the fact that the Rijnadael S-box
is defined as S(x) = A(x−1) with A a fixed affine mapping (not to be confused with
A1 or A2), it is possible to derive a general expression for all pairs of affine mappings
A1 and A2 satisfying A2 ◦ S ◦ A1 = S:

A1(x) = [a] ·Qi · x
A2(x) = A(Q−i · [a] · A−1(x))

where [a] denotes the (8× 8)-matrix that corresponds to a multiplication by a ∈ F28

(a 6= 0), Q denotes the (8 × 8)-matrix that performs the squaring operation in F28

and 0 ≤ i ≤ 8.
Since i takes on 8 different values and there are 255 different choices for a, we obtain
exactly 2040 different solutions, which confirms the outputs of the AE algorithm.
The existence of these affine self-equivalences in Rijndael implies that we can insert
an additional affine layer before and after the S-boxes without affecting the cipher.
Moreover, since the mixing layer of Rijndael only consists of additions and multipli-
cations with constants in F28 and since [a] ·Qi · [c] = [c2i] · [a] ·Qi, we can easily push
the input mapping A1 through the mixing layer. This allows us to combine A1 with
the output mapping of a previous layer of S-boxes, with the plaintext, the round con-
stants or with the key. The resulting ciphers are generalizations of the eight squares
of Rijndael, obtained in somewhat different way by Barkan and Biham. By modifying
the field polynomial used in these 2040 ciphers, one should be able to expand the set
of 240 dual ciphers presented in [BB02b] to a set of 61200 ciphers. Note that these
ideas also apply to a large extent to other ciphers that use S-boxes based on power
functions.

Remark 3.6.1. For a Boolean function f , we say that the non-linearity of f is ν if,
for any affine function α, f and α differ in at least ν points. The AES S-box’s non-
linearity is the maximum non-linearity for a Boolean function f : (F2)8 → (F2)8,
which means that we cannot hope to find a linear/affine approximation.

66

Part II

Our Results

67

A new representation

In Chapter 3 we described how two different ways of representing the same cipher
AES, like BES [MR02] or Dual Ciphers [BB02b], could be useful for the cryptanalysis.
Several representations of this kind that exploit the structure of the AES cipher have
been proposed and the reader can find them in literature, see for example [CMR07].
In this chapter we construct two new representations of “AES-like” ciphers.
In Section 4.1 we consider some permutations acting on a given set Ω. We want to
enlarge Ω to a set W such that:

1. W is endowed with a vector space structure;

2. the permutations can be extended to act linearly on the whole W .

In each of Section 4.2 and Section 4.3 we provide one specific representation of AES-
like ciphers. That in Section 4.3 can be seen as an improvement of the former. Both
of them are applied to AES, PRESENT and SERPENT. We highlight advantages and
weaknesses of those cryptosystems, according to our representations. In particular,
in Section 4.2 we consider Ω = V as a vector space and we want to find an embedding
V ↪→ W such that the S-boxes and the key-additions become linear. However, in
this way we lose the linearity of the Mixing Layer λ and so, in Section 4.3, we make
a larger embedding where the linearity of λ is recovered, without losing the linearity
of the key addition. We do lose the linearity of the S-boxes, but their non-linearity
is kept low.

In Section 4.4 we report other thinkable representations, that unfortunately are
impractical. The main objective in these constructions is to identify the right com-
promise between computational feasibility and quantity of information that can be
obtained.

Then, in Section 4.5 we prove the fact, using classical and easy arguments, that
it is impossible to embed the AES cipher into a linear cipher, unless one uses a
huge-dimensional vector space (and so this embedding is useless in practice).

Finally, the last section contains some results on how our representation could
achieve a weaker notion of linearity.

69

Chapter 4. A new representation

4.1 Some preliminary results

Let Ω be a set such that |Ω| = n, let Sym(Ω) be the symmetric group on Ω and
let W be a vector space over a field F (not necessarily a finite field).

Definition 4.1.1. Let G ≤ Sym(Ω). An injective map φ : Ω → W is a space
embedding with respect to the group G if ∀σ ∈ G ∃Aσ ∈ GL(W) s.t. φ◦σ = Aσ ◦φ.

Moreover, φ(Ω) is the set of all admissible vectors (w.r.t. φ), the subspace 〈φ(Ω)〉
is the admissible space. Note that since φ(Ω) ⊂ 〈φ(Ω)〉 then 〈φ(Ω)〉 is the smallest
subspace containing all admissible vectors. Generally speaking, |〈φ(Ω)〉| >> |φ(Ω)|.

Note that the regular representation, defined in Section 1.1, can be considered
as a space embedding φ : Ω → W with respect to the group G = Sym(Ω), where
dim(W) = |Ω| = n and φ : ω 7→ bω with {bω}ω∈Ω a basis of W . Also, W = 〈φ(Ω)〉.

A space embedding permits to construct a faithful representation of G, as ex-
plained in the next proposition.

Proposition 4.1.2. Let α : Ω→ W be a space embedding with respect to G. Suppose
that ∀σ ∈ G ∃!Aσ ∈ GL(W) s.t. φ ◦ σ = Aσ ◦ φ. Then

1. we can define a map φ̃ : G→ GL(W), where φ̃(σ) = Aσ, for any σ ∈ G ;

2. φ̃ is a group homomorphism.

Proof. 1. Obvious.
2. We have to prove that φ̃(σσ′) = φ̃(σ)φ̃(σ′) for all σ, σ′ ∈ G, i.e. Aσσ′ = AσAσ′ .
Using Definition 4.1.1, the following equality holds

Aσσ′(φ(ω)) = φ((σσ′)(ω)) = φ(σ(σ′(ω))).

Since

AσAσ′(φ(ω)) = Aσ(φ(σ′(ω))) = φ(σ(σ′(ω))),

we conclude that Aσσ′ = AσAσ′ , for all ω ∈ Ω.

Remark 4.1.3. In Definition 4.1.1 we require only that Aσ exists, however in Theorem
4.1.2 we see that it is also unique.

For example, for the regular representation any permutation σ ∈ Sym(Ω) defines
a permutation σ ∈ Sym({bω}ω∈Ω) and so it defines a unique Aσ ∈ GL(W), which can
be represented as a permutation matrix.

70

4.1. Some preliminary results

Now, we are interested in a special case of space embedding where the set Ω is
a vector space V = (F2)r and W is the vector space (F2)s, with s > r. For any
1 ≤ i ≤ s, let ei ∈ W :

ei = (0, . . . , 0, 1
↑
i

, 0, . . . , 0) .

Let σ ∈ Sym(V) be any permutation over (F2)r. We want to embed V into W by
an injective map α and to extend σ to a permutation σ′ ∈ Sym(W) as shown in the
following commutative diagram:

V

�σ

��

α // W

σ′

��
V

α // W

In order to do this, we have to define the permutation σ′ ∈ Sym(W). We say that
σ′ is an extension of σ. We seek a σ′ that is linear on W . The following definition will
be useful:

Definition 4.1.4. Let σ ∈ Sym(V) and α be an injective map α : V → W . We say
that σ is linearly extendible (via α) if ∀{vi}i∈I ⊂ V we have∑

i∈I

α(vi) = 0 ⇐⇒
∑
i∈I

α(σ(vi)) = 0.

Remark 4.1.5. Since we are considering the finite field F2, we note that σ is linearly
extendible (via α) if ∀{vi}i∈I ⊂ V such that

∑
i∈I α(vi) = 0 we have

∑
i∈I α(σ(vi)) =

0. In fact, an injective map defined on the set

{{vi}I ⊂ V |
∑
i∈I

α(vi) = 0}}

into the set
{{σ(vi)}I ⊂ V |

∑
i∈I

α(σ(vi)) = 0}}

is a bijective map, since the cardinality of the two finite sets is the same.

Let α : V → W be a space embedding. Let A = Im(α) = α(V) and let T = 〈A〉 be
the subspace (the admissible space) of W linearly generated by A. Since σ′(α(v)) =

α(σ(v)), ∀v ∈ V , we require that σ′(A) = A.

A A
T T

W \ T W \ T

W W
V

α
σ′

71

Chapter 4. A new representation

In order to specify the behavior of σ′ on (T \ A), which is the space of non-
admissible vectors in the admissible space, we have to consider two different cases:

(a) suppose that σ is linearly extendible. Let t ∈ T , we must have t =
∑

1≤j≤ι a
j,

with ι ≥ 1, with {aj}1≤j≤i ⊂ A, aj = α(vj) (with 1 ≤ j ≤ ι and vj ∈ V). Then
we define

σ′(t) =
∑

1≤j≤ι

σ′(aj) =
∑

1≤j≤ι

α(σ(vj));

(b) in case σ is not linearly extendible, we define σ′|T\A = idT\A.

We now define σ′ on W \ T according to the two previous cases (i.e. depending on
the behavior of σ on A).
In case (a), let τ be the dimension of the subspace T . We consider any subset B
of {e1, . . . , es} such that |B| = s − τ and W is the direct sum W = T ⊕ 〈B〉. It is
obvious that B exists. Let w ∈ W , then w = wT + wB with wT ∈ T and wB ∈ 〈B〉.
Finally, we define

σ′(w) = σ′(wT) + wB.

In case (b) we define σ′|W\T = idW\T .

Lemma 4.1.6. If σ is linearly extendible, then σ′ ∈ GL(W).

Proof. We first show that σ′ is well-defined on T . Let t =
∑

I a
i and t′ =

∑
J a

j and
suppose that t = t′. Since σ is linearly extendible, we have the following

0 = t+ t′ =
∑
I

ai +
∑
J

aj =
∑
I

α(vi) +
∑
J

α(vj) =
∑
I∪J

α(vi)

σ′(t) + σ′(t′) =
∑
I

σ′(ai) +
∑
J

σ′(aj) =
∑
I

α(σ(vi)) +
∑
J

α(σ(vj)) =
∑
I∪J

α(σ(vi)) = 0

We now show that σ′ is linear on T . Let ti =
∑

h a
(i)
h . We have to show that

σ′(
∑

i ti) =
∑

i σ
′(ti). Clearly,

σ′
(∑

i

∑
h

a
(i)
h

)
= σ′

(∑
i,h

a
(i)
h

)
=
∑
i

∑
h

σ′(a
(i)
h) =

∑
i

(∑
h

σ′(a
(i)
h)
)

=
∑
i

σ′(ti)

and we have our thesis.
Since σ′ is linear on T and T is a finite set, in order to prove that σ′ is bijective on T
it suffices to show that kerσ′ = 0. We have (by definition of linearly extendible)

0 = σ′(t) =
∑

α(σ(vj)) ⇐⇒ 0 =
∑

α(vj) = t

Finally, we show the linearity on W . Let {wi}i∈I ⊂ W , we have to show the
following equality

σ′
(∑

i∈I

wi
)

=
∑
i∈I

σ′(wi). (4.1)

72

4.2. A first representation

Since W is direct sum of T and 〈B〉, each element wi in W can be considered as
wiT + wiB and so we can write the following

σ′
(∑

i∈I

wi
)

= σ′
(∑

i∈I

(wiT + wiB)
)

= σ′
(∑

i∈I

wiT

)
+
∑
i∈I

wiB∑
i∈I

σ′(wi) =
∑
i∈I

σ′(wiT + wiB) =
∑
i∈I

σ′(wiT) +
∑
i∈I

wiB.

