W A2 /
}_twl; OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

QUERY REWRITING OVER GENERALIZED
XML SECURITY VIEWS

Gabriel Kuper Fabio Massacci Nataliya Rassadko

October 2005

Technical Report # DIT-05-060

Query Rewriting over Generalized XML Security Views

Gabriel Kuper Fabio Massacci Nataliya Rassadko
University of Trento
38050, Povo, Trento, Italy
{kupetmassacd¢rassadkp@dit.unitn.it

Abstract authorized view of a document for a user or a class of
users will actually look like. On the other side, revelation
We investigate the experimental effectiveness of XML sef excessive schema information might lead to security
curity views. Our model consists of access control polireaches: an unauthorized user can deduce or infer con-
cies specified over DTDs with XPath expression for datédential information via multiple queries and analysis of
dependent access control policies. We provide the notibie schema even if only the accessible nodes are queried.
of security viewdor characterizing information accessi- To overcome this limitations, the notion of XML
ble to authorized users. This is a transformed (sanitized)curity views was initially proposed by Stoica and
DTD schema that is used by users for query formulatioRarkas [14] and later refined by Fan et al. [8] and Ku-
To avoid the overhead of view materialization in quernyer et al. [11]. The basic idea is to provide a schema that
answering, these queries later undergo rewriting so tigigiscribes the data that can be seen by the user, as well as
they are valid over the original DTD schema, and thus the(hidden) set of Xpath expressions that describe how to
query answer is computed from the original XML dataZompute the data in the view from the original data.
We provide an algorithm for query rewriting and show its |n the current paper, we implement and test experimen-
performance compared with the naive approach, i.e. tadly the performance of the security view model of [11].
approach that requires view materialization. To this end, we define a rewriting algorithm that takes a
user query over the a security view, and rewrites the query
into a query over the original database. We then compare
1 Introduction the cost of evaluating this query with that of evaluating
the original query over a materialized view of the data,
Specification of access control models for XML data hasd show that significant performance improvements.
been a fairly active field of research in recent years [3, 5,The paper is organized as follows. In Sec. 2 we present
7, 10, 13]. Most of this previous work enforces securifyreliminary notions on XML and XPath. Next we intro-
constraints at the document level by fully annotating thitice the notion of security specification (Sec. 3) and the
entire XML document. notion of view (Sec. 4). In Sec. 5 we show algorithm for
As a result, one major limitation of these models is threwriting queries. Implementation issues are discusssed
lack of support for authorized users to query the data: theySec. 6. Evaluation of rewriting algorithm is provided in
either do not provide schema information of the acceSec. 7. Finally, we conclude the paper in Sec. 8.
sible data, or expose the entire original DTD (or its so-
called “loosened” variant). In both cases, the solution is
hardly practical for large and complex documents. Fui2z A Primer on XML and XPath
thermore, fixing the access control policies at the instance
level without providing or computing a schema, makéfe first review DTDs (Document Type Definitions [4])
it difficult for the security officer to understand how th@and XPath [6] queries.

Definition 2.1: A DTD D is a triple (Ele, P, root), the following grammar:

whereFle is a finite set oklement typegoot is a distin-

guished type irEle, andP is a function defining element{zpath) = (path) | ‘/*(path)
types such that for each in Ele, P (A) is a regular ex- (path (step) (‘/* (step))*
pression oveEleU{str}, wherestr is a special type de-

)
)
)
)

noting PCDATA, We use to denote the empty word, and (step) =0 | Gﬂ[fquaw I 1 (path) “U* (path)
w17 % » and " to denote disjunction, concatenation, (44! A =% | ope | (zpath) |

and the Kleene star, respectively. We referito- P(A) (qual) and (qual) | (qual) or (qual) |
as theproductionof A. For all element type® occurring not (qual) | ‘(‘{qual) ‘)’

in P (A), we refer toB as asubelement typéor achild
type of A and toA as agenerator(or aparent typé of B.

O wheref stands for an axis; is astr constant,A is a
label, op stands for one of, <, >, <, >. The result of

We assume that DTD is non-recursive, i.e., that ﬂfﬁe qual production is calledjualifier and is denoted by
graph has no cycles.

q. O
Definition 2.2: An XML tree T conforms tea DTD D iff For sake of readability, we ignore the difference be-

])) tween zpath and path, we denote both withp. We

1. the root ofT" is the unique node labelled witbot ; ;5o abbreviateself with e, child [A]/p with A/p,

o _ _ descendant-or-self [A]/p with //A/p, qlop C]

2. each node in"is labelled either with atkle type A, with ¢ opc andp = p1/ps, Wherep, is //p), is writ-
called anA elementor withstr , called atext node teny asp, //p,. The ancestor axis is also abbreviated as

3. eachA element has a list of children of elements and The semantics of XPath is obtained by adapting to our
text nodes such that their labels form a word in tl'fﬁagment theS_,, S_, £ operators proposed by Gottlob
regular language defined [y (A); et al. [9] and identical to proposal of Benedickt et al. [2].

