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ABSTRACT

Recently, there has been a growing interest in self-adaptive
systems. Roadmap papers in this area point to feedback
loops as a promising way of operationalizing adaptivity in
such systems. In this paper, we present a new type of re-
quirement — called Awareness Requirement — that can refer
to other requirements and their success/failures, constitut-
ing requirements for such feedback loops. We propose a way
to elicit and formalize such requirements and validate our
proposal using a monitoring framework. We further discuss
how feedback loops could be implemented to provide adap-
tivity mechanisms to systems.

Categories and Subject Descriptors

D.2 [Software Engineering]: Requirements/Specifications

General Terms
Requirements, Adaptivity

Keywords

requirements engineering, modeling, self-adaptive systems,
awareness, feedback loops, monitoring

1. INTRODUCTION

There is much and growing interest in software systems
that can adapt to changes in their environment or their re-
quirements in order to continue to fulfill their mandate. Such
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adaptive systems usually consist of a system proper that de-
livers a required functionality, along with a monitor-analyze-
plan-execute (MAPE) feedback loop that operationalizes the
system’s adaptability mechanisms. Indications for this grow-
ing interest can be found in recent workshops and confer-
ences on topics such as adaptive, autonomic and autonomous
software (e.g., [8, 2, 7]).

Feedback loops constitute an architectural prosthetic to a
system proper, introducing monitoring, analysis/diagnosis,
etc. functionalities to the overall system. We are interested
in studying the requirements that lead to this feedback loop
functionality. In other words, if feedback loops constitute an
(architectural) solution, what are the requirements problems
these solutions are intended to solve? The nucleus of an an-
swer to this question can be gleamed from any description of
feedback loops: “... the objective ... is to make some output,
say y, behave in a desired way by manipulating some input,
say u ...” [11]. Suppose then that we have a requirement r
= “supply customer upon request” and let s be one of the
operationalizations of r. Suppose further that the “desired
way” of the above quote for this system is that every time it
is fed another customer request it meets it successfully. This
means that the system somehow manages to deliver its func-
tionality under all circumstances (e.g., even when one of the
requested items is not available). Such a requirement can be
expressed, roughly, as r1 = “Every instance of requirement
r succeeds”. We can generalize on this: we could require
that the system succeeds more than 95% of the time over
any one-month period, or that the average time it takes to
supply a customer over any one week period is no more than
2 days. The common thread in all these examples is that
they define requirements about the runtime success/failure
or other requirements, including qualities. We call these
self-awareness requirements.

A related class of requirements is concerned with the truth
/ falsity of domain assumptions. For our example, we may
have designed our customer supply system on the domain
assumption d = “suppliers for items we distribute are always
open”. Accordingly, if the availability of suppliers is an issue
for our system, we may want to add yet another requirement



r2 = “d won’t fail more than 2% of the time during any 1-
month period”. This is also an awareness requirement, but
is concerned with the truth/falsity of domain assumptions.
We might call these contextual awareness requirements.

The objective of this paper is to study Awareness Require-
ments (hereafter referred to as AwRegs), which are char-
acterized syntactically as requirements that refer to other
requirements or domain assumptions and their success or
failure at runtime. AwReqs are represented in a formal lan-
guage, which can be integrated into a requirements monitor-
ing framework to fulfill the first stage of the MAPE feedback
loop. We also provide discussion of a systematic process
for generating architectural elements consisting of feedback
loops to accommodate a given set of awareness requirements,
providing the later steps of the MAPE feedback loop and,
thus, providing adaptivity to our system. The main con-
tribution of this paper, however, is the definition of a new
class of requirements that impose constraint on the runtime
behaviour of other requirements.

Awareness is a topic of great importance within both
Computer and Cognitive Sciences. In Philosophy, aware-
ness plays an important role in several theories of conscious-
ness. In fact, the distinction between self-awareness and
contextual requirements seems to correspond to the distinc-
tion some theorists draw between higher-order awareness
(the awareness we have of our own mental states) and first-
order awareness (the awareness we have of the environment)
[28]. In Psychology, consciousness has been studied as “self-
referential behavior”. Closer to home, awareness is a ma-
jor design issue in HCI and CSCW. The concept in various
forms is also of interest in the design of software systems
(security / process / context / location / ... awareness).

1.1 Running Example and Paper Outline

As part of our proposal’s evaluation, which we detail in
section 4, we have analyzed, designed and developed a real-
world application: an Ambulance Dispatch System (ADS),
whose requirements have been documented by students of
the University of Texas at Dallas [27]. We will use this
application as running example throughout this paper.

The rest of the paper is structured as follows. Section 2
presents the research baseline for our work; section 3 char-
acterizes AwRegs, their elicitation and formalization; sec-
tion 4 discusses implementation and presents evaluation re-
sults from experiments with our proposal; section 5 discusses
ideas for a full MAPE feedback loop that provides adaptiv-
ity; section 6 summarizes related work; finally, section 7
concludes the paper.

2. BASELINE

In this section we briefly present research and technology
used in our proposal.

2.1 Goal-Oriented Requirements Engineering

Our approach is based on Goal-Oriented Requirements
Engineering (GORE). GORE was proposed and its popular-
ity grew because of the inadequacy of previous approaches
when dealing with very complex systems. These approaches
did not capture the rationale behind the requirements be-
ing modeled, thus making them difficult to understand with
respect to high-level concerns in the problem domain [18].

