

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

QUERY REWRITING OVER GENERALIZED
XML SECURITY VIEWS

Gabriel Kuper Fabio Massacci Nataliya Rassadko

October 2005

Technical Report # DIT-05-060

.

Query Rewriting over Generalized XML Security Views

Gabriel Kuper Fabio Massacci Nataliya Rassadko
University of Trento

38050, Povo, Trento, Italy
{kuper|massacci|rassadko}@dit.unitn.it

Abstract

We investigate the experimental effectiveness of XML se-
curity views. Our model consists of access control poli-
cies specified over DTDs with XPath expression for data-
dependent access control policies. We provide the notion
of security viewsfor characterizing information accessi-
ble to authorized users. This is a transformed (sanitized)
DTD schema that is used by users for query formulation.
To avoid the overhead of view materialization in query
answering, these queries later undergo rewriting so that
they are valid over the original DTD schema, and thus the
query answer is computed from the original XML data.
We provide an algorithm for query rewriting and show its
performance compared with the naive approach, i.e. the
approach that requires view materialization.

1 Introduction

Specification of access control models for XML data has
been a fairly active field of research in recent years [3, 5,
7, 10, 13]. Most of this previous work enforces security
constraints at the document level by fully annotating the
entire XML document.

As a result, one major limitation of these models is the
lack of support for authorized users to query the data: they
either do not provide schema information of the acces-
sible data, or expose the entire original DTD (or its so-
called “loosened” variant). In both cases, the solution is
hardly practical for large and complex documents. Fur-
thermore, fixing the access control policies at the instance
level without providing or computing a schema, makes
it difficult for the security officer to understand how the

authorized view of a document for a user or a class of
users will actually look like. On the other side, revelation
of excessive schema information might lead to security
breaches: an unauthorized user can deduce or infer con-
fidential information via multiple queries and analysis of
the schema even if only the accessible nodes are queried.

To overcome this limitations, the notion of XML
security views was initially proposed by Stoica and
Farkas [14] and later refined by Fan et al. [8] and Ku-
per et al. [11]. The basic idea is to provide a schema that
describes the data that can be seen by the user, as well as
a (hidden) set of Xpath expressions that describe how to
compute the data in the view from the original data.

In the current paper, we implement and test experimen-
tally the performance of the security view model of [11].
To this end, we define a rewriting algorithm that takes a
user query over the a security view, and rewrites the query
into a query over the original database. We then compare
the cost of evaluating this query with that of evaluating
the original query over a materialized view of the data,
and show that significant performance improvements.

The paper is organized as follows. In Sec. 2 we present
preliminary notions on XML and XPath. Next we intro-
duce the notion of security specification (Sec. 3) and the
notion of view (Sec. 4). In Sec. 5 we show algorithm for
rewriting queries. Implementation issues are discusssed
in Sec. 6. Evaluation of rewriting algorithm is provided in
Sec. 7. Finally, we conclude the paper in Sec. 8.

2 A Primer on XML and XPath

We first review DTDs (Document Type Definitions [4])
and XPath [6] queries.

1

Definition 2.1: A DTD D is a triple (Ele, P, root),
whereEle is a finite set ofelement types; root is a distin-
guished type inEle, andP is a function defining element
types such that for eachA in Ele, P (A) is a regular ex-
pression overEle∪{str}, wherestr is a special type de-
notingPCDATA, We useε to denote the empty word, and
“+”, “ ,”, and “∗” to denote disjunction, concatenation,
and the Kleene star, respectively. We refer toA → P (A)
as theproductionof A. For all element typesB occurring
in P (A), we refer toB as asubelement type(or a child
type) of A and toA as agenerator(or aparent type) of B.

2

We assume that DTD is non-recursive, i.e., that the
graph has no cycles.

Definition 2.2: An XML tree T conforms toa DTDD iff

1. the root ofT is the unique node labelled withroot ;

2. each node inT is labelled either with anEle typeA,
called anA element, or with str , called atext node;

3. eachA element has a list of children of elements and
text nodes such that their labels form a word in the
regular language defined byP (A);

4. each text node carries astr value and is a leaf of
the tree.

We callT an instanceof D if T conforms toD. 2

We consider a class of XPath queries, which corre-
sponds to the CoreXPath of Gottlob et al. [9] augmented
with the union operator and atomic tests, and which is de-
noted by Benedict et al. [8] asX .

The XPath axes we consider as primitive
are child , parent , ancestor-or-self ,
descendant-or-self , self . Gottlob, Koch
and Pichler [9] show how the semantics of such
axes can be computed in polynomial time. In the
sequel we denote byθ one of those primitive axes
and by θ−1 its inverse. Notice that each primitive
axis has its inverse within the same set of primi-
tives. For instancedescendant-or-self −1 =
ancestor-or-self .