Intuitively S_, [|p|] (V) gives all nodes that are reachable

4. each text node carriessr value and is a leaf of from a node inV using the patlp. TheS_ [|p|] functions
the tree. gives all nodes from which a paghstarts and arrives at

some node. Thé [|q|] function evaluates qualifiers and

returns all nodes that satisfy

We consider a class of XPath queries, which corre-For sake of readability we overload tilesymbol to
sponds to the CoreXPath of Gottlob et al. [9] augmentstiand for both the semantics and the syntax of axes. So
with the union operator and atomic tests, and which is dgiven a set of nodesV of a documentl’ we have that

We callT aninstanceof D if T' conforms taD. O

noted by Benedict et al. [8] ak. O(N) = {m |nfmforn € N}. In other wordsf(N)

The XPath axes we consider as primitivEeturns the nodes that are reachable according the axis
are child , parent , ancestor-or-self from a node inN. By 7 (A) we denote the set of nodes
descendant-or-self ’self . Gottlob, Koch thathave element typd. By T (x) we denote all nodes

and Pichler [9] show how the semantics of suc®f adocument.

axes can be Computed in po'ynomia' t|me In the The semantics of the other OperatOI’S is shown in F|g 1.
sequel we denote by one of those primitive axes

and by 6~ its inverse. Notice that each primitive

axis has its inverse within the same set of prlm

tives. For instancedescendant-or-self 3 Securlty Specmcatlons

ancestor-or-self T .
An access specificatiofi is an extension of a document

Definition 2.3: An XPath expression itk is defined by DTD D that associates security annotations with produc-

S (I/pI1(N)
S— [10[g]l] (V)
S [10ql/pl] (V)

S— [Ip1 U p2|] (V)
S— [I(p1 Up2)/pl] (N)

S—1I/pl]

S [10[gl[IN
S [10lql/pIN

S [Ip1 Up2l]

S [l(p1 Up2)/pl]
E |4l

€ [lgrandgz]]
E[lqror gz]
& [|not q]
Ellpl]

S— [Ip[] ({root })
O(N) N EJlql]

0(S— [Ipll (V) N € [Iql]

S— [Ipa] (N) U S [Ip2[] (V)
S— [Ip1/pll (N) U S~ [Ip2/pl] (V)

{n occursinT'}

o7 (N N Eql])

if root € S [|/pl]
otherwise

0~ (S~ [lpll N ETlal)

S [lp1l] U S [|p2]]
S [Ip1/pl]U S [Ip2/pl]

T (A)
Ellarll N € lg2]]
Ellgrl] U Elgz1]

{n occursinT} \ € [|qz2]]

S [Ipl]

Figure 1: The semantics of operators

tions of D.

Definition 3.1: A authorization specificatioty is a pair
(D, ann), whereD is a (document) DTDann is a par-
tial mapping such that, for each productidn— P (A)
and each child element typ8 in P (A), ann(A4, B), if
explicitly defined, is an annotation of the form:

ann(A4, B)

Qgl | Y |'N

where [¢] is a qualifier in our fragmentt’ of XPath.
A special case is the root ab, for which we define
ann(root) =Y by default.

O

Intuitively, annotating production rulé® (A) of the

DTD with an unconditional annotation is a security con-

straint expressed at the schema leYetir N indicates that

the corresponding3 children of A elements in an XML 3.
document conforming to the DTD will always be acces-
sible (Y) or always inaccessiblé\j, no matter what the
actual values of these elements in the document are.

ann(A, B) is not explicitly defined, therB inherits the
accessibility ofA. On the other hand, ifnn(A, B) is
explicitly defined it mayoverridethe accessibility ofB
obtained via propagation.

We should emphasize that semantics of qualifiers pre-
sented in this paper differentfrom that of Fan et al. [8].
According to [8] a false evaluation of the qualifier is con-
sidered as “no label” and requires the inheritance of an
access from ancestors, while we assume that once evalu-
ated on the document, a qualifier is mapped to either
N. This simplifies the intuition of annotations.

At the data level, the intuition is the following: given
an XML documenfl’, the document is typed with respect
to the DTD, and the annotations of the DTD are attached
to the corresponding nodes of the document, resulting in
a partially annotatedXML document. Then we convert
the documenf” to afully annotatedone by labelling all
of the unlabelled nodes witli or N. This is done by eval-
uating the qualifiers and replacing themYoypr N annota-
tions, and then using a suitable policy for completing the
annotation of the yet labelled nodes of the tree. When ev-
erything is labelled we remove all-labelled nodes from
T.

The construction of the fully annotated document de-
pends heavily on the overall security policy that is chosen
to get completeness [11]. The top-down procedure that
we describe next is the result of theost-specific-takes-
precedencepolicy which simply says that an unlabelled
node takes the security label of its first labelled ancestor.
Damiani et al. [7] use alosedpolicy as default: if a node
is not labelled then label it d%.

Definition 3.2: Let (D, ann) be a authorization specifica-
tion andT a XML document conforming td. Theau-
thorized versionil’y of T" according to the authorization
specification is obtained froffi as follows:

1. Type T with respect taD and label nodes withnn
values;

2. Evaluate qualifiers top down starting from the root
and replace annotations byor N depending on the
result;

For each unlabelled node, label it with the annotation
of its nearest labelled ancestor;

ﬁ. Delete all nodes labelled with from the result,
making all children of a deleted nodento children
of v's parent.

