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Abstract Urban sprawl and its evolution over relatively short periods of time7

demands that we develop statistical tools to make best use of the routinely8

produced land use data from satellites. An efficient smoothing framework to9

estimate spatial patterns in binary raster maps derived from land use datasets10

is developed and presented in this paper. The framework is motivated by the11

need to model urbanization, specifically urban sprawl, and also its temporal12

evolution. We frame the problem as estimation of a probability of urbanization13

surface and use Bayesian P-splines as the tool of choice. Once such a probabil-14

ity map is produced, with associated uncertainty, we develop exploratory tools15

to identify regions of significant change across space and time. The proposal16

is used to study urbanisation and its development around the city of Bologna,17

Emilia Romagna, Italy, using land use data from the Cartography Archive of18

Emilia Romagna Region for the period 1976-2008.19
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1 Introduction22

Remotely sensed land use data form a powerful resource to study the spatial23

pattern of many environmental and urban systems as well as monitoring their24

evolution over the years. Urban planners are interested in investigating pat-25

terns of urban development for a number of purposes, including the definition26

of areas suitable for new urban settlements, the detection of compactly urban-27

ized regions in contrast to sparsely urbanized areas, while ecologists are often28

interested in fragmentations of natural habitats. In the urban geography liter-29

ature, the situation when an urban agglomerate develops sparsely is denoted30

as urban sprawl (EEA, 2006). This phenomenon is linked to inefficient urban31

growth, often characterized by low building and population density over rural32

areas, and causes increased environmental and infrastructural costs (Borrego33

et al., 2006; Kelly-Schwartz et al., 2004; Wilson and Chakraborty, 2013). Ur-34

ban sprawl is also a main driver of landscape fragmentation, land use changes,35

increase in built-up areas and rapid urban growth (Wei and Ye, 2014). These36

situations require methods to quantify urban sprawl and to detect changes in37

the land use pattern across time.38

Regarding methods to quantify urban sprawl, research has mostly been39

focused on indicators of urban intensity and morphology, computed from land40

use raster data (i.e. a map of pixels), at a spatially aggregated level (An-41

gel et al., 2010; Dong and Pengyu, 2014; Jaeger et al., 2010; Torrens, 2008;42

Tsai, 2005). Altieri et al. (2014) proposed valid indicators to compare urban43

sprawl levels in different geographical regions. However, indicators offer a spa-44

tially aggregated view of the urban sprawl phenomena, missing a fine-scale45

representation of it. To our knowledge there is no attempt to construct maps46

showing estimated urban sprawl levels as a continuous surface over space.47

In this paper, we present a statistical modelling framework to develop this48

surface and use it to monitor urban sprawl at fine spatial scale and across49

different times. Our first objective is to efficiently estimate urban intensity as50

a probability of urbanization surface, applying spatial smoothing to land use51

maps at given time points. A smooth surface aids visualization of large scale52

trends over space, while surface uncertainty quantification provides inferential53

tools to detect regions of pixels with increased urbanization over time. Thus,54

the second goal is to develop suitable exploratory tools to investigate changes55

across space and time.56

There is a vast literature on detecting changes in land use maps, mostly57

focusing on analyzing remote sensing images across multiple times (Coppin58

et al., 2004). These methods are good at identifying changes at the pixel scale,59

which is the scale defined by the image resolution. This fine detail might be60

computationally demanding in large images, and undesirable when the inter-61

est is in detecting changes at a large spatial scale. For instance, Pasanen and62

Holmström (2015) proposed smoothing of remote sensing images as a more63

flexible way to detect changes at a larger than a pixel scale. A similar idea64

is proposed in this paper, where a general smoothing framework based on65

Bayesian P-splines is developed to estimate large scale trends and changes in66
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land use data. In contrast to traditional methods we use classified land use67

maps, motivated by the large availability of these types of data which are rou-68

tinely produced by environmental agencies. Data on land use are released in69

the form of large vectorial maps, i.e. collections of polygons, produced using70

remotely sensed images as the primary information source. Vector to raster71

conversion allows a grid structured format which is easier to handle by mod-72

ellers and computers. The estimation of spatial trends in raster land use maps73

calls for efficient smoothing methods for grid structured data to be developed.74