Definition 2.3: An XPath expression inX is defined by

the following grammar:

〈xpath〉 ::= 〈path〉 | ‘/‘ 〈path〉
〈path〉 ::= 〈step〉 (‘/‘ 〈step〉)∗
〈step〉 ::= θ | θ‘[‘ 〈qual〉 ‘]‘ | 〈path〉 ‘ ∪ ‘ 〈path〉
〈qual〉 ::= A | ‘ ∗ ‘ | op c | 〈xpath〉 |

〈qual〉 and 〈qual〉 | 〈qual〉 or 〈qual〉 |
not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘

whereθ stands for an axis,c is a str constant,A is a
label,op stands for one of=, <, >, ≤, ≥. The result of
the qual production is calledqualifier and is denoted by
q. 2

For sake of readability, we ignore the difference be-
tween xpath and path, we denote both withp. We
also abbreviateself with ε, child [A]/p with A/p,
descendant-or-self [A]/p with //A/p, q[op c]
with q op c andp = p1/p2, wherep2 is //p′2, is writ-
tenp asp1//p′2. The ancestor axis is also abbreviated as
../.

The semantics of XPath is obtained by adapting to our
fragment theS→, S←, E operators proposed by Gottlob
et al. [9] and identical to proposal of Benedickt et al. [2].
Intuitively S→ [|p|] (N) gives all nodes that are reachable
from a node inN using the pathp. TheS← [|p|] functions
gives all nodes from which a pathp starts and arrives at
some node. TheE [|q|] function evaluates qualifiers and
returns all nodes that satisfyq.

For sake of readability we overload theθ-symbol to
stand for both the semantics and the syntax of axes. So
given a set of nodesN of a documentT we have that
θ(N) = {m | n θ m for n ∈ N}. In other words,θ(N)
returns the nodes that are reachable according the axis
from a node inN . By T (A) we denote the set of nodes
that have element typeA. By T (∗) we denote all nodes
of a document.

The semantics of the other operators is shown in Fig. 1.

3 Security Specifications

An access specificationS is an extension of a document
DTD D that associates security annotations with produc-

2

S→ [|/p|] (N) = S→ [|p|] ({root })
S→ [|θ[q]|] (N) = θ(N) ∩ E [|q|]

S→ [|θ[q]/p|] (N) = θ(S→ [|p|] (N)) ∩ E [|q|]

S→ [|p1 ∪ p2|] (N) = S→ [|p1|] (N) ∪ S→ [|p2|] (N)

S→ [|(p1 ∪ p2)/p|] (N) = S→ [|p1/p|] (N) ∪ S→ [|p2/p|] (N)

S← [|/p|] =

� {n occursinT} if root ∈ S← [|/p|]
∅ otherwise

S← [|θ[q]|]N = θ
−1

(N ∩ E [|q|])
S← [|θ[q]/p|]N = θ

−1
(S← [|p|] ∩ E [|q|])

S← [|p1 ∪ p2|] = S← [|p1|] ∪ S← [|p2|]
S← [|(p1 ∪ p2)/p|] = S← [|p1/p|] ∪ S← [|p2/p|]

E [|A|] = T (A)

E [|q1andq2|] = E [|q1|] ∩ E [|q2|]
E [|q1or q2|] = E [|q1|] ∪ E [|q2|]
E [|not q|] = {n occurs inT} \ E [|q2|]

E [|p|] = S← [|p|]

Figure 1: The semantics of operators

tions ofD.

Definition 3.1: A authorization specificationS is a pair
(D, ann), whereD is a (document) DTD,ann is a par-
tial mapping such that, for each productionA → P (A)
and each child element typeB in P (A), ann(A,B), if
explicitly defined, is an annotation of the form:

ann(A,B) ::= Q[q] | Y | N

where [q] is a qualifier in our fragmentX of XPath.
A special case is the root ofD, for which we define
ann(root) = Y by default. 2

Intuitively, annotating production ruleP (A) of the
DTD with an unconditional annotation is a security con-
straint expressed at the schema level:Y orN indicates that
the correspondingB children ofA elements in an XML
document conforming to the DTD will always be acces-
sible (Y) or always inaccessible (N), no matter what the
actual values of these elements in the document are. If
ann(A,B) is not explicitly defined, thenB inherits the
accessibility ofA. On the other hand, ifann(A,B) is
explicitly defined it mayoverride the accessibility ofB
obtained via propagation.

We should emphasize that semantics of qualifiers pre-
sented in this paper isdifferentfrom that of Fan et al. [8].
According to [8] a false evaluation of the qualifier is con-
sidered as “no label” and requires the inheritance of an
access from ancestors, while we assume that once evalu-
ated on the document, a qualifier is mapped to eitherY or
N. This simplifies the intuition of annotations.

At the data level, the intuition is the following: given
an XML documentT , the document is typed with respect
to the DTD, and the annotations of the DTD are attached
to the corresponding nodes of the document, resulting in
a partially annotatedXML document. Then we convert
the documentT to a fully annotatedone by labelling all
of the unlabelled nodes withY or N. This is done by eval-
uating the qualifiers and replacing them byY or N annota-
tions, and then using a suitable policy for completing the
annotation of the yet labelled nodes of the tree. When ev-
erything is labelled we remove allN-labelled nodes from
T .