It easily follows that (4.1) holds if and only if

σ′
(∑

i∈I

wiT

)
=
∑
i∈I

σ′(wiT).

Remark 4.1.7. The construction of σ′ ∈ GL(W) from σ linearly extendible (Definition
4.1.4) can be done similarly over any field.

We are now able to prove the main result of this subsection.

Theorem 4.1.8. Let W = (F2)r and G ≤ Sym(V). An injective map α : V → W is
a space embedding with respect to G if and only if, ∀σ ∈ G, σ is linearly extendible.

Proof. Let α be a space embedding with respect to G. For any fixed σ ∈ G, there
exists a map Aσ ∈ GL(W) such that α ◦ σ = Aσ ◦ α. Now, let {wi}i∈I be a finite set
such that wi = α(vi) (for any i ∈ I) and

∑
i∈I w

i = 0. Obviously we have∑
i∈I

α(σ(vi)) =
∑
i∈I

Aσ(α(vi)) =
∑
i∈I

Aσ(wi) = Aσ

(∑
i∈I

wi
)

= 0.

The converse immediately follows thanks to the previous lemma.

Remark 4.1.9. For a fixed α and σ, the map σ′ is unique and α̃ : G → GL(W) is a
representation of G, by Proposition 4.1.2.

Remark 4.1.10. In the following we use Aσ and σ′ interchangeably.

4.2 A first representation

We now apply the theory developed in the previous section to a specific space
embedding 1 ε : V → W .

Let us identify (F2)m with the field F2m , via the quotient map F2m ↔ F2[x]/〈p〉,
where p ∈ F2[x] is any primitive polynomial such that deg(p) = m.

1which is called “α” in Section 4.1.

73

Chapter 4. A new representation

We define a map ε′ : F2m → (F2)2m by means of a primitive element γ of F2m (which
is a root of p). The map ε′ is defined as

ε′(0) = (1, 0, . . . , 0︸ ︷︷ ︸
2m−1

) ε′(γi) = (0, . . . , 0, 1
↑
i+1

, 0, . . . , 0) ∀1 ≤ i ≤ 2m − 1 .

Note that ε′(1) = ε′(γ2m−1) = (0, . . . , 0︸ ︷︷ ︸
2m−1

, 1).

Let b be a positive integer, let r = mb and s = 2mb. Let V = (F2)r and W = (F2)s.
We construct our injective map ε : V → W in the following way:

ε(v1, . . . , vb) = (ε′(v1), . . . , ε′(vb)) (4.2)

for any vj ∈ (F2)m (1 ≤ j ≤ b). Note that ε is a parallel2 map.
For simplicity of notation, we set e1 = ε′(0) = (1, 0, . . . , 0︸ ︷︷ ︸

2m−1

) and ei+1 = ε′(γi), for any

1 ≤ i ≤ 2m − 1. We note that

Lemma 4.2.1. Suppose that
∑

i∈I ei = eh. Then h ∈ I.

Proof. It follows from w(ei) = 1, for all i ∈ I.

The following lemma is easily proved:

Lemma 4.2.2. Let I be a finite index multiset such that {vi}I ⊂ V . For any 1 ≤
h ≤ b we have

∑
i∈I ε

′(vih) = 0 if and only if, ∀i ∈ I, |{j ∈ I | vjh = vih}| is even.

Proof. Since ε′ maps each element of (F2)m into the canonical basis of (F2)2m , each
ε′(vih) is a vector such that w(ε′(vih)) = 1. Considering the following sum in F2, we
have that

∑
I ε
′(vih) = 0 if and only if each component is made by an even number of

1, i.e. if and only if each element of the canonic basis that appears in our sum has an
even weight. Since ε′ is bijective, we have that |{j ∈ I | vjh = vih}| is even, ∀i ∈ I.

Proposition 4.2.3. Let ε as in (4.2). Then dimF2

(
〈Im(ε)〉

)
= 2mb− (b− 1).

Proof. We define the elements zi,j = (e1, . . . , e1, ej
↑
i

, e1, . . . , e1), for 1 ≤ i ≤ b and

1 ≤ j ≤ 2m. Note that zi,j 6= zh,` for (i, j) 6= (h, `), except for z11 = z21 = . . . = zb1.
We consider the set B = {z1,1}∪{zi,j}j≥2, 1≤i≤b. For instance, when m = 2 and b = 2,
we have

B = {(e1, e1), (e1, e2), (e1, e3), (e1, e4), (e2, e1), (e3, e1), (e4, e1)}.

Clearly, the cardinality of the set B is |{zi,j}1≤b, 1≤j≤2m| − |{zi,1}i≥2| = 2mb− (b− 1).
2see Section 1.2

74

4.2. A first representation

We claim that the set B is a basis for the subspace 〈Im(ε)〉.
First, we prove that B is a linearly independent set. Suppose zi,j ∈ B such that
(i, j) 6= (1, 1). By definition of B, the element zi,j is the unique element of B having
a vector ej in position i. Thus, zi,j cannot be the linear combination (i.e. a sum)
of any other vectors of B (see Lemma 4.2.1). Now, we have to consider the element
z1,1. Let z1,1 =

∑
(i,j)∈J zi,j. W.l.o.g., we can assume by Lemma 4.2.1 that there

is (̄i, j̄) ∈ J such that zī,j̄ = (e1, . . .). Since zī,j̄ 6= z1,1 we can assume w.l.o.g.
zī,j̄ = (e1, ej̄, e1, . . . , e1), i.e. ī = 2. There is no other zi,j having ej̄ in the second
position. Therefore, the sum z1,1 should contain a 1 in component m + j̄, which is
impossible.

Next, we prove that B generates 〈Im(ε)〉. To do that, it suffices to prove that
every element of Im(ε) belongs to the subspace generated by B. If we consider an
element w = (ej1 , . . . , ejb) ∈ Im(ε), we have

w =

{
z1,j1 + · · ·+ zb,jb if b is odd,
z1,j1 + · · ·+ zb,jb + z1,1 if b is even,

since

(ej1 , e1, . . . , e1)+

b− 1


(e1, ej2 , . . . , e1)+

...
(e1, . . . , e1 , ejb) =

(ej1 , ej2 , . . . , ejb)

b odd

(e1, e1, . . . , e1)+

(ej1 , e1, . . . , e1)+

b− 1


(e1, ej2 , . . . , e1)+

...
(e1, . . . , e1 , ejb) =

(ej1 , ej2 , . . . , ejb)

b even

Let A be a subset of the plaintext set M such that |A| = dimF2 (〈Im(ε)〉) =

2mb− (b− 1). Let ai ∈ A, 1 ≤ i ≤ |A|. We construct the (|A| × 2mb)-matrix H such
that the i-th row is the image of the parallel map ε applied to the plaintext ai ∈ A,
for i ∈ {1, · · · , |A|}:

H =


ε(a1)

ε(a2)
...

ε(a|A|)

 =


ε′(a1

1) ε′(a1
2) · · · ε′(a1

b)

ε′(a2
1) ε′(a2

2) · · · ε′(a2
b)

...
...

...
...

ε′(a
|A|
1) ε′(a

|A|
2) · · · ε′(a

|A|
b)

 . (4.3)

We would like to determine the expected rank for such a matrix. Generally speak-
ing, for a random (t × n)-matrix with entries in the finite field Fq, we can use the
following well known results:

75

Chapter 4. A new representation

Theorem 4.2.4 ([MMM04]). Let t, k, n ∈ N \ {0}, where k ≤ n and k ≤ t.

1. The number of ordered k-tuples of linearly independent vectors in (Fq)n is

(qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1).

2. The number of k-dimensional subspaces of (Fq)n is given by the q-binomial co-
efficient (

n

k

)
q

=

∏
0≤i≤k−1(qn − qi)∏
0≤i≤k−1(qk − qi)

.

3. The number of (t × n)-matrices of rank k with entries in Fq is given by the
following formula

dk,t =

(
n

k

)
q

∏
0≤i≤k−1

(qt − qi).

We note that (
n
k−1

)
q(

n
k

)
q

=
qk − 1

qn−k+1 − 1
, (4.4)

since(
n
k−1

)
q(

n
k

)
q

=

∏
0≤i≤k−2(qn − qi)∏

0≤i≤k−2(qk−1 − qi)
·
∏

0≤i≤k−1(qk − qi)∏
0≤i≤k−1(qn − qi)

=
1

qn − qk−1
·
∏

0≤i≤k−1(qk − qi)∏
0≤i≤k−2(qk−1 − qi)

=
1

qn − qk−1
·
qk−1(qk − 1)

∏
0≤i≤k−2(qk−1 − qi)∏

0≤i≤k−2(qk−1 − qi)
=

qk − 1

qn−k+1 − 1
.

By using the previous theorem, the relation in (4.4) and observing that

dt−2,t

dt,t
=
dt−2,t

dt−1,t

dt−1,t

dt,t

we immediately get the following corollary:

Corollary 4.2.5. Let q = 2 and suppose t < n. We have the following relations:

dt,t = (2n − 1)(2n − 2) · · · (2n − 2t−1);

dt−1,t

dt,t
=

(2t − 1)

(2n − 2t−1)
<

1

2n−t−1
≤ 1;

dt−2,t

dt,t
=

(2t − 1)(2t−1 − 1)

3(2n − 2t−2)(2n − 2t−1)
.

76

4.2. A first representation

Corollary 4.2.6. Let q = 2 and suppose t = n. We have the following relations:

dn,n = (2n − 1)(2n − 2) · · · (2n − 2n−1);

dn−1,n

dn,n
=

2n − 1

2n−1
≈ 2 > 1;

dn−2,n

dn,n
=

(2n − 1)(2n−1 − 1)

9 · 22n−3
.

In other words, the probability that a (t× n) random matrix (t < n) with entries
in F2 has rank exactly t is significantly greater than the probability of having rank
equal to t− 1 or t− 2 or less. Instead, the probability that a square (n× n) random
matrix has rank n− 1 is the greatest.

Remark 4.2.7. In theory, the previous theorem can not be applied to our case be-
cause our construction imposes specific constraints, for example on the row-weight.
However, in practice our ratio dt−1,t

dt,t
approaches that of the Corollary 4.2.6 for t =

dimF2 (〈Im(ε)〉).

4.2.1 Application to AES

Because of the AES structure, we assign the following values to the parameters
we have previously introduced. Let V = (F2)r be our starting vector space with
r = 128 and W = (F2)s, s > 128. We need to establish s. We consider the quotient
F256

∼= F2[x]/〈m〉, where m = x8 + x4 + x3 + x + 1 ∈ F2[x] is the AES-polynomial.
So m = 8. According to the previous section, we consider ε′ : F28 → (F2)256 by
means of a primitive element γ of F256, which is a root of the primitive polynomial3

n = x8 + x4 + x3 + x2 + 1 ∈ F2[x], and we define our parallel map ε : V → W , with
r = mb = 128 and s = 2mb = 4096, as

ε(v1, . . . , v16) = (ε′(v1), . . . , ε′(v16)).