Literature on bivariate smoothing offers various proposals, from thin-plate75

splines to penalized splines including the kriging algorithm used in geostatis-76

tics. In general, thin-plate spline is a natural approach for smoothing over a77

multi-dimensional (e.g. spatial, or spatiotemporal) domain. The disadvantage78

is in terms of the high computational cost implied by calculating its full-rank79

smoother matrix. Full rank smoothers involve as many basis functions as data80

and can be demanding even for moderately large rasters, because of the need81

to invert a square matrix of dimension given by the number of pixels. The krig-82

ing algorithm used in geostatistics also falls in this class; for a discussion of83

the connections between spline based methods and kriging see Ruppert et al.84

(2003) ch. 13. This smoother derives from a model assuming a Gaussian Ran-85

dom Field (GRF) for the spatial field underlying the data, which implies again86

inverting large and dense covariance matrices. In contrast, low-rank smoothers87

are cheaper in terms of computation, since they use much less basis functions88

than data with a sensible reduction of the number of parameters to estimate;89

examples are: penalized splines with truncated power basis functions (Rup-90

pert et al., 2003), thin-plate regression splines (Wood, 2003) and low-rank91

thin-plate splines built on a radial basis (Crainiceanu et al., 2005). All these92

low-rank methods imply a non sparse smoother matrix, which may still be93

quite computationally demanding in cases where a large number of spline co-94

efficients is needed to describe the surface variability. For all these reasons,95

in this work we focus on a computationally more efficient approach based on96

a Bayesian version of the P-splines method by Eilers and Marx (1996). This97

uses a low-rank basis of local (i.e. non zero over a limited domain) B-splines98

and a random walk prior for the spline coefficients (Lang and Brezger, 2004).99

A key aspect of this approach is that the posterior distribution of the spline100

coefficients has a sparse precision (i.e. inverse covariance) matrix, that allows101

efficient sparse matrix computations and relatively fast Markov Chain Monte102

Carlo (MCMC) algorithms.103

In practice, the proposed framework develops in three steps. The starting104

point is converting a land use map from vector to raster, which produces a105

binary grid dataset, with black pixels representing the land use category under106

study (e.g. urban) and white pixels indicating all the other land use classes. At107

the second stage, a smooth map representing the probability of urbanization108

surface is obtained by fitting a Bayesian P-spline model to the raster of binary109

realizations. At the third step, a posterior sample from this probability surface110

is obtained via Markov Chain Monte Carlo (MCMC) and used to detect rel-111

evant changes in the urban process across space and time. In particular, two112
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objectives are addressed in this paper: detecting regions where the probabil-113

ity of urbanization is significantly higher than a threshold; detecting regions114

where the probability of urbanisation has changed (e.g. increased) over time.115

The plan of the paper is as follows. In section 2, the P-spline method is116

briefly revised with a proposal for modelling binary rasters; details on the117

MCMC algorithm are left as supplemental material. In section 3, the ex-118

ploratory tools performing pixel-wise analysis on the estimated surfaces are119

presented. An application is given in section 4, using rasters of urban residen-120

tial use over the metropolitan area around Bologna, Italy. The paper closes121

with a discussion in section 5.122

2 Smoothing raster data123

2.1 Rasters124

Vectorial land use maps are derived by classifying images collected via remote125

sensing or aerial photos and consist of a collection of categorical valued poly-126

gons, each polygon being assigned to a land use class. A further operation,127

called rasterization is usually undertaken to convert polygons into pixels. The128

result is a raster map, i.e. a grid structured dataset of categorical response pix-129

els, where each pixel is assigned to a land use class. Land use raster maps need130

much less memory storage than vectorial data: even though these maps are131

sometimes large, with thousands of response pixels, the regular grid structure132

is particularly suitable for quantitative analysis and spatial statistical mod-133

elling. Throughout the paper, the focus will be on modelling binary rasters on134

urbanization, where each pixel is either urban (black) or non urban (white).135

Nevertheless, the models presented in section 2.4 can be easily adapted to136

the more general case of binomial response rasters, where, for instance, the137

proportion of land covered by urbanization is observed at each pixel.138

2.2 B-spline basis for rasters139

Let us assume that we have n = n1n2 pixels stored in a raster, i.e. a matrix140

Y with n1 rows and n2 columns. In the following, the P-spline approach is141

presented and extended to smoothing of binary raster data in a Bayesian142

hierarchical modelling framework. The basic P-spline approach for raster data143

performs non parametric regression on row and column indices of the raster,144

respectively r = [1, ..., r, ..., n1]
T and c = [1, ..., c, ..., n2]