The construction of the fully annotated document de-
pends heavily on the overall security policy that is chosen
to get completeness [11]. The top-down procedure that
we describe next is the result of themost-specific-takes-
precedencepolicy which simply says that an unlabelled
node takes the security label of its first labelled ancestor.
Damiani et al. [7] use aclosedpolicy as default: if a node
is not labelled then label it asN.

Definition 3.2: Let (D, ann) be a authorization specifica-
tion andT a XML document conforming toD. Theau-
thorized versionTA of T according to the authorization
specification is obtained fromT as follows:

1. TypeT with respect toD and label nodes withann
values;

2. Evaluate qualifiers top down starting from the root
and replace annotations byY or N depending on the
result;

3. For each unlabelled node, label it with the annotation
of its nearest labelled ancestor;

4. Delete all nodes labelled withN from the result,
making all children of a deleted nodev into children
of v’s parent.

The annotation of the document, before deleting nodes in
the last step, is called thefull annotationof T . 2

3

4 Security Views

We now turn to the enforcement of an access specifica-
tion. To this end, we introduce the notion ofsecurity view
which consists of two parts. The first part is a schema
that is seen by the user, while the second part is a function
that is hidden from the user, which describes how the data
in the new schema should be derived from the original
data. The intuition behind our approach is similar to that
of security views for relational databases in multi-level
security [12] and the notation is borrowed from [8].

4.1 The Definition of Security Views

We first present the syntactic definition of security views.

Definition 4.1: Let D be a DTD. Asecurity viewfor D
is a pair(Dv, σ) whereDv is a DTD andσ is a function
from pairs of element types such that for each element
type A in Dv and element typeB occurring inP (A),
σ(A,B) is an expression inX . 2

Definition 4.2: Let S = (Dv, σ) be a security view. The
semantics ofS is a mapping from documentsT conform-
ing toD to documentsTv such that

1. Tv conforms toDv

2. The nodes ofTv are a subset of the nodes ofT , and
their element type is unchanged.

3. For any noden of T which is in Tv, let A be the
element type ofn, and letB1, . . . ,Bm be the list of
element types that occur inP (A). Then the children
of n in Tv are

⋃

1≤i≤m

S→ [|σ(A,Bi)|] ({n}) .

These nodes should be ordered according to the doc-
ument order in the original document.

Tv is called thematerialized versionof T w.r.t. the view
S. 2

Definition 4.3: A valid security view is one for which the
semantics are always well-defined, i.e., if for every docu-
mentT , its materialized version conforms to the security
view DTD. 2

Not all views are valid: wrong typing, violated cardi-
nality constraints, and other problems could be all causes
of of a view to be invalid.

Security specification and views are related as follows.

Definition 4.4: Let (D, ann) be a authorization specifi-
cation, and letS = (Dv, σ) be a security view forD.
We say thatS is data equivalentto (D, ann) iff for every
documentT , conforming toD, the materialized version
Tv coincides with the authorized versionTA. 2

In our previous work [11] we have presented an algo-
rithm for the construction of views and have shown that
the view that is built by our algorithm is data equivalent
to security annotations for non-recursive DTDs.

The idea behind our algorithm is to eliminate qualifiers
by expanding each qualifier into a union of two element
types: one is the original element type, which is annotated
Y, and the other is a new type, essentially a copy of the
original type, which is annotatedN. Since the tag of an
element uniquely determines the type, it follows that new
type names cannot match any nodes in a document that
conforms to the original DTD. This is not a serious prob-
lem, as all of these new type names are ultimately deleted
in the final security view.

The next step expands the annotation to a “full annota-
tion”. The notion of a full annotation was defined on an-
notated documents, and we showed that every document
has a unique full annotation. At the schema level, how-
ever, this is not the case, as there may be several “paths” in
the DTD that reach the same element type, each of which
results in a different annotation. We use a similar tech-
nique to the way we handle qualifiers, i.e., we introduce
new element types, and label the original oneY and the
“copy” N. Finally, we delete all the element types that are
labelledN, modifying the regular expressions and theσ
functions correspondingly.

We show the algorithmANNOTATE V IEW in Fig. 2 and
algorithmBUILD V IEW in Fig. 3.

Definition 4.5: Let S = (D, ann) be an authorization
specification. The DTD constructed byANNOTATE V IEW

algorithm is thefully annotatedDTD corresponding to
(D, ann). 2

Theorem 4.1: [11] Let (D, ann) be a security specifica-
tion whereD is non-recursive. AlgorithmsANNOTATE

V IEW and BUILD V IEW terminate and produce a valid

4

Algorithm: ANNOTATE V IEW

Input: A authorization specification(D, ann)
Output: Fully annotated DTDD
1: Initialize Dv := D whereann is defined onDv as onD;
2: for all production rulesA → P (A) in Dv do
3: for all element typesB occurring inP (A) do
4: initialize σ (A → P (A) , B) := B[ε]

// Here we will eliminate qualifier annotation
5: for all element typesB with ann(B) = Q[q] do
6: add toDv a new element typeB′ and a production ruleB′ →

P
�
B′
�

7: setP
�
B′
�

:= P (B)

8: for all element typesC occurring inP
�
B′
�

do
9: σ

�
B′ → P

�
B′
�

, C
�

:= σ (B → P (B) , C)