We have that dimF2

(
〈Im(ε)〉

)
= 4081, by Proposition 4.5.3.

A tipical round function of the AES cryptosystem consists of the composition of two
parallel maps (AddRoundKey and SubBytes [Section 2.1.1] operations) and two non-
parallel maps (ShiftRows and MixColumns operations [Section 2.1.2]). We view the
SubBytes (and AddRoundKey) operation as a parallel map π

π : (F28)16 → (F28)16

(y1, · · · , y16) 7→ (π1(y1), · · · , π16(y16))

where yi ∈ F28 and πi ∈ Sym(F256), for 1 ≤ i ≤ 16. In the SubBytes case, each
component πi, where 1 ≤ i ≤ 16, is composition of inversion operation and an affine

3note that n 6= m; we could not use m because it is not primitive.

77

Chapter 4. A new representation

map; in the AddRoundKey case, we have a sum with the round-key. By the Theorem
1.1.8 we recalled in the first chapter, we have that Sym(F256) = 〈ax+ b, x254〉, where
a, b ∈ F256. We note that a parallel map can be linearized using elementary results
from Representation Theory.

Moreover, we claim that ShiftRows is linear over (F2)4096 and that MixColumns is
not linear over (F2)4096, as follows.
First of all, we recall the map that describes the ShiftRows operation:

sh : (F28)16 → (F28)16

(y1, y2, · · · , y16) 7→ (y1, y6, y11, y16, y5, y10, y15, y4, y9, y14, y3, y8, y13, y2, y7, y12).

Denoting by y = (y1, · · · , y16), we note that

ε(y) = (ε′(y1), ε′(y2), ε′(y3), ε′(y4), ε′(y5), · · · , ε′(y16))

and
ε(sh(y)) = (ε′(y1), ε′(y6), ε′(y11), ε′(y16), ε′(y5), · · · , ε′(y12)).

The map sh is linearly extendible because
∑

i∈I ε(b
i) = 0 clearly implies the following

equality
∑

i∈I ε(sh(bi)) = 0. According to Lemma 4.1.6, it is possible to construct the
linear map

Ash : (F2)4096 → (F2)4096

and so the ShiftRows operation is linear over (F2)4096.

Now, we show that the MixColumns operation is not linear over (F2)4096 using the
following counterexample.

Example 4.2.8. Let w1, w2, w3, w4 ∈ W such that w1 + w2 + w3 = w4:

w1 = (ε′(γ1), ε′(γ1), ε′(0), ε′(0), ε′(0), · · · , ε′(0))

w2 = (ε′(γ1), ε′(0), ε′(γ1), ε′(0), ε′(0), · · · , ε′(0))

w3 = (ε′(0), ε′(0), ε′(γ1), ε′(0), ε′(0), · · · , ε′(0))

w4 = (ε′(0), ε′(γ1), ε′(0), ε′(0), ε′(0), · · · , ε′(0)).

Now, we apply the MixColumns operation MC to each vector w1, w2, w3, w4 obtaining
the following

MC′(w1) = (ε′(γ1), ε′(γ3), ε′(0), ε′(γ51), ε′(0), · · · , ε′(0))

MC′(w2) = (ε′(γ3), ε′(γ51), ε′(γ3), ε′(γ51), ε′(0), · · · , ε′(0))

MC′(w3) = (ε′(γ1), ε′(γ3), ε′(γ51), ε′(γ1), ε′(0), · · · , ε′(0))

MC′(w4) = (ε′(γ3), ε′(γ51), ε′(γ1), ε′(γ1), ε′(0), · · · , ε′(0))

78

4.2. A first representation

where

V

�MC
��

ε // W

MC′

��
V

ε // W

.

Then we have that

MC′(w1)+MC′(w2)+MC′(w3) = (ε′(γ3), ε′(γ51), ε′(0)+ε′(γ3)+ε′(γ51), ε′(γ1), ε′(0), · · · , ε′(0)).

The third component of the previous vector is a sum in (F2)256 and it has weight equal
to 3. So, the vector MC′(w1) + MC′(w2) + MC′(w3) is an element of the admissible
space but it is a non-admissible vector. Therefore, MC′(w4) = MC′(w1 + w2 + w3) 6=
MC′(w1) + MC′(w2) + MC′(w3) and so the MixColumns is not linear over W . It means
that the extension of MC is not linearly extendible.

Remark 4.2.9. If all the AES operations were parallel maps, it would be possible to
linearize the “full” cryptosystem because the set of the parallel maps is a group with
respect to the composition operation.

4.2.2 Application to PRESENT

As for AES, we assign the right values to our parameters, according to PRESENT’s
structure. Let V = (F2)r be our starting vector space with r = 64, and W = (F2)s

with s > 64. We consider ε′ : F24 → (F2)16 and we define our parallel map ε : V → W ,
with r = mb = 64 and s = 2mb = 256, as

ε(v1, . . . , v16) = (ε′(v1), . . . , ε′(v16)).

We note that dimF2

(
〈Im(ε)〉

)
= 241 (see Proposition 4.5.3).

A typical round function of the PRESENT cryptosystem consists of the composi-
tion of two parallel maps (addRoundKey and sBoxLayer operations [Section 2.3.1])
and one non-parallel map (pLayer operation [Section 2.3.2]). The addRoundKey (and
sBoxLayer) operation is a parallel maps π

π : (F24)16 → (F24)16

(t1, · · · , t16) 7→ (π1(t1), · · · , π16(t16))

where πi ∈ Sym(F16). In the sBoxLayer case, each component πi, where 1 ≤ i ≤ 16,
is given by the table in Section 2.3.1; when π is the addRoundKey operation, we have
only a bitwise sum with the round-key.
Moreover, it is easy to see that pLayer is not linear over (F2)256.

79

Chapter 4. A new representation

Example 4.2.10. Let w1, w2, w3, w4 ∈ W such that w1 + w2 + w3 = w4 and let
ζ, η, ϑ, ξ, µ be distinct non-zero elements in F24 . Suppose that

w1 = (ε′(ζ), ε′(ζ), ε′(0), ε′(0), ε′(0), · · · , ε′(0))

w2 = (ε′(ζ), ε′(0), ε′(ζ), ε′(0), ε′(0), · · · , ε′(0))

w3 = (ε′(0), ε′(0), ε′(ζ), ε′(0), ε′(0), · · · , ε′(0))

w4 = (ε′(0), ε′(ζ), ε′(0), ε′(0), ε′(0), · · · , ε′(0)).

Now, we apply the pLayer transformation pL to each vector w1, w2, w3, w4 obtaining
the following

pL′(w1) = (ε′(η), ε′(0), ε′(0), ε′(0), ε′(η), ε′(0), ε′(0), ε′(0), ε′(η), ε′(0), ε′(0), ε′(0), ε′(η), ε′(0), ε′(0), ε′(0))

pL′(w2) = (ε′(ϑ), ε′(0), ε′(0), ε′(0), ε′(ϑ), ε′(0), ε′(0), ε′(0), ε′(ϑ), ε′(0), ε′(0), ε′(0), ε′(ϑ), ε′(0), ε′(0), ε′(0))

pL′(w3) = (ε′(ξ), ε′(0), ε′(0), ε′(0), ε′(ξ), ε′(0), ε′(0), ε′(0), ε′(ξ), ε′(0), ε′(0), ε′(0), ε′(ξ), ε′(0), ε′(0), ε′(0))

pL′(w4) = (ε′(µ), ε′(0), ε′(0), ε′(0), ε′(µ), ε′(0), ε′(0), ε′(0), ε′(µ), ε′(0), ε′(0), ε′(0), ε′(µ), ε′(0), ε′(0), ε′(0))

Then, we have that

pL′(w4) = pL′(w1 +w2 +w3) 6= pL′(w1)+pL′(w2)+pL′(w3) = (ε′(η)+ε′(ϑ)+ε′(ξ), . . .),

where the first component has weight 3, and so the pLayer is not a linear operation
over W .

Remark 4.2.11. As in the AES case, if all the PRESENT’s operations were parallel
maps, it would be possible to linearize the “full” cryptosystem because the set of the
parallel maps is a group with respect to the composition operation.

4.2.3 Application to SERPENT

Let V = (F2)r be our starting vector space with r = 128. In order to identify the
value of r ≥ s, where W = (F2)s, we have to consider the map

ε′ : (F24)→ (F2)24

.

We define our parallel map ε : V → W with r = mb = 128 and s = 2mb = 512 as

ε(v1, . . . , v32) = (ε′(v1), . . . , ε′(v32)).

Note that dimF2(〈Im(ε)〉) = 2mb− (b− 1) = 481.
The components of a typical Round function are the parallel S-box, the affine transfor-
mation described in Section 2.2.2 and the translation with the round key. Obviously,
key translation and S-box are parallel maps of type

π : (F24)32 → (F24)32

(t1, . . . , t32) 7→ (π1(t1), . . . , π32(t32))

where πi ∈ Sym(F24).

80

4.3. An “orbit” representation

Similarly to what was done for AES and PRESENT, we could provide a coun-
terexample to show that the linear transformation of SERPENT is not linear over
(F2)512.

4.3 An “orbit” representation

Starting from the setting we described in the previous section, we consider our
parallel map ε : (F2m)b → ((F2)2m)b defined as ε(v1, . . . , vb) = (ε′(v1), . . . , ε′(vb)).

Now, let M be a matrix in GL((F2)mb) and let t be its order, Mt = idV . Let V = (F2)r

be a vector space with dimension r = mb and let W = (F2)s be the vector space with
dimension s = 2mbt. The space embedding α : V → W we propose in this section is
defined as follows

α(v) = (ε(v), ε(Mv), . . . , ε(Mt−1v)). (4.5)

From now on, α denotes the map in (4.5). Thanks to Proposition 4.2.3, we can easily
prove the following proposition:

Proposition 4.3.1. Let V = (F2)r be a vector space with dimension r = mb and let
W = (F2)s be the vector space with dimension s = 2mbt. Let α be as in (4.5). Then
we have

2mb− (b− 1) ≤ dimF2

(
〈Im(α)〉

)
≤ (2mb− (b− 1))t

Proof. By Proposition 4.2.3, dimF2

(
〈Im(ε)〉

)
= 2mb− (b− 1). Since

{(ε(v), ε(Mv), . . . , ε(Mt−1v)) | v ∈ V } ⊂ {(ε(v1), . . . , ε(vt)) | v1, . . . , vt ∈ V },

then
dimF2

(
〈Im(α)〉

)
≤ (2mb− (b− 1))t.

On the other hand, considering the projection of {(ε(v), ε(Mv), . . . , ε(Mt−1v))} on
the first component (the first b bytes), the lower bound follows immediately, again
considering Proposition 4.2.3.