The annotation of the document, before deleting nodes in
the last step, is called tHall annotationof T'. a

4 Security Views Not all views are valid: wrong typing, violated cardi-
nality constraints, and other problems could be all causes
We now turn to the enforcement of an access specified-of a view to be invalid.

tion. To this end, we introduce the notions¥curity view Security specification and views are related as follows.

which consists of two parts. The first part is a sche _—) N e
that is seen by the user, while the second partis a func?lﬂt))aﬁ];g]r:“o;ng'f’étsl‘m(?D’ang EZ Z zgtzhuorir'ga\}:g\?v ngeDC'f"

that is hidden from the user, which describes how the d . : .

in the new schema should be derived from the origin € say thats is data gquwalento (D’ann.) 'ff for every
data. The intuition behind our approach is similar to tthcur_nemT, cqnformlng tOD.’ the ma_terlahzed version
of security views for relational databases in multi-level” coincides with the authorized versidi. H
security [12] and the notation is borrowed from [8]. In our previous work [11] we have presented an algo-
rithm for the construction of views and have shown that
the view that is built by our algorithm is data equivalent
to security annotations for non-recursive DTDs.

We first present the syntactic definition of security views. The idea behind our algorithm is to eliminate qualifiers

Definition 4.1: Let D be a DTD. Asecurity viewfor D by exPandipgr:aach quallifiler into a unionhpfr]t\(vo eIementd
is a pair(D,,0) whereD, is a DTD ando is a function types.dorr:e IS th eorginale ement type, W ”'C IS annot]:';\tﬁ
from pairs of element types such that for each eleme and the other Is a new type, essentially a copy of the

type A in D, and element type3 occurring in P (A), o|r|ginal type, Wricdh s an_notatsltl. Sinc_efth”e tag r(])f an
(A, B) is an expression ift’. element uniquely determines the type, it follows that new

type names cannot match any nodes in a document that
Definition 4.2: Let S = (D,, o) be a security view. The conforms to the original DTD. This is not a serious prob-
semantics of is a mapping from documenisconform- lem, as all of these new type names are ultimately deleted

4.1 The Definition of Security Views

ing to D to documentd, such that in the final security view.
The next step expands the annotation to a “full annota-
1. T, conforms toD, tion”. The notion of a full annotation was defined on an-

notated documents, and we showed that every document
has a unique full annotation. At the schema level, how-

ever, this is not the case, as there may be several “paths” in
3. For any noden of T which is inT,, let A be the the DTD that reach the same element type, each of which

2. The nodes of, are a subset of the nodesBf and
their element type is unchanged.

element type of., and letB, ..., B,, be the list of results in a different annotation. We use a similar tech-
element types that occur iRt (4). Then the children nique to the way we handle qualifiers, i.e., we introduce
of ninT, are new element types, and label the original ohand the
“copy” N. Finally, we delete all the element types that are
U S [lo(A, By)|] ({n}) . labelledN, modifying the regular expressions and the
1<i<m functions correspondingly.

) We show the algorithrANNOTATE VIEW in Fig. 2 and
These nodes should be ordered according to the dggyorithmBuiLD ViEw in Fig. 3.

ument order in the original document. o o
Definition 4.5: Let S = (D,ann) be an authorization

T, is called thematerialized versioof 7" w.r.t. the view specification. The DTD constructed B\WNOTATE VIEW

S. O algorithm is thefully annotatedDTD corresponding to
(D, ann). O

Definition 4.3: A valid security view is one for which the

semantics are always well-defined, i.e., if for every docltheorem 4.1:[11] Let (D, ann) be a security specifica-

mentT’, its materialized version conforms to the securitjon where D is non-recursive. AlgorithmsANNOTATE

view DTD. O VIEw and BuILD VIEW terminate and produce a valid

Algorithm: ANNOTATE VIEW
Input: A authorization specificatiofD, ann)
Output: Fully annotated DTDD
1: Initialize D,, := D whereann is defined onD,, as onD;
2: for all production rulesA — P (A)in D,, do

3: for all element types3 occurring inP (A) do

4: initialize o (A — P (A), B) := Ble]
/I Here we will eliminate qualifier annotation

5: for all element typesB with ann(B) = Q[q] do

6: add toD,, a new element typé3’ and a production rules’ —
P B’

7: setP B’ := P (B)

8: for all element type€' occurring inP B’ do

9: c BB—-P B ,C :=0(B— P(B),C)

10: setann(B) = Y andann(B’) = N

11: for all production rulesA — P (A) do

12: if B occursinP (A) then

13: c(A— P(A),B):= Blq];

14: o A— P(A),B’ := B[~q|;

15: replaceB by B + B’ in P (A)

16: while ann(B) of some element typeB is undefinecio
/I Here we will get fully annotated DT

17: if all generatorsA of B have definedinn(A) then

18: if allann(A) =Y then

19: setann(B) :=Y;

20: else ifallann(A) = N then

21: setann(B) := N;

22: else

23: add to D,, a new element type3’ and a production rule
B - P B

24: setP B’ := P (B)

25: for all element type€' occurring inP B’ do

26: o BB—-P B ,C :=0(B— P(B),C)

27: setann(B) = Y,ann(B’) = N,

28: for all generatorsA of B do

29: if ann(A) = N then

30: replaceB with B in P (A)

Figure 2: AlgorithmANNOTATE VIEW

Algorithm: BuILD VIEW

Input: Fully annotated DTDD

Output: A security view O,,, o)

1: for all element typesB with ann(B) = N do

for all production rulesA — P (A) do

if B occursinP (A) then
for all C that occurs inP (B) do
set c(A—P(A),C) =

o(A— P(A),B)/o(B— P(B),C) U
o (A — P(A),0)

6: replaceB by P (B) in P (A) if B — P(B) exists and by

e otherwise
7: D, consists of all the element types for whichann(A) = Y, with theo
function restricted to these types.