10: setann(B) = Y andann(B′) = N
11: for all production rulesA → P (A) do
12: if B occurs inP (A) then
13: σ (A → P (A) , B) := B[q];
14: σ

�
A → P (A) , B′

�
:= B[¬q];

15: replaceB by B + B′ in P (A)
16: while ann(B) of some element typesB is undefineddo

// Here we will get fully annotated DTDD
17: if all generatorsA of B have definedann(A) then
18: if all ann(A) = Y then
19: setann(B) := Y;
20: else ifall ann(A) = N then
21: setann(B) := N;
22: else
23: add toDv a new element typeB′ and a production rule

B′ → P
�
B′
�

24: setP
�
B′
�

:= P (B)

25: for all element typesC occurring inP
�
B′
�

do
26: σ

�
B′ → P

�
B′
�

, C
�

:= σ (B → P (B) , C)

27: setann(B) = Y, ann(B′) = N,
28: for all generatorsA of B do
29: if ann(A) = N then
30: replaceB with B′ in P (A)

Figure 2: AlgorithmANNOTATE V IEW

Algorithm: BUILD V IEW

Input: Fully annotated DTDD
Output: A security view (Dv , σ)
1: for all element typesB with ann(B) = N do
2: for all production rulesA → P (A) do
3: if B occurs inP (A) then
4: for all C that occurs inP (B) do
5: set σ (A → P (A) , C) :=

σ (A → P (A) , B) /σ (B → P (B) , C) ∪
σ (A → P (A) , C)

6: replaceB by P (B) in P (A) if B → P (B) exists and by
ε otherwise

7: Dv consists of all the element typesA for which ann(A) = Y, with theσ
function restricted to these types.

Figure 3: AlgorithmBUILD V IEW

security view. 2

Theorem 4.2:[11] Let (D, ann) be a authorization spec-
ification,D is non-recursive, let(Dv, σ) the security view
constructed by AlgorithmsANNOTATE V IEW and BUILD

V IEW. Let T be a document,TA the authorized version
of T andTv the materialized version ofT with respect to
(Dv, σ). ThenTA is isomorphic toTv. 2

Theorem 4.3:[11] Let (D, ann) be a authorization spec-
ification for a non-recursive DTD, letP be size of the
largest production rule inD. LetnY be the number of el-
ement types annotated withY, and letnother the number
of element types otherwise annotated or not annotated.
Then the size of the select functionσ generated by the al-
gorithm is bounded byO(nother × |ann|) and the size of
the View DTDDv is bounded byO(nY × Pnother+1). 2

5 Query Rewriting

This section considers rewriting of user queries over se-
curity viewsV = (Dv, σ). More precisely, user provided
with theDTD viewDv poses a query overDv. The query
evaluation procedure may rely on two strategies:

• thenaivestrategy assumes that the user query is eval-
uated over the materialized security viewTv that has
been extracted from initial dataT by means of the
σ-function or directly from the security annotation;

• the rewriting strategy transforms the user queryq
into anequivalentqueryqt using theσ-function over
the initial schemaD. Queryqt can be then evaluated
over the initial data setT without materialization of
Tv.

The naive approach may be extremely time consuming
in the case of very large XML files and multiple queries.
On the other hand, one could precompute and store data
views Tv. This approach may be inefficient for volatile
data (e.g. auction or stock sells) or for data in which in-
tegrity across views is important. Rewriting cost is in-
significant compared to the cost of view derivation from a
large XML document.

Below we present our algorithm for query rewriting
which has two phases: query parsing and further trans-
lation of parsed query intoσ-functions.

The user query is parsed according to the grammar that
we have shown in Definition 2.3. Initially, we consider
the user query as〈xpath〉. We process it recursively re-
sulting in aparse treeaccording to the schema on Fig. 4.

5

〈xpath〉

¼ j
〈step〉 〈path〉

¼ ? j
θ 〈qual〉 〈qual〉. . .

? j
〈step〉 〈path〉

¼ ? j
θ 〈qual〉 〈qual〉. . .

¼ ?
O1 Ok. . .

...
?

Figure 4: Parse tree schema

The intuition of parse tree schema is the following. We
divide 〈xpath〉 into 〈step〉 andremaining〈path〉. 〈step〉
consists ofnode testθ and zero or more qualifiers〈qual〉.
Each of these qualifiers represents a condition that the
node test should satisfy. The condition is a boolean func-
tion of several arguments (Oi, i = 1, k) which are either
〈path〉, literal, or number.

Each node of the parse tree representation of user query
is called asubquery.

For example, the XPath expression
//a/b[(c/text() =‘school’) ∧ (parent :: q)]/d se-
lects all nodesd that is a child ofb, b is a child ofa and
has parentq and childc with text node ‘school ’, a is a
descendant of root node. The parse tree representation is
depicted on Fig. 5

For each subqueryp in XPath parse tree representa-
tion and for each elementA in Dv we compute a local
translationrewrite(p,A) which is based on translations
rewrite(pi, Bj), wherepi is a direct subquery (child in
parse tree) ofp andBj is a node reachable (the graph of
Dv has a path toB) from A.