We can further improve Proposition 4.3.1 for byte-oriented Mixing Layer.

Proposition 4.3.2. Let V = (F2)r be a vector space with dimension r = mb and let
W = (F2)s be the vector space with dimension s = 2mbt. Let M ∈ GL((F2m)b). Let α
be as in (4.5). Then we have

dimF2

(
〈Im(α)

)
≤ 2mbt− (bt− 1)−mb(t− 1)

81

Chapter 4. A new representation

Proof. Let T = 〈Im(α)〉. For any w1, w2 ∈ W , let w1 ·w2 denote their scalar product.
It is sufficient to show that there exist (bt − 1) + mb(t − 1) elements in T⊥ that are
linearly independent, where T⊥ = {w ∈ W | w · t = 0,∀t ∈ T} is the orthogonal
space of T (or the “dual” of T , in coding theory notation). In fact, this means

dimT⊥ ≥ (bt− 1) +mb(t− 1)

and since dimT = dimW − dimT⊥, our result could follows.
Consider the following matrix product with M = (ai,j)

a11 a12 · · · · · · a1b

a21 a22 · · · · · · a2b

...
...

...
...

...
ab1 ab2 · · · · · · abb




v1

v2

...
vb

 =


v′1
v′2
...
v′b


Obviously, v′1 =

∑b
i=1 via1i.

Let S ′ be a subspace of (F2)m such that dim(S ′) = m − 1. For any 1 ≤ i ≤ b, let
Si = {β ∈ (F2m) | βa1i ∈ S ′}. We note that Si is a subspace and that

{ b∑
i=1

via1i | vi ∈ Si, 1 ≤ i ≤ b
}

= S ′

and that |Si| = |S ′| = 2m−1. There exists a bijection via orthogonality between the
following two sets S = {S < (F2)m| dim(S) = m−1} and {S⊥ < (F2)m| dim(S⊥) = 1};
their cardinality is obviously 2m − 1. We can choose a linear basis for S ∪ {0}, i.e.
S ∪ {0} = 〈e⊥1 , . . . , e⊥m〉. Therefore, each row of M generates m linearly independent
elements of T⊥.
Two relations coming from two different rows are independent, since the matrix M

has full rank, for a total of mb relations.
Now, we construct the elements of the orthogonal space that correspond to the

relations induced by the rows of M. We are considering the case (v,Mv) and we
observe that

b∑
i=1

via1i = v′1 = (Mv)1 (4.6)

where vi ∈ Si.
Since ε′(Si) ⊂ (F2)2m ,we consider wi =

∑
`∈ε′(Si) ` where w(wi) = |ε′(Si)| = 2m−1 and

wi ∈ (F2)2m . The element of T⊥ coming from (4.6) and S is

(w1, . . . , wb, w
′
1, . . . , 0, . . . 0)

82

4.3. An “orbit” representation

where w′1 =
∑

`∈ε′(S′) `. Clearly, m− 1 similar elements come from (4.6) and S.
If we consider the relations given by the h-th row of M, i.e.

∑b
i=1 viahi = v′h, we

obtain the following elements

(w1, . . . , wb, 0, . . . , w
′
h, . . . , 0, . . . 0).

At this point, we have constructed the mb elements of the orthogonal space corre-
sponding to the previous relations.
Instead of considering (v,Mv), since clearly M(Miv) = Mi+1v, we can apply the
previous construction to each pair (Miv,Mi+1v), for 1 ≤ i ≤ t − 2, obtaining the
corresponding elements

(0, . . . , 0︸ ︷︷ ︸
b(i−1)

, w1, . . . , wb︸ ︷︷ ︸
b

, 0, . . . , w′h, . . . , 0︸ ︷︷ ︸
b

, 0, . . . , 0︸ ︷︷ ︸
bt−(i+1)b

) (4.7)

We have found exactly mb(t − 1) vectors in T⊥. Since the pairs (Miv,Mi+1v) and
(Mjv,Mj+1v) with i 6= j involve different bytes, the relations given by (Miv,Mi+1v)

are independent from those given by (Mjv,Mj+1v). Then we have mb(t − 1) inde-
pendent relations (i.e. linearly independent elements of the orthogonal space).

Thanks to Proposition 4.2.3, we have exactly (bt−1) further relations, correspond-
ing to elements in T⊥ of type

(0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
b

, 1, . . . , 1︸ ︷︷ ︸
b

, 0, . . . , 0︸ ︷︷ ︸
bt−(k+1)

) (4.8)

with 1 ≤ k ≤ bt.
The vectors (4.7) and (4.8) form clearly a linearly independent set.

As we have done in previous section, we can construct the following matrix. Let
D be a subset of the plaintext setM such that |D| = dimF2 (〈Im(α)〉). Let ai ∈ D,
1 ≤ i ≤ |D|. We construct the (|D| × 2mbt)-matrix D such that the i-th row is the
image of the map α applied to the plaintext ai ∈ D, for i ∈ {1, · · · , |D|}:

D =


α(a1)

α(a2)
...

α(a|D|)

 =


ε(a1) ε(Ma1) · · · ε(Mt−1a1)

ε(a2) ε(Ma2) · · · ε(Mt−1a2)
...

...
...

...
ε(a|D|) ε(Ma|D|) · · · ε(M t−1a|D|)

 .

We expect the rank of this matrix to have a behavior similar to that of matrix H

(4.3), see Remark 4.2.7. Our experiments confirm this.

Let G̃ be the set of parallel maps π̃ : (F2m)b → (F2m)b, such that, for any 1 ≤ j ≤ b,
π̃j(x) = ax+ c, with a 6= 0, c ∈ F2m (a and c do not depend on j).

83

Chapter 4. A new representation

Let Ḡ be the set of parallel maps π̄ : (F2m)b → (F2m)b, such that, for any 1 ≤ j ≤ b,
π̄j(x) = x+ dj, with dj ∈ F2m .
Note that both G̃ and Ḡ are subgroups of Sym((F2m)b) and we define G as

G =
〈
G̃, Ḡ,M

〉
< Sym((F2m)b).

The following result holds:

Proposition 4.3.3. Let σ be either an element of G̃ or an element of Ḡ, then there
exists Aσ : W → W which is linear.

Proof. We want to apply Lemma 4.1.6 and so we must only show that σ is linear-
ly extendible. Let {vi}i∈I ⊂ V such that

∑
i∈I α(vi) = 0, we have to prove that∑

i∈I α(σ(vi)) = 0. Note that
∑

I α(vi) = 0 is equivalent to∑
I

(
ε′(vi)1, . . . , ε

′(vi)b, ε′(Mvi)1, . . . , ε
′(Mvi)b, . . . , ε′(Mt−1vi)1, . . . , ε

′(Mt−1vi)b
)

= 0.

Then we have the following system Sj for any 1 ≤ j ≤ b

Sj =



∑
I ε
′(vij) = 0∑

I ε
′((Mvi)j) = 0

...∑
I ε
′((Mt−1vi)j) = 0.

Using Lemma 4.2.2, we have that Sj is equivalent to S ′j

S ′j =


|{` | v`j = vij}| is even ∀i ∈ I
|{` | (Mv`)j = (Mvi)j}| is even ∀i ∈ I
...

|{` | (Mt−1v`)j = (Mt−1vi)j}| is even ∀i ∈ I.

Suppose σ ∈ G̃ which means that σ(v) = σ(v1, · · · , vb) = (σ1(v1), · · · , σb(vb)) where
σi(vi) = avi + c for any 1 ≤ i ≤ b and a 6= 0, c ∈ F2m .
Since M is linear, we have

(Mhσ(v`))j = (Mh(av`1 + c, · · · , av`b + c))j

= (aMhv` + Mh(c, · · · , c))j
= (aMhv`)j + (Mh(c, · · · , c))j
= a(Mhv`)j + c̄,

where c̄ is a constant independent of `.

84

4.3. An “orbit” representation

We have that,∀i ∈ I and for any 1 ≤ h ≤ t− 1, |{` | (Mhv`)j = (Mhvi)j}| is even
and so that |{` | a(Mhv`)j + c̄ = a(Mhvi)j + c̄}| is even. Thanks to Lemma 4.2.2, our
thesis follows.

Suppose now that σ ∈ Ḡ, i.e. σ(v) = v + d for some d ∈ V .
Since

(Mhσ(v`))j = (Mh(av` + d))j

= (Mhv`)j + (Mh(d))j

= (Mhv`)j + d̄,

where d̄ is a constant independent of ` and |{` | (Mhv`)j = (Mhvi)j}| is even, we have
that

|{` | (Mhv`)j + d̄ = (Mhvi)j + d̄}|

is even. By Lemma 4.2.2, our thesis follows.

4.3.1 Application to AES

Let V = (F2)r be a vector space with dimension r = 128 and let M : V → V be
the MixingLayer of AES, that is, the composition of ShiftRows and MixColumns. Since
M has order equal to 8 (i.e. M8 = idV), the map α : V → W we propose is defined as
follows

α(v) = (ε(v), ε(Mv), . . . , ε(M7v)), (4.9)

where W = (F2)s is the vector space with dimension s = 2mbt = 215 and ε is the map
defined in Subsection 4.2.1: ε : (F2)128 → (F2)4096.
Let T = 〈Im(α)〉 with α in (5.1). We can easily determine dim(T).

Fact 4.3.4. In the AES case we have

dimF2(T) = 2mbt− (bt− 1)−mb(t− 1) = 31745.

Proof. Let λ = 2mbt− (bt− 1)−mb(t− 1). By computational experiments, we have
found a (λ× 2mbt) full rank matrix for the α representation in the AES case. Which
means dimF2 T ≥ λ. Thanks to Proposition 4.3.2 we conclude that dimF2 T = λ.

We note that the group

G =
〈
G̃, Ḡ,M

〉
< Sym((F28)16).

contains all the permutations of the AES-round function, except notably for the S-box
operation.

85

Chapter 4. A new representation

Proposition 4.3.5. Let M be the MixingLayer. Then α is a space embedding with
respect to G =

〈
G̃, Ḡ,M

〉
.

Proof. According to Proposition 4.3.3, there exists a linear map Aσ : W → W in case
σ is G̃ or Ḡ. We note that the previous result is independent from M. Let M be the
MixingLayer M. Since α(vi) = (ε(vi), ε(Mvi), . . . , ε(M7vi)) and

α(Mvi) = (ε(Mvi), ε(M2vi), . . . , ε(M8vi))

= (ε(Mvi), ε(M2vi), . . . , ε(vi))

α(Mvi) is a permutation of α(vi). Obviously, we have that
∑

i∈I α(vi) = 0 implies∑
i∈I α(Mvi) = 0.

With a fixed K, the encryption φK is the composition of AddRoundKey, Subbytes
and MixingLayer. So the only part of φK which is not linear (with our map α) is the
SubBytes operation.