T, which are considered145

as covariate vectors. We indicate with yrc the observation at row r and column146

c (i.e. at pixel (r, c)), and with µrc its expected value. This expected value can147

be seen as a latent value to be estimated. When yrc is binary then µrc ∈ (0, 1)148

is a probability value. The surface is obtained by collecting µrc over all pixels149

in a vector of length n denoted as µ.150
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Following Eilers et al. (2006), µ can be modelled as a surface varying151

smoothly over the raster region by constructing two marginal basis matri-152

ces composed by local cubic B-splines functions: R = [b1(r), ..., bqr (r)], of153

dimension n1 × qr, containing B-splines evaluated at row indices and C =154

[b1(c), ..., bqc(c)], of dimension n2 × qc, with B-splines evaluated at column in-155

dices. The full basis matrix is built by the Kronecker product of the marginal156

bases, B = C ⊗R of dimension n× q, with q = qrqc. Columns of B contain157

cubic bivariate B-splines, centred at knots lying on a regular knot-grid which,158

ideally, underlies the whole raster map. This generates a set of equally spaced159

bivariate B-splines evaluated at each pixel over the raster map.160

The surface is built as a weighted sum of bivariate B-splines,161

µrc = Brcθ r = 1, ..., n1; c = 1, ..., n2, (1)

where notation Brc = [b1(c), ..., bqc(c)] ⊗ [b1(r), ..., bqr (r)] indicates the row162

entry of matrix B containing the bivariate B-spline basis functions evaluated163

at pixel (r, c), while θ is the associated vector (of length q) of spline coefficients.164

2.3 Knot-grid resolution165

The choice of q, i.e. how fine to choose the knot-grid is critical. Eilers and166

Marx (1996) suggest the use of a relatively large number of knots such that167

the surface overfits the data, since surface smoothness is then imposed by a168

penalty on second order differences between neighbouring spline coefficients.169

In our large raster dataset a sensible approach seems to take the knot-grid170

resolution to be much lower than the data resolution. This is useful for two171

reasons: first, to meet our objective of estimating the large scale spatial pattern172

removing small scale features and second, to reduce the number of parameters173

to estimate and speed up computations which otherwise, for very large raster174

datasets, might even be infeasible. On the other side, if the number of basis175

functions adopted is too low this will result in a poor representation of the176

surface variability, i.e. a very smooth probability surface which does not allow177

features of interest at the desired spatial detail to be detected.178

Our suggestion is to set q according to the required spatial detail, by fol-179

lowing a geographic criterion, i.e. selecting knots separated by a pre-defined180

spatial distance. In the application of Section 4, we tried different choices of q181

by using several knot spacings (1 km, 500 m, 350 m) and display results for182

the case where 1 knot each 500m is used; this choice offers a good compromise183

between computation feasibility and informativeness of the estimated surface184

in terms of spatial variability of the urban pattern and returned useful maps185

for visualizing/quantifying urban sprawl.186

2.4 Bayesian P-splines187

The Bayesian P-spline approach proposed by Lang and Brezger (2004) assumes188

an Intrinsic Gaussian Markov Random Field (IGMRF) prior for the spline189
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coefficients θ, conditional on a precision parameter λ,190

π(θ|λ) = (2π)−rank(K)/2(|λK|∗)1/2 exp

{

−
λ

2
θTKθ

}

(2)

where |λK|∗ is the generalized determinant. Equation (2) specifies a multi-191

variate Gaussian distribution for θ, with zero mean vector and rank deficient192

precision matrix Q = λK. Basically, an IGMRF prior induces smoothness on193

the modelled surface by forcing correlation between adjacent spline coefficients194

through its structure matrix K. The latter is a sparse known matrix specifying195

conditional dependencies among spline coefficients. The sparse nature of K is196

particularly useful to speed up computations and model fitting (Rue, 2001).197

In general, conditional dependencies in K are defined on the basis of some198

pre-defined neighbouring relationship. There are several ways to define the199

structure of an IGMRF on a regular or irregular lattice; see Rue and Held200

(2005), Chapter 3. A suitable and computationally efficient way to define an201

IGMRF for our set of spline coefficients laying on a regular knot-grid is to202

assume the following Kronecker product form for the structure matrix,203

K = (Iqc ⊗DT

r Dr +DT

c Dc ⊗ Iqr ). (3)