Figure 3: AlgorithmBuILD VIEW

security view. |

VIEW. LetT be a document]’, the authorized version
of T'and T, the materialized version & with respect to
(D,,0). ThenTy is isomorphic tdT,. O

Theorem 4.3:[11] Let (D, ann) be a authorization spec-
ification for a non-recursive DTD, leP be size of the
largest production rule inD. Letny be the number of el-
ement types annotated wi¥h and letn .., the number

of element types otherwise annotated or not annotated.
Then the size of the select functiemenerated by the al-
gorithm is bounded b@ (n,¢her x |ann|) and the size of
the View DTDD,, is bounded by) (ny x Pmeter+1). O

5 Query Rewriting

This section considers rewriting of user queries over se-
curity viewsV = (D,,, o). More precisely, user provided
with theDTD viewD,, poses a query ovdp,,. The query
evaluation procedure may rely on two strategies:

¢ thenaivestrategy assumes that the user query is eval-
uated over the materialized security viéwthat has
been extracted from initial datd by means of the
o-function or directly from the security annotation;

o the rewriting strategy transforms the user query
into anequivaleniqueryq, using thes-function over
the initial schema). Queryg; can be then evaluated
over the initial data set’ without materialization of
T,.

The naive approach may be extremely time consuming
in the case of very large XML files and multiple queries.
On the other hand, one could precompute and store data
views T,,. This approach may be inefficient for volatile
data (e.g. auction or stock sells) or for data in which in-
tegrity across views is important. Rewriting cost is in-
significant compared to the cost of view derivation from a
large XML document.

Below we present our algorithm for query rewriting
which has two phases: query parsing and further trans-
lation of parsed query inte-functions.

The user query is parsed according to the grammar that

Theorem 4.2:[11] Let (D, ann) be a authorization spec-we have shown in Definition 2.3. Initially, we consider
ification, D is non-recursive, letD,,, o) the security view the user query a&cpath). We process it recursively re-

constructed by Algorithm&NNOTATE VIEW and BUILD

sulting in aparse treeaccording to the schema on Fig. 4.

’ //a/bl(c/text() = ‘school‘) A (parent :: q)]/d‘

(xpath)

/\ T
descendant :: a ¢ ‘ i q)]/d ‘

step path> ’ b[(c/text() = ‘school*) A (parent ::

A l\‘ ’ child :: b[(c/text() = ‘school‘) A (parent :: q)] ‘ child :: d

(qual) ... {qual) (step) path) /\
‘/l ‘/l\~ child :: b ’ (c/text() = ‘school*) A (parent :: q) ‘
{qual) .. {qual) : /\
] ¢/text() = ‘school* ‘ [parent s q]
Figure 4: Parse tree schema /\
child :: c/teat() “school!

The intuition of parse tree schema is the following. We /\
divide (xpath) into {step) andremaining(path). (step) Lehild : c] | chitd :: teat()

consists ohode test and zero or more qualifiekgual).

Each of these qualifiers represents a condition that the

node test should satisfy. The condition is a boolean furp‘.;gure 5: Parse tree of expression
tion of several argumentg),i = 1, k) which are either /Ja/bl(c/teat() = school’) A (parent :: q)]/d

(path), literal, or number.

Each node of the parse tree representation of user query
is called asubquery Parsingd[(qual)] handles separately predicate expres-

For example, the XPath expressiofion (qual) and node test. We should mention that
//a/bl(c/text() ='school’) A (parent :: q)]/d se- rewriting of predicates if[(qual)] depends on node test
lects all nodes! that is a child ofo, b is a child ofa and @ rather than iterated set of DTD nodes. In lines 21- 23
has pareng and childc with text node school °, aisa and 27-28 ofQUERY REWRITE we perform joining pro-
descendant of root node. The parse tree representatiote@ure respectively for binary and unary function.
depicted on Fig. 5 In (qual) we process each operand (eitlipath), lit-

For each Subquery in XPath parse tree representﬁf&' or number) of the function. Since we deal with
tion and for each elememt in D, we compute a local unary and binary functionggual) has no more than two
translationrewrite(p, A) which is based on translationgperands.
rewrite(p;, B;), wherep; is a direct subquery (child in Intuitively, processing of node te8tproduces path in
parse tree) op and B; is a node reachable (the graph aerms ofo from each elementl of D, to 6. If 6 has
D, has a path t®B) from A. child axis specifier themrewrite(6, A) = o(A,9).