The algorithm presented in Fig. 6 shows the translation
procedure. More precisely, in lines 1, 17, 29, 35 we can
distinguish whether the subexpression is〈path〉, 〈qual〉,
θ or θ[〈qual〉] respectively. In the case of〈path〉 we pro-
cess first〈step〉 (which is rewritten top1) and then the
remaining part as〈path〉 (which is rewritten top2) re-
cursively. The final step of〈path〉 processing consists in
joining p1 andp2 into pathp1/p2 which represents the
rewritten form of initial〈path〉. The joining procedure is
shown in lines 4- 16 of algorithmQUERY REWRITE.

//a/b[(c/text() = ‘school‘) ∧ (parent :: q)]/d

¼ j
descendant :: a b[(c/text() = ‘school‘) ∧ (parent :: q)]/d

j¼
child :: b[(c/text() = ‘school‘) ∧ (parent :: q)] child :: d

¼ j
child :: b (c/text() = ‘school‘) ∧ (parent :: q)

j¼
c/text() = ‘school‘ parent :: q

¼ j
child :: c/text() ‘school‘

¼ j
child :: c child :: text()

Figure 5: Parse tree of expression
//a/b[(c/text() =‘school’) ∧ (parent :: q)]/d

Parsingθ[〈qual〉] handles separately predicate expres-
sion 〈qual〉 and node testθ. We should mention that
rewriting of predicates inθ[〈qual〉] depends on node test
θ rather than iterated set of DTD nodes. In lines 21- 23
and 27-28 ofQUERY REWRITE we perform joining pro-
cedure respectively for binary and unary function.

In 〈qual〉 we process each operand (either〈path〉, lit-
eral or number) of the function. Since we deal with
unary and binary functions,〈qual〉 has no more than two
operands.

Intuitively, processing of node testθ produces path in
terms ofσ from each elementA of Dv to θ. If θ has
child axis specifier thenrewrite(θ, A) = σ(A, θ).
Sinceparent is inverse ofchild thenrewrite(θ, A)
for θ with parent axis specifier isσ−1(θ, B). Steps 1–
11 of algorithmgetTranslation depicted on Fig. 9 rep-
resent the process of calculatingσ−1(B, nt).

This intuition corresponds to “neighbor” axis spec-
ifiers (e.g. child and parent). In case of
descendant-or-self (ancestor-or-self) we
have to calculate all descendants (ancestors) and all
possible paths to each descendant (ancestor). Finally,
all computed paths should be translated into theσ-

6

function corresponding to the reverse property of axis
specifier. Obviously, descendant/ancestor processing re-
quires a different approach. Thus we introduce two aux-
iliary functions: processChildParent on Fig. 7 and
processDescendAncest on Fig. 8. We should mention
that each of these functions also considers the case when
the node label is∗ (line 3 of processChildParent and
line 7 ofprocessDescendAncest) which requires rewrit-
ing for a union of nodes reachable from considered DTD
node according to axis specifier.

For rewriting of descendant/ancestor relations we use
the data of the statically precomputed tablepreRewrite.
The idea ofpreRewrite calculation is borrowed from [8]
where recProc and traverse procedures are intended
to capture all the paths from all DTD nodes to all their
corresponding descendants, and to translate these paths
to an equivalent paths over the initial DTDD. We up-
dated subroutinesrecProc and traverse so that they
precompute not onlydescendant-or-self but also
ancestor-or-self relations. OurpreRewrite ta-
ble is a recrw table of [8] extended with the third
dimension representing the DTD graph traversal: ei-
ther in bottom up (ancestor-or-self) or top down
(descendant-or-self) direction.

6 Implementation

At the University of Trento we have implemented a pre-
liminary version of a Java tool that accepts user queries
and returns answers as an XML document that is con-
structed from the set of nodes which are both visible to
the user and satisfy the query conditions.

The tool consists of the following main components:

• DTD Parser: we extended the Wutka DTD parser1

to be able to extract the security policy from
the root element and security annotation of each
DTD element. The DTD Parser returns a special
object DTD representing a set of DTD elements
(DTDElement), their attributes (DTDAttribute)
and children configuration. The latter is organized
as a container (DTDContainer object) of items
(DTDItem object). Each item is either a container

1http://www.wutka.com/dtdparser.html

Algorithm: QUERY REWRITE

Input: a subqueryq (as a string)
Output: a queryp locally rewritten in terms ofσ(as a string)
1: if q is 〈path〉 then