There are many different approaches for GORE. Four of
the most well-known ones are summarized in [18]. Our re-

search, however, is not based on any specific framework,
method or methodology, but on the main concepts that most
GORE approaches present: goals, softgoals, quality con-
straints (QCs) and domain assumptions (DAs) [16]. These
approaches are centered in the goal model, which captures
the goals of the different stakeholders of the system. Figure
1 shows the goal model for the Ambulance Dispatch System.

Goals represent the objectives of the stakeholders and
users. In our example, the main goal of the system is to sup-
port ambulance dispatching. Goals can be decomposed us-
ing Boolean decompositions: an AND-decomposition means
that in order to accomplish the parent goal, all of its chil-
dren (sub-goals, tasks and domain assumptions) must be
satisfied, while for an OR, only one of them has to be at-
tained. We can reason over these relationships at runtime
[30]. For example, to receive an emergency call, one has to
input its information, determine its uniqueness and send it
to dispatchers (we explain the domain assumption “Com-
munication networks working” next). On the other hand,
to perform periodical update of an ambulance’s status, it is
enough to do it either automatically or manually.

Goals are decomposed until they reach a level of granu-
larity in which they can be seen as a relatively simple task
to be carried out by an actor. The main difference between
a task and a goal is that the former’s satisfaction can be
inferred by observation of the system, while the latter’s is
a logical consequence of the satisfaction of its children. We
represent goals and tasks differently in our models.

Softgoals are special types of goals that represent ob-
jectives that don’t have clear-cut satisfaction criteria. In
our example, stakeholders would like ambulance dispatching
to be fast, dispatched calls to be unambiguous and priori-
tized, and selected ambulances to be as close as possible to
the emergency site. Soft-goal satisfaction can be estimated
through qualitative contribution links that propagate satis-
faction or denial (noted with a D) and have four levels of
contribution: break or deny (-), hurt (-), help (+) and make
or satisfy (++). In our example, selecting an ambulance using
the software system contributes positively to the closeness
of the ambulance to the emergency site, while using manual
ambulance status update, instead of automatic, contributes
negatively to the same criterion. Contributions may exist
between any two goals (including hard goals).

For the purposes of our research (writing AwRegs), we
need to translate softgoals into things that can be measured.
These are quality constraints (QCs), which are perceivable
and measurable entities that inhere in other entities [16].
In our example, unambiguity is measured by the amount of
times two ambulances are dispatched to the same location,
while fast assistance is translated into two QCs: ambulances
arriving in 10 or 15 minutes to the emergency site.

Finally, domain assumptions indicate states of the world
that we assume to be true in order for the system to work.
For example, we assume that communication networks (tele-
phone, Internet, etc.) are provided and work properly. If
this assumption were to be false, its parent goal (“Receive
emergency call”) would not be satisfied.

2.2 Feedback Loops

The recent growth of software systems in size and com-
plexity made it increasingly infeasible to control them man-
ually. This led to the development of a new class of self-
adaptive systems, which are capable of changing their be-
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Figure 1: An example of a high-level goal model for an Ambulance Dispatch System

havior at runtime due to failures as well as in response to
changes in themselves, their environment, or their require-
ments. While attempts at adaptive systems have been made
in various areas of computing, Brun et al. [5] argue for sys-
tematic software engineering approaches for developing self-
adaptive systems based on the ideas from control engineering
[14] with focus on explicitly specified feedback loops. Feed-
back loops provide a generic mechanism for self-adaptation.
To realize self-adaptive behavior, systems typically employ
a number of feedback controllers, possibly organized into
controller hierarchies.
The main idea of feedback control is to use measurements
of a system’s outputs to achieve externally specified goals
[14]. The goal of a feedback loop is usually to maintain
properties of the system’s output at or close to its refer-
ence input. The measured output of the system is evaluated
against the reference input and the control error is produced.
Based on the control error, the controller decides how to ad-
just the system’s control input (parameters that affect the
system) to bring its output to the desired value. To do that,
the controller needs to possess a model of the system. In
addition, a disturbance may influence the way control input
affects the output. Sensor noise may be present as well. This
view of feedback loops does not concentrate on the activities
within the controller itself. That is the emphasis of another
model of a feedback loop, often called the autonomic control
loop [10]. It focuses on the activities that realize feedback:
monitoring, analysis, plan, execution.

The common control objectives of feedback loops are reg-
ulatory control (making sure that the output is equal or
near the reference input), disturbance rejection (ensuring
that disturbances do not significantly affect the output),
constrained optimization (obtaining the “best” value for the
measured output) [14]. Control theory is concerned with

developing control systems with properties such as stability
(bounded input produces bounded output), accuracy (the
output converges to the reference input), etc. While most of
these guidelines are best suited for physical systems, many
can be used for feedback control of software systems.

2.3 Requirements Monitoring

In our proposal, as discussed in the previous section, adap-
tivity is to be implemented through MAPE feedback loops.
Monitoring is the first step of this kind of loop and since
AwRegs refer to the success/failure of other requirements,
we will need to monitor requirements during runtime.