The algorithm presented in Fig. 6 shows the translati§inceparent is inverse ofchild thenrewrite(H,A)
procedure. More precisely, in lines 1, 17, 29, 35 we c&f ¢ with parent axis specifier iz~ (¢, B). Steps 1~
distinguish whether the subexpressior{iath), (qual), 11 of algorithmgetTranslation deplcted on Fig. 9 rep-

0 or 6 (qual)] respectively. In the case @path) we pro- resent the process of calculating ' (B, nt).

cess first(step) (which is rewritten top;) and then the This intuition corresponds to “neighbor” axis spec-
remaining part agpath) (which is rewritten tops) re- ifiers (e.g. child and parent). In case of
cursively. The final step ofpath) processing consists indescendant-or-self (ancestor-or-self) we
joining p; and p, into pathp; /p. which represents thehave to calculate all descendants (ancestors) and all
rewritten form of initial (path). The joining procedure is possible paths to each descendant (ancestor). Finally,
shown in lines 4- 16 of algorithrQUERY REWRITE. all computed paths should be translated into the

function corresponding to the reverse property of aXi8or i S e a ating)

specifier. Obviously, descendant/ancestor processingQ@sut: a queryp locally rewritten in terms of-(as a string)

if ¢ is (path) then
quires a different approach. Thus we introduce two aux: llq= firstStep/remainingSteps
iliary functions: processChildParent on Fig. 7 and % q1 = q.getFirstStep()p1 = QUERY REWRITE(q1);
processDescendAncest on Fig. 8. We should mention : ;172__Zlg/elfemam'ngsmps% = QUERY REWRITE(q2);
that each of these functions also considers the case wien for all elementsA of D, do

the node label is (line 3 of processChildParent and 5’ e B aachip, A) = B

line 7 of processDescend Ancest) which requires rewrit- 8: else ’
) . . : newRw = 0;
ing for a union of nodes reachable from considered DT%. for eachw in reach(pr, A) do
node according to axis specifier. 11: newRw = newRw U rewrite(pa, v);
cach(p, A) = reach(p, A) U reach(pa,v);
For rewriting of descendant/ancestor relations we U@@ i nem T ;f) reach(p, A) Ureac (p2,v)
the data of the statically precomputed taple Rewrite. 14: | rewrite(p, A) = rewrite(p1, A)/new Rw;
. else

The idea ofpre Rewrite calculation is borrowed from [8] 16: rewrite(p, A) = 0; reach(p, A) = 0;

where recProc and traverse procedures are |ntendedl7 else ifq is (qual) then
if ¢ has two operanden

to capture all the paths from all DTD nodes to all thehrg q1 is the first operandp; = QUERY REWRITE(q1);
corresponding descendants, and to translate these p%@hs g2 is the Sectocr)ld Opfré&ﬂ‘e = QUERY REWRITE(q2);
= .getOperator(p2;
to an equivalent paths over the initial DTD. We up- 22; for all Slomenton of D do
dated subroutinesecProc and traverse so that they 23: rewrite(p, A) = rewrite(p1, A) g.getOperator()
rewrite(pa, A);
precompute not onlgescendant-or-self but also 24 else
ancestor-or-self relations. OurpreRewrite ta- zqhas one Operand,Ti:- Ifunction is eithﬁ:;tv unaryr:“inus
. . . orem operator. The latter means thatoes not have
ble is arecrw table of [8] extended with the third ,,ope,a{’;{a{’a” (.02 (path)) d
dimension representing the DTD graph traversal: &g qo is the operandpo = QUERY REWRITE(qo);
. 6: g.getOperator(p = po g.getOperator();
ther in bottom up &ncestor-or-self) or top down 57 for all elementsA of D,, do
(descendant-or-self) direction. 28: rewrite(p, A) =0.getOperator()rewrite(po, A);
29: else ifq is A then
30: label = g.getLabel();axisSpeci fier = q.getAxisSpecifier();
31: if azisSpecifieris‘child ’or‘parent ’then
. 32: p =processChildParerit(bel, axisSpecifier);
6 Implementat|0n 33: else if aa:isSpecifier is ‘descendant-or-self ©oor
‘ancestor-or-self ' then

=processDescendAncestbel, arisSpecifier);
At the University of Trento we have implemented a pres else ifq is 9[(qual>] then

liminary version of a Java tool that accepts user querigs ha ;q’;‘;f,jgj;%ﬁf{;e“] o [filtera]
and returns answers as an XML document that is ca: =
structed from the set of nodes which are both visible 3§, ©' a('}'f'l'é‘iﬁe";gxtdf‘l’"erp = QuERY REWRITE(@,):
the user and satisfy the query conditions. 40: p’ = plail:
The tool consists of the following main components: 53, for a'lfffietzt(?’Oxidfewite(p, A[rewrite(q, ao)]:
43 r/each('JA) = A;
e DTD Parser we extended the Wutka DTD parser 44 45 elseif(qis Iltgral) or (is numberghen
to be able to extract the security policy frome: =g
the root element and security annotation of eaQ@ retur;;?”“e(p’ A) =p
DTD element. The DTD Parser returns a special ’
object DTD representing a set of DTD elements Figure 6: AlgorithmQUERY REWRITE
(DTDElement), their attributesDTDAttribute)
and children configuration. The latter is organized
as a containerQTDContainer object) of items