// q = firstStep/remainingSteps
2: q1 = q.getFirstStep();p1 = QUERY REWRITE(q1);
3: q2 = q.getRemainingSteps();p2 = QUERY REWRITE(q2);
4: p = p1/p2;
5: for all elementsA of Dv do
6: if rewrite(p1, A) = ∅ then
7: rewrite(p, A) = ∅; reach(p, A) = ∅;
8: else
9: newRw = ∅;
10: for eachv in reach(p1, A) do
11: newRw = newRw ∪ rewrite(p2, v);
12: reach(p, A) = reach(p, A) ∪ reach(p2, v);
13: if newRw 6= ∅ then
14: rewrite(p, A) = rewrite(p1, A)/newRw;
15: else
16: rewrite(p, A) = ∅; reach(p, A) = ∅;
17: else ifq is 〈qual〉 then
18: if q has two operandsthen
19: q1 is the first operand;p1 = QUERY REWRITE(q1);
20: q2 is the second operand;p2 = QUERY REWRITE(q2);
21: p = p1 q.getOperator()p2;
22: for all elementsA of Dv do
23: rewrite(p, A) = rewrite(p1, A) q.getOperator()

rewrite(p2, A);
24: else

// q has one operand, i.e. function is eithernot, unary minus
// or empty operator. The latter means thatq does not have
// operator at all (e.g.q is 〈path〉)

25: q0 is the operand;p0 = QUERY REWRITE(q0);
26: q.getOperator()p = p0 q.getOperator();
27: for all elementsA of Dv do
28: rewrite(p, A) =q.getOperator()rewrite(p0, A);
29: else ifq is θ then
30: label = q.getLabel();axisSpecifier = q.getAxisSpecifier();
31: if axisSpecifier is ‘child ’ or ‘ parent ’ then
32: p =processChildParent(label, axisSpecifier);
33: else if axisSpecifier is ‘descendant-or-self ’ or

‘ancestor-or-self ’ then
34: p =processDescendAncest(label, axisSpecifier);
35: else ifq is θ[〈qual〉] then

// q = nodeTest[filter1] . . . [filtern]
36: q0 = q.getNodeTest();
37: p = q0;
38: for all filters ofq do
39: qi is the next filter;pi = QUERY REWRITE(qi);
40: p′ = p[qi];
41: for all elementsA of Dv do
42: rewrite(p′, A) = rewrite(p, A)[rewrite(qi, q0)];
43: reach(p′, A) = A;
44: p = p′;
45: else if(q is literal) or (q is number)then
46: p = q;
47: rewrite(p, A) = p;
48: returnp;

Figure 6: AlgorithmQUERY REWRITE

or an element name (DTDNameobject). More-
over, containers can be of three kinds: sequence
(DTDSequence, i.e. items delimited by commas),

7

Algorithm: processChildParent
Input: node labellabel, node axis specifieraxisSpecifier (as a string)
Output: a queryp locally rewritten in terms ofσ
1: p = axisSpecifier::label;
2: for all elementsA of Dv do
3: if label = ∗ then
4: for each nodev that is in relationaxisSpecifier with A do
5: σ = getTranslation(A,v,isReverse(axisSpecifier));
6: rewrite(p, A) = rewrite(p, A) ∪ σ;
7: reach(p, A) = reach(p, A) ∪ v
8: else
9: if label is in relationaxisSpecifier with A then
10: rewrite(p, A) =getTranslation(A,v,isReverse(axisSpecifier));
11: reach(p, A) = label;
12: else
13: rewrite(p, A) = ∅; reach(p, A) = ∅;
14: returnp;

Figure 7: Algorithm processChildParent

Algorithm: processDescendAncest
Input: node labellabel, node axis specifieraxisSpecifier (as a string)
Output: a queryp locally rewritten in terms ofσ
1: p = axisSpecifier::label;
2: if axisSpecifier = descendant-or-self then
3: q =‘�’;
4: else

// axisSpecifier = ancestor-or-self
5: q =‘�’;
6: for all elementsA of Dv do
7: if label = ∗ then

// reach(q, A) andpreRewrite(q, A, B) are precomputed
8: for eachB in reach(q, A) do
9: if preRewrite(q, A, B) 6= ∅ then
10: rewrite(p, A) = rewrite(p, A) ∪

preRewrite(q, A, B);
11: reach(p, A) = reach(p, A) ∪ B
12: else
13: if preRewrite(q, A, label) 6= ∅ then
14: rewrite(p, A) = rewrite(p, A) ∪

preRewrite(q, A, label);
15: reach(p, A) = reach(p, A) ∪ label
16: returnp;

Figure 8: Algorithm processDescendAncest

choice (DTDChoice , i.e. items are delimited by
vertical bars), and mixed (DTDMixed, i.e. includes
PCDATA). However Wutka’sDTDElement object
has two significant drawbacks: container configu-
ration complicates the process of retrieval of chil-
dren set, andDTDElement does not provides ac-
cess to parents. To overcome these limitations, we
added toDTDElement class two additional fields:
children and parents representing plain lists
of children and parents names respectively. Thus
these fields represent graph structure of input DTD.
Their content is formed at the step of DTD parsing.

Algorithm: getTranslation
Input: elementsA, B of Dv (as string), node axis specifier directionreverse

(as boolean)
Output: aσ(A, B) in direct or reverse direction
1: if reverse = true then

// σ(B, A) is a PathExpression
2: str =‘parent :: A’;
3: σ(B, A) = σ(B, A).getRemainingSteps();
4: while σ(B, A) 6= ∅ do
5: step = σ(A, B).getFirstStep();
6: σ(B, A) = σ(B, A).getRemainingSteps();
7: if σ(B, A) 6= ∅ then
8: p = self :: step/p;
9: else
10: p = parent :: step/p;
11: returnp

// stringp representsσ(B, A) in reverse order, i.e. asσ(A, B)
12: else
13: returnσ(A, B);

Figure 9: Algorithm getTranslation

• View Builder: implements algorithmsANNOTATE

V IEW andBUILD V IEW.