4.3.2 Application to PRESENT

Let V = (F2)r be a vector space with dimension r = 64 and let M : V → V be
the pLayer of PRESENT. Since M3 = idV , the map α : V → W we propose is defined
as follows

α(v) = (ε(v), ε(Mv), ε(M2v)), (4.10)

where W = (F2)s is the vector space with dimension s = 2mbt = 768. Let α be as in
(4.10) and T = 〈Im(α)〉. Also in this case it is possible to prove (with a computation)
that dimF2(T) = 2mbt− (bt− 1)−mb(t− 1) = 593

With a fixed K, the encryption φK is the composition of addRoundKey, sBoxLayer
and pLayer. So the only part of φK which is not linear (with our map α) is the
sBoxlayer operation.

4.3.3 Application to SERPENT

Let V = (F2)r be a vector space with dimension r = 128 and let M : V → V be
the affine transformation of SERPENT. Since the order of M is greater than 280 it is
huge and impractical to consider the map α : V → W

α(v) = (ε(v), ε(Mv), . . . , ε(M280

v), . . .). (4.11)

sinceW = (F2)s would have s = 2mbt > 24 32 280 = 289, making the rank computation
impossible with nowadays technology.

86

4.4. Other representations of this kind

4.4 Other representations of this kind

We can also build other representations similar to those described in previous
sections. The main objective in these constructions is to identify the right compromise
between computational feasibility and quantity of information that can be obtained.
In Section 4.2, we constructed the embedding ε that has been useful to make linear
the S-box maps which are the classical non-linear maps of a cryptosystem. We had to
abandon the linearity of MixColumns (for AES) and the pLayer (in case of PRESENT).
In order to use some more information about the MixColumns (or the pLayer for
PRESENT), we have considered the embedding given in Section 4.3:

α(v) = (ε(v), ε(Mv), . . . , ε(Mt−1v)),

where M is the full Mixing Layer. The strength of this representation is that we can
exploit the low order of M to force the linearity of M. The disadvantages are that we
have lost some computational efficiency and that the S-box is non-linear again (but
with a lower non-linearity).

For AES, we considered also the embedding given by

α(v) = (ε(v), ε(MC(v)), . . . , ε(MC3(v))),

since the order of the MixColumns is equal to 4 and the MixColumns operation was the
only to be non-linear in Section 4.2. Unfortunately, in this context both the ShiftRows
and the parallel maps are non-linear and so we put aside this idea.

Although the following two embeddings could provide a lot of information about
a cryptosystem,

• α(v) = (ε(v), ε((M ◦ Sbox)v), . . . , ε((M ◦ Sbox)t−1v)) (t = o(M ◦ Sbox))

• α(v) = (ε(v), ε((γλσk)v), . . . , ε((γλσk))
t−1v)) (t = o(γλσk))

they are very impractical, since the order of (M ◦ Sbox) and of (γλσk) is huge.

4.5 Further remarks

Let C be any block cipher such that the plain-text space M coincides with the
cipher space. Let K be the key space. Any key k ∈ K induces a permutation τk on
M. SinceM is usually V = (F2)n for some n ∈ N, we can consider τk ∈ Sym(V). We
denote by Γ = Γ(C) the subgroup of Sym(V) generated by all the τk’s. Unfortunately,
the knowledge of Γ(C) is out of reach for the most important block ciphers, such as the
AES [Nat01] and the DES [Nat77]. However, researchers have been able to compute

87

Chapter 4. A new representation

another related group. Suppose that C is the composition of l rounds (the division
into rounds is provided in the document describing the cipher). Then any key k

would induce l permutations, τk,1, . . . , τk,l, whose composition is τk. For any round
h, we can consider Γh(C) as the subgroup of Sym(V) generated by the τk,h’s (with k
varying in K). We can thus define the group Γ∞ = Γ∞(C) as the subgroup of Sym(V)

generated by all the Γh’s. Obviously, Γ ≤ Γ∞ . Group Γ∞ is traditionally called the
group generated by the round functions with independent sub-keys. This group is
known for some important ciphers, for example we have

Proposition 4.5.1 ([SW08],[Wer02]).

Γ∞(AES) = Alt((F2)128).

It is common belief among researchers that ΓAES = Γ∞(AES) = Alt((F2)128). As-
suming this, we show in this section that it is impossible to view ΓAES as a subgroup
of GL(V) with V of small dimension. In Cryptography it is customary to present
estimates as powers of two, so our problem becomes to find the smallest ` such that
ΓAES can be linearized in GL((F2)2`).
Using the Classification Theorem of finite simple groups (CFSG, see e.g.[Cam99]), it
is possible to show that ` = 128. In fact, the regular representation gives a bound
` ≤ 128 and for n > 8 the minimal dimension of any nontrivial representation of
Alt(V) (over any field) can be proved to be at least (n−2) ([KL90]). However, CFSG
is a very deep and involved result, which arises some doubts in the research commu-
nity. As Cameron says in [Cam99]

< It is quite impossible for a layman to judge whether a complete proof of the
theorem currently exists..... A result which has been proved using CFSG, but which
has defined all attempts at an “elementary” proof, probably lies deep.>

We feel desirable to obtain a result4 with an “elementary” proof. A classical proof
is given in [Wag76]. There are two obvious ways to show that a finite group A cannot
be contained (as isomorphic image) in a finite group B. The first is to show that
|A| > |B|, the second is to show that there is η ∈ A such that its order is strictly
larger than the maximum element order in B. Subsection 4.5.1 presents our result
using the first approach and we show that ` ≥ 67, which is more than enough to ensure
the infeasibility of the linearization attack. This subsection’s argument is completely
elementary. Subsection 4.5.2 present our result using the second approach and we
show again that ` ≥ 67. It is interesting that, although here some more advanced
argument is needed (results in number theory), we reach the same estimate.

4this estimate is weaker, but strong enough to show the linearization infeasibility.

88

4.5. Further remarks

4.5.1 First approach

In this subsection we show that the order of Alt((F2)128) is strictly larger than the
order of GL(V), with V = (F2)266 , so that ` ≥ 67.

We begin with showing a lemma.

Lemma 4.5.2. The following inequality holds

2(27)19 < 2128! < 2(27)20 .

Proof. Let n = 27, we have to show 2n
19
< 2n! < 2n

20
. We first show that 2n

19
< 2n!.

The following inequality holds for 1 ≤ i ≤ n− 2 and 1 ≤ h ≤ 2n−i

1

2n−i
≥ 1

2n−i+1 − h
. (4.12)

Clearly

2n! > 2n
19 ⇐⇒ 2n(2n − 1)! > 2n · 2n19−n

⇐⇒ (2n − 1)(2n − 2)! > 2n
19−n · 2n − 1

2n − 1
.

We apply (4.12) with i = 1 and h = 1 and so we must prove

(2n − 1)(2n − 2)! > 2n
19−n · 2n − 1

2n−1
,

i.e. (2n − 2)! > 2n
19−n−(n−1). We use the same inequality for all 2 ≤ h ≤ 2n−1 and

we obtain that we must verify (2n−1 − 1)! > 2n
19−n−2n−1(n−1). Then we proceed by

applying (4.12) for all 2 ≤ i ≤ n − 2 and all 1 ≤ h ≤ 2n−i, so that we need only to
prove

(2n−(n−1) − 1)! ≥ 2n
19−n−

∑n−1
i=1 2n−i(n−i) .

In other words, we have to prove

1 > 2n
19−n−

∑n−1
i=1 2n−i(n−i), that is, 0 > n19 − n−

n−1∑
i=1

2n−i(n− i). (4.13)

But a direct check shows that the right-hand size of (4.13) holds when n = 27.

We are left to demonstrate the following inequality: 2n! < 2n
20 .

We proceed by induction for 2 ≤ n ≤ 27. In this range a computer computation
shows that

n20 + 2nn+ 2n < (n+ 1)20. (4.14)

89

Chapter 4. A new representation

When n = 2, we have 22! < 2220 . Suppose that 2n! < 2n
20 and n ≤ 27. We have

to prove that 2(n+1)! < 2(n+1)20 . Since 2n+1! = (2n · 2)! = 2n!(2n + 1) · · · (2n + 2n), we
have

2n!(2n + 1) · · · (2n + 2n) < 2n
20+n+1 · (2n + 2) · · · (2n + 2n) ≤ 2n

20+2n(n+1) = 2n
20+2nn+2n

and, applying (4.14), we get 2n
20+2nn+2n < 2(n+1)20 .

Then the claimed inequality 2n+1! < 2(n+1)20 follows.

Our result is contained in the following proposition.

Proposition 4.5.3. Let V = (F2)2` with ` ≥ 2. If G < GL(V), with G isomorphic
to Alt((F2)128), then ` ≥ 67.

Proof. If G < GL(V), then |G| ≤ |GL(V)|. But |Sym((F2)128)| = 2128! > 22133 thanks
to Lemma 4.5.2 and so

|G| = |Alt((F2)128)| = |Sym((F2)128)|
2

>
22133

2
= 22133−1 > 22132

> |GL((F2)266

)| .

Therefore, ` = 66 is not large enough.

An immediate consequence of the previous proposition is that the AES cannot be
linearized unless using matrices of size at least 267, which is obviously impractical.

Remark 4.5.4. The previous proposition could be used also for any other block cipher
C acting on 128−bit messages such that Γ∞(C) = Alt((F2)128), e.g. the SERPENT
([BAK98]).

4.5.2 Using the order of the elements

In this subsection we compare the maximum order of elements in the two groups
Alt((F2)128) and GL((F2)2`). We use permutations of even order. We denote by o(σ)

the order of any permutation σ, with σ ∈ Alt((F2)128) or σ ∈ GL((F2)2`).
The best available result for GL((F2)2`) is given by the following theorem

Theorem 4.5.5 ([Dar08]). Let σ ∈ GL((F2)N), with o(σ) is even and N ≥ 4. Then

o(σ) ≤ 2(2N−2 − 1) = 2N−1 − 2.

Moreover, there is σ ∈ GL((F2)N) whose order attains the upper bound.

Proof. It comes directly from Theorem 1 in [Dar08], with p = q = 2 and N ≥ 4 (so
point (a) and (b) do not apply).

90

4.5. Further remarks

As regards the order of the elements in Alt((F2)128), we would like to use the
following theorem

Theorem 4.5.6 ([DM96]). If n ≥ 7, then Alt((F2)n) contains an element η of order
(strictly) greater then e

√
(1/4)n lnn.

The previous theorem is the special case of Theorem 5.1.A (p.145 in [DM96]) when
q = 2.
In order to be able to compare the two estimates coming from Theorem 4.5.5 and
Theorem 4.5.6, we rewrite Theorem 4.5.6 as follows, in order to have o(η) even. Our
proof is an easy adaption of the proof contained in [DM96].

Theorem 4.5.7. If n ≥ 28, then Alt((F2)n) contains an element η with o(η) >

e
√

(1/4)n lnn and o(η) even.