In (3), Iqr (Iqc) is the identity matrix of size qr (qc), and Dr (Dc) is a matrix204

which realizes d order differences between neighbouring coefficients along rows205

(columns) of the knot-grid. Typically, d equal to 1 or 2 is chosen, to penalize206

first or second order differences, respectively. In the application presented in207

Section 4, we will use second order differences d = 2. The IGMRF structure208

specified in (3) corresponds to the penalty matrix used in Eilers et al. (2006)209

for smoothing data on a regular grid via penalized maximum likelihood.210

One advantage of using a fully Bayesian approach is that the posterior211

distribution for the surface, π(µ|y), properly incorporates uncertainty about212

λ, which is assumed as a random term in the model. As a prior for λ, Lang213

and Brezger (2004) suggested a Gamma(a, b), with shape a = 1 and rate b214

taken to be small, as an attempt of non informativeness on the variance λ−1.215

2.5 Smoothing binary raster data216

We apply Bayesian P-splines to our binary raster data case. The first stage of217

our model specifies a Binomial likelihood for the data,218

yrc|δ,γ, θ ∼ Ber(µrc) (4)

g(µrc) = ηrc = δ + xT

rcγ +Brcθ (5)

In (4) it is assumed that observations yrc are conditionally independent Bernoulli219

variables with parameter µrc, given the parameters specified in the linear pre-220

dictor (5). The latter is the sum of some fixed effects and a P-spline component221

Brcθ, specified as in (1). Vector xrc = [xrc, ..., xp,rc]
T
contains p covariates ob-222

served at pixel (r, c), γ = [γ1, ..., γp]
T
is the vector of the associated slopes and223
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δ is an overall intercept. The link function g is assumed as the inverse cumu-224

lative distribution function (cdf) of the standard normal distribution, giving225

a probit regression model. Due to the binary nature of the data, the latent226

value µrc expresses the probability of urbanization evaluated at pixel (r, c); the227

collection of these values over all pixels gives the smooth probability surface228

µ. The probability surface expressed in the scale of the linear predictor is η.229

Note that the P-spline component Bθ in (5) captures large scale spatial230

variability. This is suitable for our purpose of detecting large scale patterns.231

The small scale variability present in the data is absorbed in the residuals. Ide-232

ally, the latter should be spatially unstructured, even though in some datasets233

residuals at neighbouring pixels may be correlated. Accounting for this extra234

variation is important, especially when the goal is estimation of the fixed ef-235

fects γ or predictions at new spatial locations and time. One way to model236

small scale extra variability is to add a set of spatial effects in (5), one for each237

pixel, with an IGMRF prior for them. A similar approach has been proposed238

in Lee and Durbán (2009) in a mixed model setting, using restricted maximum239

likelihood inference. As pointed out by Lee and Durbán (2009), models of this240

type may present identifiability issues: in some situations, the large scale and241

small scale sources of variation may be poorly identifiable based on the ob-242

served data. The Bayesian paradigm may offer a convenient workaround to the243

identifiability issue, through the use of informative priors that constrain the244

degrees of freedom assigned to each component (Ventrucci and Rue, 2015). Fu-245

ture extension of the framework presented here for modelling land use raster246

will investigate suitable priors for cases where large and small scale spatial247

effects are needed.248

When land use raster data are available at different time points t = 1, ..., T ,249

(e.g., different years) one interest is to highlight regions of the probability250

surface where a significant change over time is noticed. To detect spatial regions251

where a temporal change occurred, we modify model (5) by allowing a set of252

spline coefficients for each time point, θt. Our model for temporal raster data253

is:254

yrct|δt,γ, θt ∼ Ber(µrct)

g(µrct) = δt + xT

rctγ +Brctθt t = 1, ..., T ; (6)

where µrct is the probability surface at pixel (r, c) and time t, xrct is a vector255

of covariates observed at pixel (r, c) and time t, Brct = [bt,1(c), ..., bt,qc(c)] ⊗256

[bt,1(r), ..., bt,qr (r)] is the row entry of the (time-specific) basis matrixBt = C⊗257