• Query Parser: we used the SAXON2 processor to
parse XPath expression into their tree representation.
Query Parser also performs evaluation of the rewrit-
ten query over XML source. This functionality is
stipulated by the SAXON XPath query implemen-
tation via theXPathEvaluator object which is
able to parse the XML source, to create the interme-
diate parse tree representation of the XPath query,
and finally to evaluate parsed query over the XML
document. In addition Query Parser performs output
of answer set to an XML file.

• Query Rewriter: implements algorithmQUERY

REWRITE

• DOM Validator: performs checks the validity of
XML document (i.e. XML document should con-
form to the rules of DTD schema), parses XML into
DOM tree, and produces the materialized view. We
used Xerses3 processor for these purposes.

To write the XML file (either materialized view or an-
swer set), we use JAXPDocumentBuilder 4.

2http://saxon.sourceforge.net/
3http://xml.apache.org/xerces2-j/
4http://java.sun.com

8

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST person
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath
CDATA #FIXED "self::node()[@id=$login]">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./bidder/personref[@person=$login]">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./buyer[@person=$login]">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 10: Buyer policy

7 Experimental Results

7.1 Experimental framework

XML documents. To generate a set of XML documents
we use XMark benchmark [1]. We generated 31 XML
documents with factori/10000, i = 100, 130. The size of
these XML files varies from 1Mb to 1.2Mb.

Security annotation. XMark benchmark provides the
DTD schema auctions.dtd which describes an auction sce-
nario. It defines 77 elements describing a list of auction
items, information about bidders, sellers, buyers, etc.

We have defined three user roles:

• buyer: can see personal information, open auc-
tions where he is one of the bidders, closed auction
where he is a buyer. Buyer cannot see privacy info,
data about regions, category graph and categories.
DTD representation of buyer’s policy is depicted in
Fig. 10.

• seller: is permitted to see own profile and credit card
info, as well as open auctions where he is a seller.
Seller can also see who buys his items. Seller cannot
see privacy info, data about regions, category graph
and categories. Seller’s policy is shown in Fig. 11.

• visitor: is allowed to read information about bidders,
sellers and buyers. Personal info and privacy info, as

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST creditcard
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<!ATTLIST profile
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<!ATTLIST buyer
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person/seller[@person=$login]">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"seller[@person=$login]">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 11: Seller policy

<!ATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<!ATTLIST regions security_annotation_data
CDATA #FIXED "N">

<!ATTLIST categories security_annotation_data
CDATA #FIXED "N">

<!ATTLIST buyer
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST seller
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST bidder
security_annotation_data CDATA #FIXED "Y">

<!ATTLIST people security_annotation_data
CDATA #FIXED "N">

<!ATTLIST open_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<!ATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 12: Visitor policy

well as data about regions, category graph and cate-
gories are unavailable for visitor. Security annotation
for seller is presented in Fig. 12.

For all three roles we assume that rootsite is anno-
tated byY policy propagation is performed in top down

9

Table 1: Query rewriting evaluation
Q1 Q2 Q3 Q4 Q5

buyer 12.5 11.2 7.2 15.7 11
seller 11 10.8 9.5 14.1 15.7
visitor 3.2 0 0 0 1.6

manner, default security policy is closed.
Queries.We consider the following set of queries to be

evaluated over the data set:

Q1 = .//person/name

Q2 = .//open auction/(bidder|quantity)
Q3 = .//open auction[seller and bidder]
Q4 = .// ∗ [name]/parent :: people/person

Q5 = .//bidder/parent :: ∗
Thus all queries contain a step with axis specifier

descendant-or-self . Moreover queryQ2 has
union operation, predicate with∧ operation is included in
queryQ3, examples of usage of∗ and reverse axis speci-
fier (parent) are shown in queriesQ4 andQ5.

7.2 Evaluation

In Table 1 we show the time that is required to rewrite
queriesQi, i = 1, 5 over DTD views built for rolesbuyer,
sellerandvisitor. Since we rewrote queries for each XML
file (we have 31 different XML files) and for each login
(we have 10 logins), each cell of Table 1 presents time (in
milliseconds) as arithmetic mean of 310 relevant values.

Next we compare two strategies of query answering:
naive and advanced. For each XML document we ran
evaluation of each query from the viewpoint of 10 users
(login = personi, i = 1, 10). Moreover, each user tries
to login under different roles. One dimension of our eval-
uation is query evaluation time depending on the size of
initial XML file.

In advanced approach time depends on the following
steps:

1. DTD parsing, DTD annotation and building of DTD
view Dv;

2. query parsing;

Figure 13: Query evaluation for buyer role

3. query rewriting ;

4. evaluation of query overinitial XML source.