Proof. Suppose that p1, . . . , pr are distinct odd primes elements such that 2 + p1 +

· · · + pr ≤ n. Then Alt((F2)n) contains an element whose non trivial cycles have
length 2, p1, . . . , pr and whose order is therefore 2p1 · · · pr.
We are going to show that there is z ∈ R such that

2 +
∑

2<p≤z

p ≤ n and (ϑ(z))2 >
1

4
n ln(n)

where ϑ(z) = ln(2) +
∑

2<p≤z ln(p) = ln(2) + ϑ∗(z).

Let f(z) = z
ln(z)

. Since f(z) is an increasing function for z > e, we have

2 +
∑

2<p≤z

p = f(2) ln(2) +
∑

2<p≤z

f(p) ln(p)

= f(2) ln(2) + f(3) ln(3) +
∑

3<p≤z

f(p) ln(p)

≤ f(z) ln(3) +
∑

3<p≤z

f(z) ln(p)

=
∑

2<p≤z

f(z) ln(p) = f(z)
∑

2<p≤z

ln(p) = f(z)ϑ∗(z).

where we have used that f(2) ln(2) + f(3) ln(3) < f(z) ln(3) if n ≥ 28 (note that
ϑ(11) = 28). We take z such that f(z)ϑ∗(z) = n. Since ϑ∗(z) > z/2 for all z ≥ 11,
we have

n =
zϑ∗(z)

ln(z)
<

2(ϑ∗(z))2

ln(2ϑ∗(z))
= f(4(ϑ∗(z))2).

However we also have f(n ln(n)) < n. Since f is an increasing function, this shows
that n ln(n) < 4(ϑ∗(z))2 < 4(ϑ(z))2.

91

Chapter 4. A new representation

Now, we compare the estimate from Theorem 4.5.5 and Theorem 4.5.6.
Take n = 2128 and η ∈ Alt((F2)128) such that o(η) ≥ et (o(η) even), where t =√

(1/4)n lnn =
√

(1/4)2128 ln(2128).
Since

et = e
√

2126128 ln 2 = e
√

2133 ln 2 = (e
√

2 ln 2)266

,

by replacing e with 2log2 e, we obtain

et = (2(log2 e)
√

2 ln 2)266

= 2266(log2 e)
√

2 ln 2 = 2266ε,

where ε ∈ R is circa 1.69. According to Theorem 4.5.7, the order of η is at least
o(η) ≥ e266ε. If Alt((F2)128) ⊂ GL((F2)N), we then need the the smallest N such that
o(η) ≤ (2N−1− 2) (Theorem 4.5.5). In other words we have to see when the following
inequality holds

o(η) = 2266ε ≤ 2N−1 − 2. (4.15)

We observe that

• if N = 266, then (4.15) is false, since 2266ε > 2266
> 2266−1 − 2;

• if N = 267, then (4.15) is true, since 2266ε < 2266(1.7) < 2267−1 − 2.

Therefore, we need at least ` ≥ 67 in order to embed Alt((F2)128) ⊂ GL(V), which
is exactly the same value as in Proposition 4.5.3.

Remark 4.5.8. It is shown in Landau [Lan03] that the maximum order of an element
in Sym((F2)n) is asymptotic to e

√
n lnn as n→∞. Assuming this, we observe that we

could slightly improve the value of k we need to k ≥ 68.

4.6 Some results on a weaker notion of linearity

The results in this section are jointly with L. Maines and the proofs are contained
in her Master’s thesis [Mai09], supervised by M. Sala.
The main goal sought in Section 4.1, Section 4.2, Section 4.3, and Section 4.4 is to
find practical embedding of (F2)128 into a larger space where all components of the
round function become linear. This is impossible, as shown in Section 4.5, but what
we achieve in Section 4.3 is an embedding where the non-linear maps are “not so far”
from linear maps. There are many notions of “non-linearity”, but none of them can be
easily computed in our setting. When we say “not so far from linear”, we mean that
these functions behave with matrix ranks in a way similar to that of linear maps, as
discussed in Chapter 5.

92

4.6. Some results on a weaker notion of linearity

However, we have been able to introduce a new non -linearity notion, that we call
s-extendibility (Definition 4.6.1). We are not able to apply it in the embedding

α : v → (ε(v), ε(Mv), · · · , ε(M7v)). (4.16)

but we can apply it5 to

α : v → (ε(v), ε(Mv)).

and so our definition and our results (the main results of this section is Theorem
4.6.6) should be seen as a step forward the complete understanding of the surviving
non-linearity in (4.16).

Definition 4.6.1. Let V = (F2)r and W = (F2)s, with s > r. Let σ ∈ Sym(V)

and α be an injective map α : V → W . We say that σ is s-extendible (via α) if
∀{vh}1≤h≤s ⊂ V we have

s∑
h=1

α(vh) = 0 ⇐⇒
s∑

h=1

α(σ(vh)) = 0.

Remark 4.6.2. If v1 = v2 and v3 = v4, then ∀α and ∀σ we have

α(vi) + α(v2) + α(v3) + α(v4) = 0

and

α(σ(vi)) + α(σ(v2)) + α(σ(v3)) + α(σ(v4)) = 0.

So if we test the 4-extendibility of σ only on these sets of vectors, we will find that
any σ is 4-extendible. We call these vectors “coupled vectors”.

We note that if σ is s-extendible ∀s ∈ N, then σ is linearly extendible, according
to Definition 4.1.4. Moreover, any linear map is s-extendible for all s. A random
map is a 2-extendible but (with high probability) it is not s-extendible for any s ≥ 4.
Therefore, any 4-extendible map can be considered closer to a linear map. We would
like to have results on our embedding concerning the s-extendibility of maps. A first
result in this direction is obtained using the space embedding

α(v) = (ε(v), ε(Mv)), (4.17)

where M is a (n× n)-matrix with entries in F2m , as we are going to explain.

5under specific conditions on M

93

Chapter 4. A new representation

Definition 4.6.3. Let i, j, x, y, α, β, · · · ∈ F2m and M an (n× n)-matrix with entries
in F2m

M =


m11 m12 . . . m1n

m21 m22
...

...
mn1 mnn

 .

The vectors w1, w2, w3, w4 ∈ (F2m)2n are 4-related vectors if they can be permuted
in order to have the following form:

1 2 . . . n+ 1 . . . 2n

1 w1, (i, x, . . . m11i+m12x+ . . . , . . . mn1i+mn2x+ . . .)

2 w2, (i, y, . . . m11i+m12y + . . . , . . . mn1i+mn2y + . . .)

3 w3, (j, x, . . . m11j +m12x+ . . . , . . . mn1j +mn2x+ . . .)

4 w4, (j, y, . . . m11j +m12y + . . . , . . . mn1j +mn2y + . . .)

Four related vectors w1, . . . , w4 are actually admissible vectors α(v1) = (ε(v1), ε(Mv1)),
α(v2) = (ε(v2), ε(Mv2)), α(v3) = (ε(v3), ε(Mv3)) and α(v4) = (ε(v4), ε(Mv4)) such
that

ε(v1) + ε(v2) + ε(v3) + ε(v4) = 0 ,

but we do not know the sum ε(Mv1) + ε(Mv2) + ε(Mv3) + ε(Mv4).
Let σ be a parallel maps over (F2m)2n. The image of 4-related vectors via σ can

be seen as

1 2 . . . n+ 1 . . . 2n
1 w1, (σ(i), σ(x), . . . m11σ(i) +m12σ(x) + . . . , . . . mn1σ(i) +mn2σ(x) + . . .)
2 w∗2 , (σ(i), σ(y), . . . m11σ(i) +m12σ(y) + . . . , . . . mn1σ(i) +mn2σ(y) + . . .)
3 w∗3 , (σ(j), σ(x), . . . m11σ(j) +m12σ(x) + . . . , . . . mn1σ(j) +mn2σ(x) + . . .)
4 w∗4 , (σ(j), σ(y), . . . m11σ(j) +m12σ(y) + . . . , . . . mn1σ(j) +mn2σ(y) + . . .)

Definition 4.6.4. 4-related vectors w1, . . . , w4 are totally 4-related if

w1 + w2 + w3 + w4 = 0.

Definition 4.6.5. Given (x, y, z, a, b, c) ∈ N6 and an (n× n)-matrix M, we say that
(x, y, z, a, b, c) fits M if the following sums of elements of det(M) are non-zero:

• the sums having a number of elements equal to

x∑
i=0

(
n− c
i

)(
n− b
x− i

)(
b− i
y

)
x!y!

x∑
i=0

(
n− b
i

)(
n− c
x− i

)(
c− i
z

)
x!z!

y∑
i=0

(
n− a
i

)(
n− c
x− i

)(
c− i
z

)
y!z!

when z = 0, x 6= 0, y 6= 0 when y = 0, x 6= 0, z 6= 0 when x = 0, y 6= 0, z 6= 0

94

4.6. Some results on a weaker notion of linearity

• the sums having a number of elements equal to

x∑
i=0

y∑
j=0

(
n− c
i

)(
n− b
x− i

)(
n− a
j

)(
(n− c)− i
y − j

)(
c− (x− i)− j

z

)
x!y!z!

when x 6= 0, y 6= 0, z 6= 0.

The main result of this section is the next theorem that gives sufficient conditions
on M in order to make all σ : V → V into 4-exendible maps.

Theorem 4.6.6. Let M be an (n× n)-matrix, with entries in F2m such that:

1. det(M) 6= 0;

2. all the k × k minors are non-zero (0 < k < n);

3. all sextuple (x, y, z, a, b, c) such that

• 0 < a, b, c ≤ n;

• a+ b+ c = 2n;

• a ≥ b ≥ c;

• 0 ≤ x, y, z ≤ n;

• x+ y + z = n;

• x < a, y < b, z < c;

fit M.

Then any 4-related vectors are totally related if and only if they are coupled.

Thanks to Theorem 4.6.6 and Remark 4.6.2, we have the following

Corollary 4.6.7. In the hypothesis of Theorem 4.6.6, any map is 4-extendible.

95

A related-key attack

5.1 Related-key distinguishing attacks

Let v1, . . . , vρ be some related plaintexts, let K1, . . . , Kτ be some related keys.
With related vectors we mean that they satisfy a prescribed algebraic relations, e.g.
they share half of their bytes. For any key K let φK be the encryption function associ-
ated toK. We denote by π1, . . . , πτ some random permutations in the message/cipher
space V .

φ

?

vi

?
yi,j = φKj(vi)

Kj
-

πj

?

vi

?
ȳi,j = πj(vi)

A (related-key) distinguishing attack on C is any algorithm able to distinguish the
ciphertexts {yi,j}1≤i≤ρ,1≤j≤τ from the random ciphertexts {ȳi,j}1≤i≤ρ,1≤j≤τ .
For the full AES, no effective distinguishing attack is present in literature.

5.2 Our setting

LetM = V = (F2)r be a vector space with dimension r = mb. Let M ∈ GL(V) of
order t. LetW = (F2)s be the vector space with dimension s = 2mbt. Let α : V → W

be the space embedding defined as in (4.5)

α(v) = (ε(v), ε(Mv), . . . , ε(Mt−1v)).