Therefore, we have based our implementation of feedback
loops on requirements monitoring framework EEAT?!, for-
merly known as ReqMon [23]. EEAT, an Event Engineer-
ing and Analysis Toolkit, provides a programming interface
(API) that simplifies temporal event reasoning. It defines a
language to specify goals and can be used to compile mon-
itors from the goal specification and evaluate goals of the
system during runtime.

EEAT’s architecture is presented in more detail along with
our implementation in section 4. In EEAT, requirements can
be specified in a variant of the Object Constraints Language
(OCL), called OCLra — meaning OCL with Temporal Mes-
sage logic [24]. OCL7as extends OCL 2.0 [1] with:

e Flake’s approach to messages [13]: replaces the confus-
ing ~ message(), " message() syntax with sentMes-
sage/s, receivedMessage/s attributes in class OclAny;

e Standard temporal operators: o (next) (prlor) O
(eventually), 4 (previously), O (always), B (cons-
tantly), W (always ... unless), U (always ... until);

9'http://eeat.cis.gsu.edu:8080/



e The scopes defined by Dwyer et al. [12]: globally,
before, after, between and after ... until. Using
the scope operators simplifies property specification;

e Patterns, also in Dwyer et al. [12]: universal, ab-
sence, existence, bounded existence, response, pre-
cedence, chained precedence and chained response;

e Timeouts associated with scopes: e.g. after(Q, P,
“3h’) indicates that P should be satisfied within three
hours of the satisfaction of Q.

Although in our proposal AwRegs can be formalized in any
language that provides temporal constructs (e.g. LTL), ex-
amples of AwReq formalization in section 3.2 will be given
using OCL7as, which was the language used for our pro-
posal’s validation, presented in section 4.

3. AWARENESS REQUIREMENTS

As we have mentioned in section 1, feedback loops can
implement adaptivity for a given system by introducing ac-
tivities such as monitoring, analysis (diagnosis), planning
and execution (of compensations) to the system proper. We
are interested in modeling the requirements that lead to this
feedback loop functionality. In control system terms (see
§2.2), the reference input in this case is the system fulfilling
its mandate (its requirements). Feedback loops, then, need
to measure the actual output and compare it to the refer-
ence input, in other words, verify if requirements are being
satisfied or not.

Furthermore, Berry et al. [4] defined the envelope of
adaptability as the limit to which a system can adapt it-
self: “since for the foreseeable future, software is not able
to think and be truly intelligent and creative, the extent to
which a [system] can adapt is limited by the extent to which
the adaptation analyst can anticipate the domain changes
to be detected and the adaptations to be performed.”

In this context, we believe that in order to completely
specify a system with adaptive characteristics, adaptivity
requirements have to be included in the specifications. We
propose a new kind of requirement, which we call Awareness
Requirement, or AwReg, to fill this need. AwRegs promote
feedback loops for adaptive systems to first-class citizens in
Requirements Engineering.

In this section, we characterize AwRegs as requirements
for feedback loops that implement adaptivity (§3.1), formal-
ize them (§3.2) and propose patterns to facilitate their elic-
itation, along with a way to represent them graphically in
the goal model (§3.3). We illustrate all of our ideas using
our running example, the ADS.

3.1 Characterization

AwRegs are requirements that talk about the success or
failure of other requirements. In the context of GORE, re-
quirements include goals, tasks, domain assumptions and
quality constraints. As will be shown in this section, AwRegs
can also refer to other AwRegs, constituting meta- AwRegs.

As with other requirements, AwRegs are obtained by talk-
ing to stakeholders and using the usual elicitation techniques,
but specifically targeting adaptivity requirements. The fol-
lowing AwRegs were elicited during the analysis of the ADS.

ARI1: task Input emergency information should never fail;

AR2: domain assumption Communications networks work-
ing should have 99% success rate;

AR3: goal Search call database should have a 95% success
rate over one week periods;

AR4: goal Dispatch ambulance should fail at most once a
week;

ARDb: quality constraint Ambulance arrives in 10 minutes
should succeed 60% of the time, while Ambulance ar-
riwes in 15 minutes should do it 80%, measured daily;

ARG6: task Update automatically should succeed 100 times
more than the task Update manually;

ART: the success rate of QC Two dispatches sent to the same
location for a month should not decrease, compared to
the previous month, three times consecutively;

ARS8: task Update arrival at site should succeed within 10
minutes of the successful execution of task Inform driver,
for the same emergency call;

AR9: AwReq AR3 should have 75% success rate over one
month periods;

AR10: AwReq AR5 should never fail.

AwReq AR1 shows the simplest form of AwReq: the re-
quirement — the task Input emergency information — should
never fail. Considering a control system, the requirement
succeeding is the reference input. If the actual output is
telling us the requirement has failed, the control system must
act — compensate — in order to bring the system back to an
acceptable state. Compensations are discussed in section 5.

AR1 considers every single instance of the referred require-
ment. An instance of a task exists every time an actor ex-
ecutes it using the system. For AR1 this means that the
constraint of “never failing” should be checked every time an
operator attempts to input emergency information in the
ADS. Similarly, instances of goals exist when instances of
one of their subtasks exist (backward propagation of the ex-
ecution), while DA instances are dependent on their parent
goal/task and QC instances on goals/tasks specified by the
analyst. This type of AwReq works for extremely critical re-
quirements, ones that are supposed to be fulfilled no matter
what. Compensations usually consist of alternative ways to
reach the same results.