(DTDItem object). Each item is either a container ~ OF an element nameDTDNameobject). More-

Lhttp:/www.wutka.com/dtdparser.html (DTDSequence, i.e. items delimited by commas),

over, containers can be of three kinds: sequence

Algorithm: processChildParent

Input: node labelabel, node axis specifieizisSpeci fier (as a string)
Output: a queryp locally rewritten in terms o&

1: p = awxisSpecifier:label;

2: for all elementsA of D, do 1: if reverse = true then
3: if label = x then Il o(B, A) is a PathExpression
4: for each node that is in relatiomzisSpeci fier with A do 2: str ='parent :: A’
5: o = getTranslationfl,v,isReversetzisSpeci fier)); 3 o(B,A) = o(B, A).getRemainingSteps();
si Tewr}z’i(ﬁe(;z).»‘&) = rel};}git;(?, A) U o, 451: while o(B, A) (72 @;)0 FirstStep()

: reach(p, = reach(p, Uwv . step = o(A, .getkirststep();
8: else 6: o(B, A) = o(B, A).getRemainingSteps();
9: if label is in relationaxisSpeci fier with A then 7 if o(B, A) # () then
10: rewrite(p, A) =getTranslationdl,v,isReversefzisSpeci fidr)); p = self :: step/p;
11: reach(p, A) = label; 9: else
12: else 10: p = parent :: step/p;
13: rewrite(p, A) = 0; reach(p, A) = 0; 11: returnp
14: returnp; /I stringp represents (B, A) in reverse order, i.e. as(A, B)

12: else
. . . 13: returnc (A, B);
Figure 7: Algorithm processChildParent o(4.B)
Figure 9: Algorithm getTranslation
Algorithm: processDescendAncest
Input: node labelabel, node axis specifieizisSpeci fier (as a string)
Output: a queryp locally rewritten in terms o& . . .
1 p = awisSpecifier:label; e View Builder implements algorithmsANNOTATE
% if awj]sig)ﬁc"zfzer = descendant-or-self then VIEW andBUILD VIEW.
4: else
Il azi ifier = tor-or-self

5 "j“fp ecifier = ancestor-or-se e Query Parser we used the SAXON processor to
t7‘>: for al_lfe;lelr)nelzntsA orf1 D, do parse XPath expression into their tree representation.

: if label = * then . .

/I reach(q, A) andpre Rewrite(q, A, B) are precomputed Query Parser also performs evalqatlon of the revs_mt—

gg for eichBi}gre@h(q,ﬁ) %3 ot ten query over XML source. This functionality is
10: I Wrefu“i?ii?i'fl@’)i e rewrite(p, A) U stipulated by the SAXON XPath query implemen-
11 prefewrite(d, 4, B): tation via theXPathEvaluator ~ object which is
120 else reach(p, 4) = reach(p, 4) U able to parse the XML source, to create the interme-
E{r if pv-eRewrite(qAA,label) # O then N diate parse tree representation of the XPath query,

. it = it (@] -

Tew;i:éﬁgw)ite(%A’label); rewrite(p, 4) and finally to evaluate parsed query over the XML

ig: reach(p, A) = reach(p, A) U label document. In addition Query Parser performs output

: reti X .

retume: of answer set to an XML file.
Figure 8: Algorithm processDescendAncest
e Query Rewriter implements algorithmQUERY

Input:

choice DTDChoice, i.e. items are delimited by
vertical bars), and mixedXTDMixed, i.e. includes
PCDATA. However Wutka’sDTDElement object

has two significant drawbacks: container configu-
ration complicates the process of retrieval of chil-
dren set, andTDElement does not provides ac-

cess to parents. To overcome these limitations, w
added taDTDElement class two additional fields:
children andparents representing plain lists

Algorithm: getTranslation

elementsA, B of D, (as string), node axis specifier directioaverse

(as boolean)
Output: ac (A, B) indirect or reverse direction

REWRITE

e DOM Validator. performs checks the validity of

XML document (i.e. XML document should con-
form to the rules of DTD schema), parses XML into
DOM tree, and produces the materialized view. We
used Xerse$ processor for these purposes.

To write the XML file (either materialized view or an-
swer set), we use JAXBocumentBuilder

4

of chHQren and parents names respectl_/ely. Thuszhttp://saxon.sourceforge.net/
these fields represent graph structure of input DTD. sptp://xmi.apache.org/xerces2-j/
Their content is formed at the step of DTD parsing. “http://java.sun.com

<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">
<IATTLIST regions security_annotation_data
CDATA #FIXED "N">
<IATTLIST categories security_annotation_data
CDATA #FIXED "N">
<IATTLIST person
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath
CDATA #FIXED "self::node()[@id=$login]">
<IATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./bidder/personref[@person=$login]">
<IATTLIST closed_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./ouyer[@person=$login]">
<IATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 10: Buyer policy

7 Experimental Results

7.1 Experimental framework

XML documents. To generate a set of XML documents
we use XMark benchmark [1]. We generated 31 XML
documents with factor/10000, ¢ = 100, 130. The size of

these XML files varies from 1Mb to 1.2Mb.