R, containing the B-splines evaluated at pixel (r, c) and time t. Regarding the258

unknown parameters in the linear predictor (6), δt is a time specific intercept259

which capture variations in the average level of urbanization at different times,260

γ is a vector of covariate effects and θt is a vector of length q containing the261

spline coefficients that determine the surface at time t. Note that, for simplicity,262

we assume γ to be constant over time, though extension to time-specific slopes263

is straightforward. At the second stage, we specify an IGMRF prior as in (2),264

with precision Qt = λtK for each set of coefficients θt, t = 1, ..., T . Note that265
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λt depends on time, giving a flexible model where the degree of smoothness266

of the fitted surface at a certain time can be different from the smoothness267

of the surface at another time. At the third stage of the hierarchy, the model268

is completed by specifying independent diffuse normal priors with mean zero269

and small precision (e.g. 10−5) for the fixed effects, i.e. δt, t = 1, ..., T , and γ,270

and a Gamma(a = 1, b = 5 · 10−5) for each IGMRF precision parameter λt,271

t = 1, ..., T .272

2.6 Model fitting273

The posterior distribution for the probability surface π(µ|y) in models (5) or274

(6) is intractable. We use an MCMC Gibbs sampler based on the augmented275

approach by Albert and Chib (1993) to build a sample from the posterior;276

for details see the supplemental material. Though MCMC typically requires277

time consuming iterative computations, there are some practical advantages278

for using simulation based methods in our raster data case. First, we only279

need to store in memory an MCMC sample (at convergence) from the joint280

posterior of the spline coefficients π(θ|y) and fixed effects π(γ|y), then by281

combining them, a sample from the posterior surface π(µ|y), or π(η|y), is282

easily obtained for further analysis. Second, the posterior surface distribution283

properly incorporates uncertainty about λ. Finally, the detection of significant284

features across the probability surface can be performed on the basis of a large285

MCMC sample from π(µ|y), which is discussed next.286

3 Detecting changes across space and time287

Formal tests of hypotheses for comparing nonparametric surfaces were intro-288

duced in Bowman (2006), where two types of procedures are described: a global289

test to check the assumption of nonlinearity, based on an F-statistic (i.e. a gen-290

eralization of an anova-type test) and a local point-wise test to detect the pixels291

where the evidence for non linearity is strongest. The procedures proposed in292

sections 3.1 and 3.2 are close in spirit to the local test in Bowman (2006). The293

latter is based on a t-statistic of the type (µ̂rc,t1−µ̂rc,t0)/st.dev.(µ̂rc,t1−µ̂rc,t0),294

where µ̂rc,ti is the estimated surface at pixel (rc) and time ti. This t-statistic295

quantifies, in units of standard error, the difference between estimates at t0296

and t1, in a given pixel (r, c). Note that, similarly one could test the difference297

between the surface at a given time and a constant surface at a threshold value,298

say th, using a t-statistics like (µ̂rc,ti − th)/st.dev.(µ̂rc,ti). Similar tests have299

been used in the analysis of brain imaging data via smoothing techniques300

(Ventrucci et al., 2011). For the local t-statistic, Bowman (2006) describes301

computation of a p-value using quadratic forms; in some cases, a p-value can302

be derived from the standard normal distribution under the assumption of303

asymptotic normality for µ̂rc,ti.304

Following our Bayesian analysis, procedures for pixel-wise surface compar-305

isons can be developed by analysing the marginal posterior distribution at306
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each pixel (r, c) and time t. A sample from these marginals can be obtained307

for free as a by-product of the MCMC algorithm adopted to fit the model.308

After convergence of the MCMC, we collect a sample of 1000 realizations from309

π(µrct|y), r = 1, ..., n1, c = 1, ..., n2, t = 1, ..., T and compute empirical sum-310

maries, such as:311

– the sample mean, denoted as µ̂rct, which gives the fitted value (in the312

response scale) from our model at a given pixel and time;313

– the α sample quantile of the empirical distribution for the probability sur-314

face, denoted as µ̂rct,α; the quantile of π(µrct), at probability α, is defined315

as the minimum value of µrct that realizes F (µrct) ≥ α, with F (·) the cdf316

of π(µrct).317

Empirical quantiles allows calculation of a pixel-wise credible interval, at318

level 100(1−α)%, as (µ̂rct,α/2, µ̂rct,1−α/2). An intuitive rule to decide whether319

or not a pixel falls inside an uncertainty region (i.e. a region likely affected by320

sprawl) on the basis of credible intervals for µ̂rct will be described in section321