However, not all requirements are that critical. Most
of them can tolerate some level of failure, considering the
big picture. These kinds of AwRegs are called “aggregate
AwRegs” because in order to determine their fulfillment you
need to aggregate the instances of the referred requirement.
AR2 is an example of the simplest form of an aggregate
AwRegq: considering all the times an actor attempted to at-
tain goal Receive emergency call, in 99% of them the assump-
tion Communication networks working was indeed true.

If part of the stakeholders’ requirements, aggregate AwRegs
can also specify the period of time to consider when aggre-
gating requirement instances. AwReq AR3 exemplifies this
case, indicating that instances of goal Search call database
should be aggregated over one week periods. The frequency
with which the requirement is to be verified is another op-
tional parameter for AwRegs: AR3 could be verified once a
week or we could implement a daily verification of the past



seven days. In our case, since it’s not specified (i.e. it’s not
an important factor according to stakeholders), it’s up to
the designer to choose the best way to implement it. AR5 is
an example of an AwReq with verification interval specified.

Another type of aggregate AwReq specifies not a percent-
age, but the minimum or maximum success/failure a re-
quirement is supposed to have. For example, AR4 states that
the goal Dispatch ambulance can fail at most once a week.
AwReqs can combine different requirements, like AR5, where
60% of the ambulances should arrive in 10 minutes and 80%
(i.e. another 20%) should arrive in at most 15 minutes. One
can even compare the success counts of two requirements, as
done in AR6: Update automatically should succeed at least
100 times more than Update manually.

Aggregate AwRegqs work like the integral part of the pro-
portional-integral-differential (PID) controller, a widely used
feedback control loop [14]. Integral control considers not
only the current difference between the output and the ref-
erence input (the control error), but aggregates the errors
of the past measurements. Two other types of AwReqs were
also inspired by the PID controller: “delta AwRegqs” were
inspired by how proportional control sets its output propor-
tional to the control error, while “trend AwReqs” follow the
idea of the derivative control, which sets its output according
to the rate of change of the control error.

AR7 is an example of a trend AwReq: the success rate
of QC Two dispatches sent to the same location in a month
should not be lower than the previous month for three months
in a row. In other words, if r; represents the success rate
of month 4, we would like to avoid the situation in which
Tits < Tit2 < riy1 < 1;. Trend AwRegs can be used to spot
problems in how success/failure rates evolve through time.

Delta AwReqs, on the other hand, can be used to specify
reference values for parameters of the requirements, most
commonly execution time. ARS8 specifies that task Update
arrival at site should be satisfied (successfully finish exe-
cution) within 10 minutes of the execution of task Inform
driver, meaning once the dispatcher has informed the ambu-
lance driver where the emergency is, she should arrive there
in less than 10 min. What needs to be verified is the dif-
ference A (hence the name) between the reference and the
actual value: A = Vg — V4. If A < 0, the AwReq is not
satisfied.

Finally, AR9 and AR10 show us examples of meta- AwRegs.
A meta-AwReq talks about the success/failure of another
AwReq, resulting in feedback loops organized hierarchically.
One of the motivations for meta- AwRegs is the application
of gradual compensations. This is the case with AR9: if AR3
fails (i.e., Search call database has less than 95% success rate
in a week), tagging the calls as “possibly ambiguous” (AR3’s
compensation) might be enough, but if AR3’s success rate
considering the whole month is below 75% (e.g. fails at least
two out of four weeks), a deeper analysis of the problems of
database searching might be in order (AR9’s compensation).

Another useful case for meta- AwRegs is to avoid executing
a given compensation action too many times. For example,
AR5 states that 60% of the ambulances should arrive in up
to 10 minutes and 80% in up to 15 and it’s compensation
indicates that a failure in this QC should trigger messages to
all users of the ADS. To avoid sending repeated messages in
case it fails again, AR10 states that AR5 should never fail and,
in case it does, its compensation decreases AR5’s percentages
by 10 points (to 50% and 70%, respectively), which means

L3 M Meta-meta-AwReqs
L2 O<-Q Meta-AwRegs

L1 O AwRegs

PRCORCE

Figure 2: Requirements (in the context of GORE)
in their respective stratum.

Quality constraint )

Domain assumption ‘

that a new message will be sent only if the emergency re-
sponse performance actually gets worse. If sending this mes-
sage twice a month were to be avoided, AR10’s compensation
could be, for example, disabling AR5 for that month.

With enough justification to do so, one could model an
AwReq that refers to a meta- AwReq, which we would call a
meta-meta- AwReq (or a third-level AwReq). There is no
limit on how many levels can be created and one could
model fourth-level AwRegs, fifth-level AwRegqs and so on. To
avoid circular references we organize requirements in differ-
ent strata, like depicted in figure 2, and enforce a constraint
that allows AwRegs to only reference requirements from the
stratum directly below.

3.2 Formalization

We have just characterized AwRegs as requirements that
refer to the success or failure of other requirements, thus
making requirements themselves first-class citizens in the
requirements language by allowing expressions about them.
Furthermore, AwRegs may refer to requirements in specific
periods of time. Our proposal is not coupled with any spe-
cific language, as long as it provides these two essential char-
acteristics of AwRegs, with both design and runtime prop-
erties available in expressions. The examples of this section,
however, use OCL7as (see §2.3), as it was the language we
have used for our proposal’s validation (more details in §4).