In naive approach time measurement is conditioned by
the following steps:

1. DTD parsing, DTD annotation and building of DTD
view Dv;

2. building of sanitized XML source (view material-
ization);

3. query parsing

4. evaluation of query oversanitizedXML source.

We emphasized with bold font those steps that are spe-
cific for a particular approach.

Figures 13, 14 and 15 show the dependency of query
evaluation time on the size of the initial XML docu-
ment for buyer, seller and visitor respectively. Horizon-
tal axis represents XML size in bytes, vertical axis shows
query evaluation time in milliseconds. In all three pic-
tures we can see two main trends: upper trend (diamonds)
is produced by the naive approach, lower one (triangles)
stands for advanced approach. It is easy to see that naive
approach answers user query much slower than the ad-
vanced one.

The second dimension of our evaluation is related to in-
formation about the space of documents involved into ex-
periments. We tried to decrease processing time by stor-
ing materialized view. However, since policy for buyer

10

Figure 14: Query evaluation for seller role

Figure 15: Query evaluation for visitor role

and seller include conditions on user login, we faced with
the problem of preserving and selecting views for all lo-
gins and for all roles. For example, the smallest XML
document that we generated by XMark has approximately
250 people identifiers. Each of these people may want to
see the data stored in that XML.

In Fig. 16 we show the comparison of size of the initial
XML document and its materialized view. The policy of
visitor role does not contain any login-based conditions.
Therefore views are the same for all logins. However, the
size of materialized view is around 100Kb provided the
initial XML file is 1Mb size. Views for seller are even
bigger. And if we want to store the views for all sellers
we should reserve 25Mb of space only for one role. More-
over real-life data may require much more space. Finally,
maintaining the integrity of fast changing auction data in

Figure 16: Comparison of size of initial and materialized
XML files for visitor

250 views is hardly effective solution.

8 Conclusions

In this paper, we have studied the performance of answer-
ing queries on an XML database, subject to access control
annotations applied on the original DTD. We show that
the query rewriting approach compared to the naive one
is more efficient in sense of time and space.

Time effectiveness takes place because we are delivered
from view materialization which is a very time consum-
ing operation. In our experimental benchmark the query
rewriting strategy issues answer for user query approxi-
mately one hundred times faster than the naive strategy.
Another considered point is the space preserving property
of advanced method: naive approach in our experimental
framework generates views that require 2.5 times more
space than the initial data set. Moreover, the number of
views can be extremely large that may cause problems
with the maintenance of data integrity.

One main area of future work is to evaluate the effect
of different security policies. We have used a top-down
policy in the current paper, but some of the existing work
in this area prefers other policies. Our previous paper de-
scribes which policies are reasonable, in the sense that
they always annotate a document completely and unam-
biguously. The open problem is whether the notion of
security view can be adapted to all, or some, of these se-
curity policies, and the design of efficient algorithms for

11

those cases where this is possible.

References

[1] XMark – An XML Benchmark Project.
http://monetdb.cwi.nl/xml/index.html.

[2] M. Benedikt, W. Fan, and G. M. Kuper. Structural
properties of XPath fragments. InProceedings of
the International Conference on Database Theory,
2003.

[3] E. Bertino and E. Ferrari. Secure and selective dis-
semination of XML documents.ACM Transactions
on Information and System Security, 5(3):290–331,
2002.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.Ex-
tensible Markup Language (XML) 1.0. W3C, Feb.
1998.

[5] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Sri-
vastava. Optimizing the secure evaluation of twig
queries. InProceedings of the International Confer-
ence on Very Large Data Bases, 2002.

[6] J. Clark and S. DeRose. XML Path Lan-
guage (XPath) Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath, November 1999.

[7] E. Damiani, S. De Capitani di Vimercati, S. Para-
boschi, and P. Samarati. A fine-grained access con-
trol system for XML documents.ACM Transactions
on Information and System Security, 5(2):169–202,
2002.

[8] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure
XML querying with security views. InProceedings
of the 2004 ACM SIGMOD International Confer-
ence on Management of Data, pages 587–598. ACM
Press, 2004.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithm for processing XPath queries. InProceedings
of the International Conference on Very Large Data
Bases, 2002.

[10] S. Hada and M. Kudo. XML Access Control Lan-
guage: Provisional Authorization for XML Docu-
ments. http://www.trl.ibm.com/projects/xml/xacl/,
2000.

[11] G. Kuper, F. Massacci, and N. Rassadko. General-
ized xml security views. InSACMAT ’05: Proceed-
ings of the tenth ACM symposium on Access control
models and technologies, pages 77–84, New York,
NY, USA, 2005. ACM Press.

[12] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heck-
man, and W. R. Shockley. The SeaView security
model. IEEE Transactions on Software Engineer-
ing, 16(6):593–607, 1990.

[13] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML
access control using static analysis. InProceed-
ings of the 10th ACM conference on Computer and
communication security, pages 73–84. ACM Press,
2003.

[14] A. Stoica and C. Farkas. Secure XML views. In
Research Directions in Data and Applications Se-
curity, IFIP WG 11.3 Sixteenth International Con-
ference on Data and Applications Security, volume
256, pages 133–146. Kluwer, 2003.

12