Security annotation. XMark benchmark provides the
DTD schema auctions.dtd which describes an auction sce-
nario. It defines 77 elements describing a list of auction
items, information about bidders, sellers, buyers, etc.

We have defined three user roles:

<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<IATTLIST regions security_annotation_data
CDATA #FIXED "N">

<IATTLIST categories security_annotation_data
CDATA #FIXED "N">

<IATTLIST creditcard
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<IATTLIST profile
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<IATTLIST buyer
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person/seller[@person=$login]">

<IATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"seller[@person=$login]">

<IATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<IATTLIST privacy security_annotation_data

CDATA #FIXED "N">

Figure 11: Seller policy

<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">
<IATTLIST regions security_annotation_data
CDATA #FIXED "N">
<IATTLIST categories security_annotation_data
CDATA #FIXED "N">
<IATTLIST buyer
security_annotation_data CDATA #FIXED "Y">
<IATTLIST seller
security_annotation_data CDATA #FIXED "Y">
<IATTLIST bidder
security_annotation_data CDATA #FIXED "Y">
<IATTLIST people security_annotation_data
CDATA #FIXED "N">
<IATTLIST open_auction
security_annotation_data CDATA #FIXED "N">

e buyer can see personal information, open auc- <IATTLIST dlosed auction

tions where he is one of the bidders, closed auction security_annotation_data CDATA #FIXED "N">
where he is a buyer. Buyer cannot see privacy info, SIATTLIST privacy_securlyannotation_data

data about regions, category graph and categories.

DTD representation of buyer’s policy is depicted in

Fig. 10. Figure 12: Visitor policy

seller. is permitted to see own profile and credit card

info, as well as open auctions where he is a seller. Il as d b . h and
Seller can also see who buys his items. Seller cannot well as data about reglons, category graph and cate-

see privacy info, data about regions, category graph gories are unavailable for visitor. Security annotation
and categories. Seller’s policy is shown in Fig. 11, for selleris presented in Fig. 12.

visitor: is allowed to read information about bidders, For all three roles we assume that rede is anno-
sellers and buyers. Personal info and privacy info, teted byY policy propagation is performed in top down

Table 1: Query rewriting evaluation 1a0aoo

Ql QQ QS Q4 QS e L3
buyer | 12.5| 11.2| 7.2 | 15.7| 11 10000 1—2#—s—g ot et i e
seller | 11 | 10.8| 95| 14.1| 15.7
visitor | 3.2 0 0 0 1.6 1000

o0 g thd MR MEDE 8 444 @

manner, default security policy is closed. o
Queries.We consider the following set of queries to b 1030000 1080000 1130000 1180000 1230000 1280000 1330000
evaluated over the data set:

@ = '//person/nqme)] Figure 13: Query evaluation for buyer role
Q2 = .//open_auction/(bidder|quantity)

Q3 = .//open_auction[seller and bidder] 3. query rewriting ;

Qs = .//x[name]/parent :: people/person

Qs = .//bidder/parent :: % 4. evaluation of query ovanitial XML source.

In naive approach time measurement is conditioned by

Thus all queries contain a step with axis specifi%e following steps:

descendant-or-self . Moreover query@, has
union operation, predicate withoperation is included in 1 pTp parsing, DTD annotation and building of DTD
query@s, examples of usage efand reverse axis speci- view D, ;
fier (parent) are shown in querie®, andQs.

2. building of sanitized XML source (view material-

7.2 Evaluation ization);

In Table 1 we show the time that is required to rewrite3. dquery parsing
gueries);, i = 1,5 over DTD views built for rolebuyer,
sellerandvisitor. Since we rewrote queries for each XML
file (we have 31 different XML files) and for each login \we emphasized with bold font those steps that are spe-
(we have 10 logins), each cell of Table 1 presents time @f¥ic for a particular approach.
milliseconds) as arithmetic mean of 310 relevant values. Figures 13, 14 and 15 show the dependency of query
Next we compare two strategies of query answeringyajuation time on the size of the initial XML docu-
naive and advanced. For each XML document we rfent for buyer, seller and visitor respectively. Horizon-
evaluation of each query from the viewpoint of 10 usefg| axis represents XML size in bytes, vertical axis shows
(login = personi,i = 1,10). Moreover, each user triesgyery evaluation time in milliseconds. In all three pic-
to login under different roles. One dimension of our evajgres we can see two main trends: upper trend (diamonds)
uation is query evaluation time depending on the size i§fproduced by the naive approach, lower one (triangles)

4. evaluation of query oveanitized XML source.

initial XML file. stands for advanced approach. It is easy to see that naive
In advanced approach time depends on the followiBgproach answers user query much slower than the ad-
steps: vanced one.
1. DTD parsing, DTD annotation and building of DTD The ;second dimension of our evaluatior_1 is relatgd toin-
view D,,; formation about the space of documents involved into ex-
periments. We tried to decrease processing time by stor-
2. query parsing; ing materialized view. However, since policy for buyer