We’re interested in writing statements for five types of re-
quirement: goals, tasks, domain assumptions, quality con-
straints and AwRegs. The first two are considered long-
running requirements because actors pursue their fulfillment
during a period of time. Also, together with domain assump-
tion, goals and tasks are child requirements, which are the
ones into which goals can be decomposed. Finally, all five
types of requirement are decidable, meaning there are clear-
cut criteria that indicate if they have succeeded or failed.
Softgoals, not having such criteria, are clearly not decidable
requirements.

The requirements model illustrated in figure 3 can be used
to specify requirements. For example, consider AR1 (§3.1),
which refers to a UML Task requirement. Figure 4 presents
AR1 as an OCL invariant on the UML class TInputInfo,
which is a subclass of Task (from figure 3) and represents re-
quirement Input emergency information. An operation, i.e.
a receivedMessage, is called on an instance of TInputInfo
when it succeeds, fails, or is canceled. AR1 is satisfied when
an instance of TInputInfo does not receive a fail() call,
between calls for start() and end(). The between clause,
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context Tinputinfo
def: start : LTL::OcIMessage = receivedMessage('start')
def: end : LTL::OcIMessage = receivedMessage('end'’)
def: fail : LTL::OcIMessage = receivedMessage('fail’)
—— @author(vitor)
inv AR1: between(start, end, never(fail <> null))

context GSearchCallDB

def: weekA : LTL::OcIMessage = receivedMessage('newWeek")

def: weekB : LTL::OcIMessage = receivedMessage('newWeek")

def: allS : Set(LTL::OcIMessage) = receivedMessages('success')

def: allF : Set(LTL::OcIMessage) = receivedMessages('fail’)

def: wS : Integer = allS->select(m | now() - m.timestamp() < week())->size()

def: wF : Integer = allF->select(m | now() - m.timestamp() < week())->size()

inv AR3: between(weekA <> null, weekB <> null and
cal().weekDiff(weekA.timestamp(), weekB.timestamp()),
alwaysws / (wS + wF) >= 0.95)

~hoth

context goalmodel::Task
def: sTUpdSite : LTL::OcIMessage = receivedMessage('TUpdAtSite', 'success')
def: sTInfDriv : LTL::OcIMessage = receivedMessage('TInformDriver', 'success')
inv AR8: after(eventually(sTUpdSite <> null),
eventually(sTUpdSite.argument('sID") = sTInfDriv.argument('siD"), '10m")

| 1
0.1 Goal Task
- parent | decompositionType : GoalDecompositionType

Figure 3: Class model for requirements in GORE.

one of Dwyer et al. scopes (see §2.3), allows us to say that
fail() was never called, otherwise we would have to wait
until the whole system shuts down (end of the global con-
text) to make sure the objects never received such message.

So, in order to formalize AwRegs in such manner, each
requirement of our system is represented by a UML class,
extending the appropriate class in the diagram of figure
3, like the TInputInfo example we’ve just described. For
space constraints, we don’t present a diagram showing all
the classes that represent the requirements of the ADS, how-
ever one can deduce which requirement is being represented
from the mnemonic used as class name. It is important to
note that these classes are only an abstract representation
of the elements of the goal model and they are part of the
monitoring framework that will be presented in section 4.
They are not part of the monitored system (i.e. the ADS).
In other words, the actual requirements of the system are
not implemented by means of these classes.

Then, for monitoring to work, the monitored system should
be instrumented in order to create instances of these classes
when the requirements are being achieved, as we have briefly
explained in the previous subsection. To delimit the scope,
the system should call methods start() and end(). For
long-running requirements these are called when the actors
start and end pursuing that requirement, respectively, while
for other types of requirement they should be called immedi-
ately before and after their validation. Between calls of these
two methods, the system would call methods success(),
fail() or cancel() when the requirement succeeded, failed
or was purposefully canceled by the user (this last one only
in the case of long-running requirements).

Aggregate AwRegs are a little more complicated, as we
have to specify a period of time in which success and failure
of requirements would be considered. As we can see in the
formalization of AR3 in figure 4, this is accomplished with
the use of methods now(), which provides the current times-

Figure 4: AwRegs formalized in OCL7),.

tamp, and cal(), which provides a calendar utility, together
with a clock component in the monitoring framework, which
should send messages to our objects indicating the beginning
of specific periods of time, such as newHour, newDay and, in
the case of AR3, newWeek. Then, the between clause is used
again to hold off the evaluation of the always clause until it
has received messages weekA and weekB, which should rep-
resent a week period (the calendar utility is used to verify
that). Once weekB is received, the number of success()
calls (wS) and the number of fail() calls (wF) in the past
week are computed and a simple calculation tells us whether
or not the success rate was above the intended 95%.

Sometimes we need to refer to a domain-specific attribute
of a requirement, as it’s the case of delta AwReq AR8: the
tasks Update arrival at site and Inform driver should refer
to the same emergency call. We use a session id (sID) argu-
ment attached to the messages to verify that. This can be
implemented by having a collection of key-value pairs passed
as parameters to the methods start (), success(), etc.