Let λ = dimF2 (〈Im(α)〉). We choose a small set D ⊂ M. For any d ∈ D, we
construct many plaintexts sharing most of their bytes, so that in total we obtain λ
distinct plaintexts {vi}1≤i≤λ. We construct a (λ × r)-matrix H with {vi}1≤i≤λ as
rows. We can consider α(H) as the (λ× 2mbt)-matrix with {α(vi)}1≤i≤λ as rows (see
Section 4.3).

97

Chapter 5. A related-key attack

Remark 5.2.1. Clearly the rows of H are strongly related.

We compute the rank of α(H) and we check that it is very low thanks to the
strong correlation among the rows. (It would be equal to λ− 1 with high probability
if the rows were random.) Starting from H we construct many other matrices with
the same low rank as α(H), having a similar correlation among their rows. In order
to do this, we first construct r (λ× r)-matrices {Hj}1≥j≥r by changing the j−th bit
of all rows of H.

From any 1 ≤ j ≤ r we construct L matrices {Hh
j } of the same size, as follows.

The i-th row of Hj can be written as (v1, . . . , vb) ∈ (F2m)b. For any 1 ≤ h ≤ L, the
i-th row of Hh

i will be (v1γ
h−1, . . . , vbγ

h), where γ is a primitive element of F2m . If we
apply α to all (rows of our) matrices, we will get {α(H)hj }1≤h≤L 1≤j≤r-matrices with
size (λ× 2mbt) all sharing the same rank. Note that Ḡ and G̃ are linearly extendible
(Section 4.3).

Fixed a key k ∈ K, we can encrypt all Hh
j matrices (by encrypting their rows),

thus obtaining a set of Lr matrices {φk(Hh
j)}. We then apply α to each of these

matrices and we get a set of Lr (λ× 2mbt)-binary matrices {H1, . . . ,HLr}.
We compute their ranks {rk(Hj)}1≤j≤rh and consider the following four integers:

1. R0 = |{j | rk(Hj) = λ}|;

2. R1 = |{j | rk(Hj) = λ− 1}|;

3. R2 = |{j | rk(Hj) = λ− 2}|;

4. R3 = |{j | rk(Hj) ≤ λ− 3}|.

Clearly R0 +R1 +R2 +R3 = rL.
What we have done up to now is to associate a set of numerical values (the rank
distributions) to any key k ∈ K. Let Sk be such numerical set. We now take any key
k and view it as k = (k1, . . . , kb) ∈ (F2m)b. We consider the 2m keys built by changing
the first component of k, that it, K = {(β, k2, . . . , kb) | β ∈ F2m}. These keys are
closely related, since they differ in only one component. Our attack consists in

provide statistical evidence that the sets Sk for k ∈ K are significantly different from
sets obtained using random keys and similar1 random matrices .

In the next section we see how we deploy this attack on AES-128.

1In the same space α(v), that is, the rows are admissible vectors.

98

5.3. The AES case

5.3 The AES case

As seen in subection 4.3.1, in the AES case, we have M = V = (F2)128, we
consider M : V → V to be the MixingLayer of AES (its order is equal to 8) and the
space embedding α : V → W with W = (F2)215 (s = 2mbt = 215) is

α(v) = (ε(v), ε(Mv), . . . , ε(M7v)). (5.1)

According to Fact 4.3.4, λ = 2mbt− (bt− 1)−mb(t− 1) = 31745.

We choose a set D = {u1, . . . , u5} of plaintexts, |D| = 5. For any ui ∈ D we construct
exactly λ/5 (related) rows of H as follows:

1. let u1 = (u1, . . . , u16), for 1 ≤ i ≤ λ/5, we construct the rows

vi = (u1, . . . , u13, v14(i), v15(i), v16(i))

where v14(i), v15(i) and v16(i) are random elements of F256 (but we enforce all
rows to be distinct).

2. let u2 = (u1, . . . , u16), for λ/5 + 1 ≤ i ≤ 2(λ/5), we construct the rows

vi = (v1(i), u2, . . . , u14, v15(i), v16(i))

where v1(i), v15(i) and v16(i) are random elements of F256 (but we enforce all
rows to be distinct).

3. let u3 = (u1, . . . , u16), for 2(λ/5) + 1 ≤ i ≤ 3(λ/5), we construct the rows

vi = (v1(i), v2(i), u3 . . . , u15, v16(i))

where v1(i), v2(i) and v16(i) are random elements of F256 (but we enforce all
rows to be distinct).

4. let u4 = (u1, . . . , u16), for 3(λ/5) + 1 ≤ i ≤ 4(λ/5), we construct the rows

vi = (v1(i), v2(i), v3(i), u4, . . . , u16)

where v1(i), v2(i) and v3(i) are random elements of F256 (but we enforce all rows
to be distinct).

5. let u5 = (u1, . . . , u16), for 4(λ/5) + 1 ≤ i ≤ λ), we construct the rows

vi = (u1, v2(i), v3(i), v4(i), u5, . . . , u16)

where v2(i), v3(i) and v4(i) are random elements of F256 (but we enforce all rows
to be distinct).

99

Chapter 5. A related-key attack

If we take D random inM and we construct the corresponding (31745× 32768)-
matrix α(H), we note that its rank ranges from 23000 to 24000. In particular, our
experiments it is convenient to consider an α(H) matrix with rank equal to 23551.
We then proceed to construct {Hh

j }1≤j≤128, 1≤h≤60, where we take γ as the root of the
polynomial x8 +x4 +x3 +x2 + 1, with L = 60. This is a total of 7680 matrices whose
images via α share the same rank 23551.

Fixed a key k ∈ K = (F2)128, we can encrypt all Hh
j matrices (by encrypting

their rows), thus obtaining a set of 7680 matrices {φk(Hh
j)}. We then apply α to

each of these matrices and we get a set of 7680 (31745 × 32768)-binary matrices
{H1, . . . ,H7680}. We compute their ranks {rk(Hj)}1≤j≤7680 and consider the following
four integers:

1. R0 = |{j | rk(Hj) = 31745}|;

2. R1 = |{j | rk(Hj) = 31744}|;

3. R2 = |{j | rk(Hj) = 31743}|;

4. R3 = |{j | rk(Hj) ≤ 31742}|.

Clearly R0 + R1 + R2 + R3 = 7680. So, for any key k ∈ (F2)128, we get our set Sk.
We have chosen k = (0, . . . , 0) ∈ (F256)16. We consider the 256 keys built by changing
the first byte of k, that it, K = {(β, 0, . . . , 0︸ ︷︷ ︸

15

) | β ∈ F256}.

We then get in principle 256 sets Sk, k ∈ K. However, in practice we have been able
to obtain 37 sets Sk, since for each we need a computational effort of 15 days with a
core processor (Intel Xeon X5460, 3.16 GHz). These 37 sets Sk form a sample that
we test against a random sample of 37 value sets.

5.4 Numerical results

In the following figures we plot values coming from {Sk} (stars) and the random
values (dots), as follows

1. in Fig. 5.1 we plot R3 on the x-axis and R1 on the y-axis;

2. in Fig. 5.2 we plot R0 on the x-axis and R1 on the y-axis;

3. in Fig. 5.3 we plot R0 on the x-axis and R3 on the y-axis;

4. in Fig. 5.4 we plot R2 on the x-axis and R3 on the y-axis.

In Fig. 5.3 and Fig. 5.4 dots and stars scatter in a undistinguishable way, but in Fig.
5.1 and Fig. 5.2 we note that the stars tend to huddle together in a horizontal strip.

100

5.4. Numerical results

20 25 30 35 40 45 50 55 60
4320

4340

4360

4380

4400

4420

4440

4460

4480

4500

4520

Figure 5.1: R3 vs R1

101

Chapter 5. A related-key attack

2100 2150 2200 2250 2300 2350
4320

4340

4360

4380

4400

4420

4440

4460

4480

4500

4520

Figure 5.2: R0 vs R1

102

5.4. Numerical results

2100 2150 2200 2250 2300 2350
20

25

30

35

40

45

50

55

60

Figure 5.3: R0 vs R3

103

Chapter 5. A related-key attack

940 960 980 1000 1020 1040 1060 1080 1100 1120 1140
20

25

30

35

40

45

50

55

60

Figure 5.4: R2 +R3 vs R3

104

5.5. Comments

This suggests that we would need to look at R1 in order to find some statistical
evidence. The expected R1-mean is 4436, the mean of dots is 4435 and the mean
of stars is 4440. Although our mean is further from the expected mean than the
dots mean (which is nearly the same as the expected), the difference is not statistical
significant and a Marsaglia-type test fails. However, it is not the mean that concerns
us, but the fact that the stars are closer to their own mean. To point out the difference
in statistical terms, we consider the number of stars within the expected standard
deviation range (4386 ≤ R1 ≤ 4486) and we compare it with the expected number
of values within the same range. The χ2 test gives in this case a probability of 0.5%

that the stars come from a random sample. This is a very strong confidence margin.
To check the effectiveness of our test, we took four random samples and we applied
it. From the χ2 test we obtain probabilities of 63%, 64%, 28%, 24%, which do not
show any significant difference and are much higher than the probability obtained by
our related-key sample. Therefore, our test is validated.

5.5 Comments

There are several comments and remarks that we feel are relevant for our attack:

• The matrix H that we constructed in the AES case is very closely correlated,
since all rows come from just five original rows, with only three bytes varying; we
did try with less closely correlated matrices (for instance, with more free bytes,
or with more starting rows), but we failed to note any significant deviation from
the random behaviour.
We also tried to increase further the correlation (by reducing the number of free
bytes and/or the number of rows in D), but as a result we had a large number of
collisions (i.e. of rows which were the same) and we could not make a working
matrix.
Therefore, our choice of |D| = 5 and 3 free bytes appear optimal, given our
present data.

• We tried to transform our related-key distinguishing attack into a single-key
distinguishing attack, but taking related matrices with a random key did not
show any statistical deviation.
However, we tried a single-key version of our attack on reduced versions of
AES128 and it does show some statistical deviation for a few rounds. Since we
were not so interested in reduced versions of AES, we do not report here there
results.

105

Chapter 5. A related-key attack

• We have mounted our attack also for the PRESENT cipher. Although the cipher
is much smaller, the attack is not much simpler, because we cannot exploit the
byte-oriented structure held by AES. Our preliminary results are encouraging,
but we do not report them here.

• Although algebraic setting for the attack is rather involved, the statistical test
itself is very easy. We can design more sophisticated test, but we need more Sk
to apply them with significance.

106

Appendix

107

Appendix

Here we put the S-boxes of DES.

S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 7 6 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 5 5 3

109

Chapter 6. Appendix

S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

110

Bibliography

[ABKL+07] A. Andrey Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe,
PRESENT: An ultra-lightweight block cipher, Proc. of CHES 2007,
LNCS, vol. 4727, Springer, 2007, pp. 450–466.