10

1000000 10000000

PR . T L
1o0oop 22 = *
P e e o o o 0 o, a0 A
1000000 (h=t—stp—tpb—t-4-40 999 ¢
10000
1000 A 100000 S L N
F Y A Ak A i
ﬂ*ﬂtlm:ﬁ;ﬂﬁg‘* ‘“‘ &
100
10000 4—4—/—F—F—"——"T—T— T T
1 1 3 & 7 9 1113158 17 19 21 23 258 27 29 A

1030000 1080000 1130000 1180000 1230000 1280000 1330000 [Tl fizs —=—iateraiizad Bl sizs]

Figure 14: Query evaluation for seller role Figure 16: Comparison of size of initial and materialized
XML files for visitor

1000000 +—— —

REE 8 e A s S 250 views is hardly effective solution.
100000

10000

8 Conclusions

1000

Ad & Ab 4 B MMM MA BL LA M 4 WA s In this paper, we have studied the performance of answer-
ing queries on an XML database, subject to access control
i annotations applied on the original DTD. We show that
1030000 1080000 1130000 1180000 1230000 1260000 1330000 | the query rewriting approach compared to the naive one
is more efficient in sense of time and space.
Time effectiveness takes place because we are delivered
Figure 15: Query evaluation for visitor role from view materialization which is a very time consum-
ing operation. In our experimental benchmark the query
rewriting strategy issues answer for user query approxi-
and seller include conditions on user login, we faced withately one hundred times faster than the naive strategy.
the problem of preserving and selecting views for all Igxnother considered point is the space preserving property
gins and for all roles. For example, the smallest XMbf advanced method: naive approach in our experimental
document that we generated by XMark has approximatéfimework generates views that require 2.5 times more
250 people identifiers. Each of these people may wantsigace than the initial data set. Moreover, the number of
see the data stored in that XML. views can be extremely large that may cause problems
In Fig. 16 we show the comparison of size of the initiadith the maintenance of data integrity.
XML document and its materialized view. The policy of One main area of future work is to evaluate the effect
visitor role does not contain any login-based conditionsf different security policies. We have used a top-down
Therefore views are the same for all logins. However, tpelicy in the current paper, but some of the existing work
size of materialized view is around 100Kb provided thia this area prefers other policies. Our previous paper de-
initial XML file is 1Mb size. Views for seller are evenscribes which policies are reasonable, in the sense that
bigger. And if we want to store the views for all sellerthey always annotate a document completely and unam-
we should reserve 25Mb of space only for one role. Morbiguously. The open problem is whether the notion of
over real-life data may require much more space. Finalggcurity view can be adapted to all, or some, of these se-
maintaining the integrity of fast changing auction data turity policies, and the design of efficient algorithms for

100

11

those cases where this is possible. [10]
References
[1] XMark — An XML Benchmark Project. [11]

[2]

3]

[4]

[5]

[6]

[7]

[8]

http://monetdb.cwi.nl/xml/index.html.

M. Benedikt, W. Fan, and G. M. Kuper. Structural
properties of XPath fragments. Froceedings of

the International Conference on Database Theorylz]
2003.

E. Bertino and E. Ferrari. Secure and selective dis-
semination of XML documentsACM Transactions

on Information and System Secuyi§(3):290-331, [13]
2002.

T. Bray, J. Paoli, and C. M. Sperberg-McQueEn-
tensible Markup Language (XML) 1.0/3C, Feb.
1998.

[14]
S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Sri-
vastava. Optimizing the secure evaluation of twig
queries. InProceedings of the International Confer-
ence on Very Large Data Base&002.

J. Clark and S. DeRose. XML Path Lan-
guage (XPath) Version 1.0. W3C Recommendation.
http://iwww.w3.org/TR/xpath, November 1999.

E. Damiani, S. De Capitani di Vimercati, S. Para-
boschi, and P. Samarati. A fine-grained access con-
trol system for XML documentsACM Transactions

on Information and System Secuyi§(2):169-202,
2002.

W. Fan, C.-Y. Chan, and M. Garofalakis. Secure
XML querying with security views. IiProceedings
of the 2004 ACM SIGMOD International Confer-
ence on Management of Dafaages 587-598. ACM
Press, 2004.

G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithm for processing XPath queries. Bioceedings
of the International Conference on Very Large Data
Bases2002.

12

S. Hada and M. Kudo. XML Access Control Lan-
guage: Provisional Authorization for XML Docu-
ments. http://www.trl.ibm.com/projects/xml/xacl/,
2000.

G. Kuper, F. Massacci, and N. Rassadko. General-
ized xml security views. '8ACMAT '05: Proceed-
ings of the tenth ACM symposium on Access control
models and technologiepages 77-84, New York,
NY, USA, 2005. ACM Press.

T. F. Lunt, D. E. Denning, R. R. Schell, M. Heck-

man, and W. R. Shockley. The SeaView security
model. IEEE Transactions on Software Engineer-
ing, 16(6):593-607, 1990.

M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML
access control using static analysis. Rroceed-
ings of the 10th ACM conference on Computer and
communication securitypages 73-84. ACM Press,
2003.

A. Stoica and C. Farkas. Secure XML views. In
Research Directions in Data and Applications Se-
curity, IFIP WG 11.3 Sixteenth International Con-
ference on Data and Applications Secuyiglume
256, pages 133-146. Kluwer, 2003.