Finally, notice in figure 4 that OCL annotations are sup-
ported and can be used to add meta-data to AwRegs. Re-
quirements attributes which refer to design or runtime prop-
erties can be useful in many different contexts. As a simple
example, AR1’s invariant is annotated with the author of that
specific AwReq.

The remaining AwRegqs in the ADS can be formalized anal-
ogously to the ones presented in figure 4 and their formal-
ization isn’t shown for reasons of space limitation.

3.3 Patterns and Graphical Representation

As we’ve seen in the previous subsection, formalizing AwRegs
is not a trivial task. For this reason we propose AwReq pat-
terns to facilitate the elicitation and analysis of AwRegs, and
a graphical representation that allows us to include them in
the goal model, improving the communication among sys-
tem analysts and designers.

Many AwRegs have similar structure, such as “something
must succeed so many times”. By defining patterns for



Table 1: AwReq patterns.

Pattern Meaning

NeverFail(R) Requirement R should never fail.
Analogous pattern AlwaysSucceed,
NeverCanceled, etc.

SuccessRate(R, | R should have at least success rate r

r, t) over time t, where t is optional.

SuccessRateExe | R should have at least success rate r
cutions(R, r, n) | over the latest n executions.

ComparableSuc | R should succeed at least x times more
cess(R, S, x, t) | than S over time t, where t is optional.

MaxFailure(R, | R should fail at most x times over
X, t) time t. Analogous patterns MinFail-
ure, MinSuccess and MaxSuccess.

Py and/or Ps;
not P

Conjunction, disjunction and negation
of patterns.

AwRegs we create a common vocabulary for analysts. Fur-
thermore, patterns are used in the graphical representation
of AwRegs in the goal model and code generation tools could
be provided to automatically write the AwReq in the lan-
guage of choice based on the pattern. In the next section,
we provide OCL7r s idioms for this kind of code generation.
We expect that the majority (if not all) AwRegs fall into
these patterns, so their use can relieve requirements engi-
neers from most of the OCL coding.

Table 1 shows a non-exhaustive list of patterns. Each or-
ganization is free to define its own patterns and use them
during requirements analysis. Using the patterns of table
1, mnemonics to refer to the requirements and abbreviated
amounts of time like in OCL7); timeouts [24], we can rep-
resent some of the ADS” AwReqs as: NeverFuail(InputInfo)
(AR1), SuccessRate(CommNetsWork, 99%) (AR2), MazFail-
ure(DispatchAmb, 1, 7d) (AR4), SuccessRate (Ambi10min,
60%) and SuccessRate(Ambl5min, 80%) (AR5), Compara-
bleSuccess(UpdAuto, UpdManual, 100) (AR6), etc.

Given that AwRegs can be shortened by a pattern we pro-
pose AwReqs be represented graphically in the goal model
along with other elements such as goals, tasks, softgoals,
DAs and QCs. For that purpose, we introduce the notation
shown in figure 5. For reasons of space, we show only a
small portion of the goal model with three AwRegs and a
meta- AwReq. AwReqs are represented by thick circles with
arrows pointing to the element to which they refer and the
AwReq pattern besides it. The first parameter of the pattern
is omitted, as the AwReq is pointing to it. In case an AwReq
doesn’t fit a pattern, the analyst should write its name and
document its OCL formalization elsewhere.

4. IMPLEMENTATION AND EVALUATION

Our evaluation of the AwReqs proposal considers two as-
pects of the framework:

1. Can AwReqs be monitored? Specifically, can an au-
tomated monitor evaluate requirements types enumer-
ated in table 1 at runtime? Applying a constructive
experiment, we show this is true;

2. Can the AwRegs framework provide value for the anal-
ysis of a real system? With simulation experiments, we

uniqueness
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Figure 5: Portion of the ADS goal model showing
the graphical representation of AwRegs AR1, AR2, AR3
and meta- AwReq AR9

demonstrate this is true for scenarios of the ADS.

These evaluation methods represent the experimental and
descriptive evaluation methods of Design Science, as enu-
merated by [15].

4.1 Monitoring AwReq Patterns

Table 2 illustrates how each of the patterns of table 1 can
be expressed in OCLras. These formulations are consistent
with that shown in figure 4. The definitions and invari-
ants are placed in the context of UML classes that repre-
sent requirements (see §3.2). For example, a receiveMes-
sage(‘fail’) for context R, denotes the called operation
R.fail() for class R. Therefore, invariant pR in the first row
of table 2 is true if R.fail() is never called.

Of course, the patterns of table 1 are only common kinds
of expressions. AwReqs include the range of expressions
where a requirement R1 can express properties about re-
quirement R2, which include both design-time and runtime
requirements properties. OCLyps explicitly supports such
references, as the following expressions illustrate:

def: pl: PropertyEvent =
receivedProperty(‘p:package.class.invariant’)
inv p2: never(pl.satisfied() = false)

In OCL7, all property evaluations are asserted into the
runtime evaluation repository as PropertyEvent objects. The
definition expression of p1 refers to an invariant (on a UML
class, in a UML package). Properties about p1l include its
runtime evaluation (satisfied()), as well as its design-time
properties (e.g., pl.name()). Therefore, in OCL7 s, require-
ments can refer to the design-time and runtime properties of
requirements. Thus, AwRegs can be represented in OCLr;.