[AC08] M. Albrecht and C. Cid, Algebraic techniques in differential cryptanaly-
sis, Crypto. ePrint Arch., Rep. 2008/177, 2008, http://eprint.iacr.org/.

[BAK98] E. Biham, R.J. Anderson, and L.R. Knudsen, Serpent: A new block
cipher proposal, Proc. of FSE 1998, LNCS, vol. 1372, Springer, 1998,
pp. 222–238.

[BB02a] E. Barkan and E. Biham, The Book of Rijndaels, Tech. report, IACR
ePrint Report, 2002/158, 2002.

[BB02b] , In how many ways can you write Rijndael?, Proc. of ASI-
ACRYPT 2002, LNCS, vol. 2501, 2002, pp. 160–175.

[BCD+98] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. M. Matyas, L. O’Connor, M. Peyravian, D. Safford, and
Zunic N., MARS — A candidate cipher for AES, NIST AES Proposal,
1998.

[BD07] M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Gröbner
basis computations with Boolean polynomials, Elec. Proc. of MEGA 2007,
2007, http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf.

[BDCBP03] A. Biryukov, C. De Canniere, A. Braeken, and B. Preneel, A toolbox for
cryptanalysis: Linear and affine equivalence algorithms, Proc.of EURO-
CRYPT 2003, LNCS, vol. 2656, 2003, pp. 33–50.

[BDK05] E. Biham, O. Dunkelman, and N. Keller, Related-key boomerang and
rectangle attacks, Proc. of EUROCRYPT 2005, LNCS, vol. 3494, 2005,
pp. 507–525.

111

Bibliography

[BK00] E. Biham and N. Keller, Cryptanalysis of reduced variants of Rijndael,
Proc. of AES3, 2000.

[BK09] A. Biryukov and D. Khovratovich, Related-key Cryptanalysis of
the Full AES-192 and AES-256, Tech. report, IACR, 2009,
http://eprint.iacr.org/2009/317.

[BPW06a] J. Buchmann, A. Pyshkin, and R. P. Weinmann, Block ciphers sensi-
tive to Gröbner basis attacks, Proc. of CT-RSA 2006, LNCS, vol. 3860,
Springer, 2006, pp. 313–331.

[BPW06b] , A zero-dimensional Gröbner basis for AES-128, Proc. of
FSE 2006, LNCS, vol. 4047, Springer, 2006, pp. 78–88.

[BS93] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryp-
tosystems, J. of Cryptology 4 (1993), 3–72.

[Buc65] Bruno Buchberger, Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Polyno-
mideal, Ph.D. thesis, Innsbruck, 1965.

[Buc06] B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for
finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475–511.

[Cam99] P. J. Cameron, Permutation groups, London Mathematical Society Stu-
dent Texts, vol. 45, Cambridge University Press, Cambridge, 1999.

[Carar] C. Carlet, Boolean methods and models, ch. Boolean Functions for Cryp-
tography and Error Correcting Codes, Cambridge University Press, to
appear.

[CDVSar] A. Caranti, F. Dalla Volta, and M. Sala, On some block ciphers and
imprimitive groups, AAECC (to appear), 10.

[CGC03] NESSIE D20 - NESSIE security report, 2003,
http://citeseer.ist.psu.edu/568219.html.

[CKK+01] J.H. Cheon, M. Kim, K. Kim, J.Y. Lee, and S. Kang, Improved impossible
differential cryptanalysis of Rijndael and Crypton, Proc. of ICISC 2001,
LNCS, vol. 2288, 2001, pp. 39–49.

112

Bibliography

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient algo-
rithms for solving overdefined systems of multivariate polynomial equa-
tions, Proc. of EUROCRYPT 2000, LNCS, vol. 1807, Springer, 2000,
pp. 392–407.

[CMR05] C. Cid, S. Murphy, and M. J. B. Robshaw, Small scale variants of the
AES, Proc. of FSE 2005, LNCS, vol. 3557, Springer, 2005, pp. 145–162.

[CMR07] , Algebraic aspects of the Advanced Encryption Standard,
Springer, 2007.

[CP02] N. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with overde-
fined systems of equations, Proc. of ASIACRYPT 2002, LNCS, vol. 2501,
Springer, 2002, pp. 267–287.

[CW09] C. Cid and R. P. Weinmann, Block ciphers: algebraic cryptanalysis and
Gröbner bases, Gröbner Bases, Coding, and Cryptography (M. Sala,
T. Mora, L. Perret, S. Sakata, and C. Traverso, eds.), RISC Book Series,
Springer, Heidelberg, 2009, p. to appear.

[CYK09] D. L. Cook, M. Yung, and A. D. Keromytis, Elastic block ciphers:
method, security and instantiations, Int. J. Inf. Sec 8 (2009), no. 3, 211–
231.

[Dar08] M. R. Darafsheh, The maximum element order in the groups related to
the linear groups which is a multiple of the defining characteristic, Finite
Fields Appl. 14 (2008), no. 4, 992–1001.

[DKR97] J. Deamen, L. Knudsen, and V. Rijmen, The block cipher Square, Proc.
of FSE 97, LNCS, vol. 1267, 1997, pp. 149–165.

[DM96] J. D. Dixon and B. Mortimer, Permutation groups, vol. 163, Springer-
Verlag, 1996.

[DR98] J. Daemen and V. Rijmen, AES proposal: Rijndael, Tech. report, NIST,
1998.

[DR02] , The Design of Rijndael, Springer, 2002.

[FKL+00] N. Ferguson, J. Kesley, S. Lucks, B. Schneier, M. Stay, D. Wagner,
and D. Whitinf, Improved cryptanalysis of Rijndael, Proc. of FSE 2000,
LNCS, vol. 1978, Springer, 2000, pp. 213–230.

113

Bibliography

[FSW01] N. Ferguson, R. Schroeppel, and D. Whitinf, A simple algebraic represen-
tation of Rijndael, Proc. of SAC 2001, LNCS, vol. 2259, 2001, pp. 103–
111.

[GM00] H. Gilbert and M. Minier, A collision attack on seven rounds of Rijndael,
Proc. of AES3, 2000.

[KKS00] J. Kelsey, T. Kohno, and B. Schneier, Amplified Boomerang attack
against reduced-round MARS and Serpent, Proc. of FSE 2000, LNCS,
vol. 1978, 2000, pp. 75–93.

[KL90] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical
groups, London Math. Soc. LNS, vol. 129, Cambridge University Press,
1990.

[Knu99] L. Knudsen, Contemporary block ciphers, LNCS 1561 (1999), 105–126.

[Lan03] E. Landau, Ueber die maximalordung der permutation gegbenen grades,
Arch. der Math. und Phys. 5 (1903), no. 3, 92–103.

[LK07] C. Lim and K. Khoo, An Analysis of XSL applied to BES, Proc. of
FSE 2007 (A. Biryukov, ed.), LNCS, vol. 4593, Springer, 2007, pp. 242–
253.

[LN97] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1997.

[Mai09] Lara Maines, Una debole rappresentazione del gruppo simmetrico, Mas-
ter’s thesis (laurea specialistica), University of Trento, Department of
Mathematics, 2009.

[Mat93] M. Matsui, Linear cryptanalysis method for DES cipher, Proc. of EU-
ROCRYPT 93, LNCS, vol. 765, 1993, pp. 386–397.

[MMM04] T. Migler, K. E. Morrison, and O. Mitchell, Weight and
rank of matrices over finite fields, Tech. report, arxiv, 2004,
http://arxiv.org/abs/math/0403314.

[MR02] S. Murphy and M. J. B. Robshaw, Essential algebraic structure within the
AES, Proc. of CRYPTO 2002, LNCS, vol. 2442, Springer, 2002, pp. 1–16.

[Nat77] National Bureau of Standards, The Data Encryption Standard, Federal
Information Processing Standards Publication (FIPS) 46, 1977.

114

Bibliography

[Nat01] National Institute of Standards and Technology, The Advanced Encryp-
tion Standard, Federal Information Processing Standards Publication
(FIPS) 197, 2001.

[NIS00] A statistical test suite for random and pseudorandom number gener-
ators for cryptographic applications, Special Publication SP 800-22,
NIST, 2000, http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-
22-051501.pdf.

[PGC98] J. Patarin, L. Goubin, and N. Courtois, Improved algorithms for isomor-
phisms of polynomials, Proc. of EUROCRYPT 1998, LNCS, vol. 1403,
1998, pp. 184–200.

[Pha04] R. C. W. Phan, Impossible differential cryptanalysis of 7-round advanced
encryption standard (AES), Inform. Process. Lett. 91 (2004), no. 1, 33–
38.

[pol] The software package PolyBori - Polynomials over Boolean Rings,
http://polybori.sourceforge.net/.

[Riv92] R. L. Rivest, The MD5 message-digest algorithm, Internet RFC 1321,
1992.

[RRY00] R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin, RC6 as the AES, Proc.
of AES III, 2000, pp. 337–342.

[Rue92] R. Rueppel, Stream ciphers, Contemporary cryptology - The science of
information integrity, IEEE Press, 1992, pp. 65–134.

[Sch98] B. Schneier, The Twofish encryption algorithm, Dr. Dobb’s Journal of
Software Tools 23 (1998), no. 12, 30–38.

[Sha49] C. E. Shannon, Communication theory of secrecy systems, Bell System
Tech. J. 28 (1949), 656–715.

[Sot98] J. J. Soto, Randomness testing of the AES candidate algo-
rithms, Proc. of AES candidate conference I (National In-
stitute of Standards and Technology, ed.), NIST, 1998,
http://csrc.nist.gov/encryption/aes/round1/r1-rand.pdf, p. 9.

[Sti95] D. R. Stinson, Cryptography, Theory and Practice, CRC Press, 1995.

[SW08] R. Sparr and R. Wernsdorf, Group theoretic properties of Rijndael-like
ciphers, Discrete Appl. Math. 156 (2008), no. 16, 3139–3149.

115

Bibliography

[TZ05] I. Toli and A. Zanoni, An algebraic interpretation of AES-128, Proc. of
AES 2004, LNCS, vol. 3373, Springer, 2005, pp. 84–97.

[Wag76] A. Wagner, The faithful linear representation of least degree of sn and
an over field of characteristic 2., Math. Z. 151 (1976), no. 2, 127–137.

[Wag99] D. Wagner, The Boomerang attack, Proc. of FSE 1999, LNCS, vol. 1636,
1999, pp. 156–170.

[Wer02] R. Wernsdorf, The round functions of Rijndael generate the alternating
group, Proc. of FSE 2002, LNCS, vol. 2365, Springer, 2002, pp. 143–148.

[WLL04] S. Wu, S. Lu, and C. Laih, Design of AES based on dual cipher and
composite field, Proc. of CT-RSA 2004, LNCS, vol. 2964, 2004, pp. 25–
38.

[WOL02] J. Wolkerstorfer, E. Oswald, and M. Lamberger, An ASIC implementa-
tion of the AES SBoxes, CT-RSA: The Cryptographers’ Track at RSA
Conference, LNCS, vol. 2271, 2002, pp. 67–68.

116