To determine if the AwReq patterns can be evaluated at
runtime, we constructed scenarios for each row of table 2.
Each scenario includes three alternatives, which should eval-
uate to true, false, and indeterminate (non-false) during re-
quirements evaluation. We had EEAT compile the patterns
and construct a monitor. Then, we ran the scenarios. In all
cases, EEAT correctly evaluated the requirements.

To illustrate how EEAT evaluates OCL7 s requirements
in general, the next subsection describes in detail a portion
of the evaluation of the ADS’ monitoring system, which was
generated from the requirements of section 3.1.



4.2 Evaluating an AwReq Scenario

The requirements of the Ambulance Dispatch System (ADS)
provide a context to evaluate the AwReq framework. The
ADS is implemented in Java. Its requirements (see §3.1)
are represented as OCLyas properties, using patterns like
those presented in table 2 and figure 4. Scenarios were de-
veloped to exercise each requirement so that each of them
should evaluate as fail or success. When each scenario is run,
EEAT evaluates the requirements, and returns the correct
value. Thus, all the scenarios that test ADS requirements
presented here evaluate correctly.

Next, we describe how this process works for one require-
ment and one test. Consider a single vertical slice of the
development surrounding requirement AR1:

1. Analysts specify the Emergency input information task
of figure 1 (a.k.a. TInputInfo) as a task specification
(e.g., input, output, processing algorithm), along with
AwReqs such as AR1;

2. Developers produce an input form and processor ful-
filling the specification. In a workflow system archi-
tecture, TInputInfo is implemented as a XML form
which is processed by a workflow engine. In our stan-
dard Java application, TInputInfo is implemented as
a form that is saved to a database. In any case, the
point at which the input form is processed is the in-
strumentation point;

3. Validators (i.e., a person performing the requirements
monitoring) instrument the software. Five events are
logged in this simple example: (a) TInputInfo.start(),
(b) TInputInfo.end(), (c) TInputInfo.success(), (d)
TInputInfo.fail(), and (e) TInputInfo.cancel(). Of
course, the developers may have chosen a different
name for TInputInfo or the five methods. In which
case, the validator must introduce a mapping from
the runtime object and methods to the requirements
classes and operations. Given the rise of domain-driven
software development, in which requirements classes
are implemented directly in code, the mapping func-
tion is often relatively simple — even one-to-one;

4. The EEAT monitor continually receives the instru-
mented events and calculates the value of requirements.
In the case of AR1, if the TInputInfo form is processed
as succeed or cancel, then AR1 is true.

The architecture and process of EEAT provides some con-
text for the proceeding description. EEAT follows a model-
driven architecture (MDA). It relies on the Eclipse Mod-
eling Framework (EMF) for its meta-model and the OSGi
component specifications. This means that the OCLrs lan-
guage and parser is defined as a variant of the Eclipse OCL
parser by providing EMF definitions for operations, such
as receivedMessage. The compiler generates Drools rules,
which combined with the EEAT API, provide the processing
to incrementally evaluate OCLy s properties at runtime.

EEAT provides an Eclipse-based user interface. However,
the runtime operates as a OSGi application, comprised as
a dynamic set of OSGi components. For these experiments,
the EEAT runtime components consist of the OCLy s prop-
erty evaluator, compiled into a Drools rule system, and the
EEAT log4j feed, which listens for logging events and adds

Table 2: OCLr) idioms for the patterns of table 1.
Pattern OCL7y idiom

NeverFail(R) def: rm: OclMessage =
receiveMessage(‘fail’)
inv pR: never(rm)

SuccessRate(R, def: msgs: Sequence(OclMessage) =
r, t) receiveMessages()->
select(range().includes(timestamp()))
-- Note: these definitions
are patterns that are assumed
in the following definitions
def: succeed: Integer = msgs->select
(methodName = ‘succeed’))->size()
def: fail: Integer = msgs->select
(methodName = ‘fail’))->size()
inv pR: always(succeed /
(succeed + fail) > r)

SuccessRateExe | def: stream: Sequence(OclMessage) =
CUﬁiODS(I{,F, n) receiveMessages()->select (m
methodName = ‘succeed’ or
methodName = ‘fail’)
def: msg: Sequence(OclMessage) =
msgs->select(m | indexOf (m) >
stream.size() - n)
- - see above def’s for succeed and fail
inv pR: always(succeed /
(succeed + fail) > r)

ComparableSuc | -- c1 and c2 are fully specified

p y sp

CESS(R, S’ X, t) class names

inv pR: always(cl.succeed >
c2.succeed * x)

MaxFailure(R, inv pR: always(fail < x)

X, t)

P and/or Pz; - - arbitrary temporal and real-time

not P logical expressions are allowed over
requirements definitions and runtime
objects

them to the EEAT repository. For our experiments, the Java
application is instrumented by Eclipse TPTP to send CBE
events via log4j to EEAT, where the event are evaluated by
the compiled OCL7,s property monitors. For a more com-
plete description of the language and process of EEAT, see
[25, 26].

5. DISCUSSION

The previous section explained how EEAT was used to
monitor requirements and provide feedback if AwRegs are
successful or not. This is, however, only the first part of
a MAPE feedback loop that operationalizes the system’s
adaptivity. To complete it, we must also implement analy-
sis (diagnosis), planning and execution (of compensations).
Here is how we propose this could be done.

Once we have observed that the system is not behaving
the way it is meant to be, diagnosis consists on identify-
ing the components which, when assumed to be functioning
abnormally, will explain our observations [22]. In our case,
once the monitoring component has identified the failure of
an AwReq, the diagnosis component should tell us which
part of our system is responsible for the failure in the re-
quirements.

In a feedback loop, knowing this will help us determine the
best compensation to be effected during the planning stage.
Taking AR1 once again as example, many different parts of
the ADS could be responsible for the failure of task Imput



emergency information, such as a database error, a network
failure, system misuse by the operator, etc. Taking the enve-
lope of adaptability (see §3) into account, all these possibil-
ities and their respective compensation actions should also
be elicited along with the AwRegqs. GORE approaches could
be adopted, using contexts (e.g. [19]) to describe possible
diagnoses and modeling the compensation of a given AwReq
failure as a goal that can be decomposed into sub-goals and
tasks, and so forth.

This diagnosis component could also be implemented as
an OSGi bundle integrated with EEAT, like the monitoring
component presented in section 4.2. Instead of observing
events such as the success and failure of goals and tasks,
however, the diagnosis bundle’s rule file would match log
events produced by the monitoring bundle that indicate the
failure of an AwReq.

As with the monitoring component, the diagnosis bundle
also raises events which are ultimately fed into the planning
component, which could also be implemented as an OSGi
bundle. Given the part of our system that was responsible
for the failure, this component should plan and ultimately
execute a compensation that would, finally, operationalize
adaptivity in the monitored system. Planning would take
into consideration requirement models. Approaches such as
finding an alternative path that could satisfy the same goal
[31] or finding a external agent that can do it instead [9]
could be applied. Finally, some kind of callback function
from the feedback loop to the monitored system should be
provided, as compensations are usually domain-specific and
would be implemented as part of the system itself.

6. RELATED WORK

The Dagstuhl Seminar on “Software Engineering for Self-
Adaptive Systems” [6] discussed the state-of-the-art and chal-
lenges in this area. Challenges proposed for Requirements
Engineering include a new requirements language to deal
with uncertainty, systematic methods for refining this new
language into an architecture, requirements reflection and
traceability from requirements to implementation [8]. An-
dersson et al. [3] consider that “a major challenge is to
accommodate a systematic engineering approach that inte-
grates both control-loop approaches with decentralized agents
inspired approaches.” Brun et al. [5] notice that “while
[some] research projects realized feedback systems, the ac-
tual feedback loops were hidden or abstracted. [...] With the
proliferation of self-adaptive software systems it is impera-
tive to develop theories, methods and tools around feedback
loops.” We believe our proposal is a starting point to face
these challenges.

A work with similar purpose to ours is the RELAX lan-
guage by Whittle et al. [32]. RELAX aims at capturing
uncertainty declaratively with modal, temporal, ordinal op-
erators and uncertainty factors provided by the language,
whose semantics are formalized in Fuzzy Branching Tem-
poral Logic. Instead, we offer an extension to a graphical
GORE language with a process aimed at coming up with
high-level adaptive architecture based on feedback loops, at
identifying adaptation situations and at inferring feedback
controller requirements from them. While RELAX aims at
supporting unanticipated adaptations, our approach is tar-
geting domains where predictability is important (e.g., busi-
ness process management).

Proposals for self-adaptability have also come from the

Tropos research group. Morandini et al. [20] propose exten-
sions to the architectural design phase of Tropos to model
adaptive systems based on the Belief-Desire-Intention (BDI)
model as a reference architecture. Qureshi & Perini [21]
present a goal-based characterization of adaptive require-
ments that aids the analyst in modeling these kinds of re-
quirements for a self-adaptive system. Dalpiaz et al. [9]
propose an architecture that, based on requirements mod-
els, adds self-reconfiguring capabilities to a system using a
monitor-diagnose-compensate loop. While our proposal is
similar to these works in many aspects, it differs from them
in that it promotes feedback loops to first-class citizens dur-
ing Requirements Engineering, introducing a new class of
requirements, AwRegqs, which are requirements for feedback
loops that provide adaptivity to a software system.

Schmitz et al. [29] uses goals to model the requirements of
control systems and proposes a process to derive mathemat-
ical models from the requirements. Although our work also
targets requirements for control loops, it is not restricted
to control systems development and allows modeling of re-
quirements for any adaptive system.

Other proposals in the literature, such as [17], focus at the
architecture and design of self-adaptive system. While our
proposal focuses on the requirements, the state-of-the-art
on self-adaptive architecture could play an important role
in the future steps of our research.

7. CONCLUSION

The main contribution of this paper is the definition of
a new class of requirements that impose constraint on the
runtime behavior of other requirements. The technical de-
tails of the contribution include a language for expressing
such requirements (OCLras), a methodology for generating
feedback from such requirements, as well as fragments of a
prototype implementation founded on an existing require-
ments monitoring framework.

For future research, we propose to complete and further
evaluate the EEAT implementation as presented in section
5. Also, to extend the class of AwReqs to include adaptivity
requirements, such as “If requirement r fails more than N
times over a time period, relax it”. Expressing such require-
ments calls for some extensions to the OCLyys language.
This line of research is closely related to the RELAX pro-
posal [32], though the technical details of our approach are
very different.
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