3.1. A rule to decide whether or not a pixel falls inside an increased probability322

region (i.e. an area characterized by significantly growing urbanization) on the323

basis of credible intervals for η̂rct will be proposed in section 3.2.324

We would like to point out that the procedures outlined in the following325

two sections do not represent a Bayesian formal testing procedure. For this,326

one would need calculation of the Bayes factor at each pixel, to compare the327

marginal likelihood under the null and alternative models, which is a com-328

putationally intensive task for non Gaussian likelihoods (Frühwirth-Schnatter329

and Wagner, 2008). However, we believe that the methods we introduce be-330

low provide intuitive means of quantifying the information present in the data331

about the underlying spatial patterns. This will assist in monitoring of urban332

sprawl at a given time, and changes in urbanization across time.333

3.1 Monitoring urban sprawl at a given time334

In a situation where a detailed definition of urban sprawl is lacking and sprawl335

is measured in terms of urban size and morphology (Jaeger et al., 2010), the336

development of statistical methods for the identification of compactly urban-337

ized areas as opposed to sprawling regions is important for urban planning338

purposes. For instance, urban planners may be interested in exploratory tools339

to identify regions with a probability of urbanization exceeding a threshold,340

say th ∈ (0, 1). The user may choose the most appropriate set of thresholds to341

explore patterns at several urban intensity levels. This can help in identifying342

homogeneous areas within a city characterized by different levels of urbaniza-343

tion. To this aim, we propose drawing contour lines at level th and quantifying344

their uncertainty; we denote this an uncertainty region at level th. From an345

urban planning point of view, locating uncertainty regions helps in detecting346

areas characterized by non compact patterns, i.e. urban sprawl.347
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Table 1 Rule to define the uncertainty region for a contour line at level th, using a credible
level equal to (1 − α)%.

Pixel at location (r, c) and time t lays inside: Criterion

highly urbanized region (at level th) µ̂rct,α/2 ≥ th

limited urbanization region (at level th) µ̂rct,1−α/2 ≤ th

uncertainty region (at level th) µ̂rct,α/2 < th and µ̂rct,1−α/2 > th

Given a threshold specifying an urbanization level th, let an uncertainty348

region be a collection of pixels where the probability of urbanization is nei-349

ther significantly higher nor lower than th. Pixel-wise credible intervals allow350

practical and computationally efficient rules for selecting uncertainty regions.351

Given a credible level 100(1−α)%, say equal to 95% (i.e. α = 0.05), an equal-352

tails credible interval for µ̂rct is constructed by taking the quantiles µ̂rct,0.025353

(i.e. µ̂rct,α/2) and µ̂rct,0.975 (i.e. µ̂rct,1−α/2) as the lower and upper limits, re-354

spectively. A rule to assign pixels to highly urbanized, limited urbanization or355

uncertainty region at levelt th is outlined in Table 1. According to this, a given356

pixel is assigned to the highly urbanized region when the lower credible limit357

is above th, i.e. µ̂rct,α/2 ≥ th. Analogously, a pixel is assigned to the limited358

urbanized area when the upper credible limit is below th, i.e. µ̂rct,1−α/2 ≤ th.359

Finally, when none of the aforementioned options is the case, a pixel is as-360

signed to the uncertainty region. In this way, the statistical detection of urban361

sprawl is obtained by the joint exploration of contour lines and the definition362

of uncertainty regions.363

As an alternative rule one could assign a pixel to the highly urbanized area364

when Pr(µrct ≥ th|y) is at least 1 − α/2. Choosing α = 0.05 may result in365

a overly restrictive criteria, very conservative w.r.t. the null model, indicating366

that the posterior mean µ̂rct corresponds to th. Such a restrictive rule requires367

at least 95% (posterior) probability mass beyond th. However, note that the368

simulation based approach presented here is very flexible, because based on369

an MCMC sample one can easily recompute the selection criteria setting a370

different α to achieve the desired level of conservativeness.371

3.2 Monitoring changes in urbanization across time372

The rationale behind assuming a separate smooth probability surface at each373

time in model (6) is to investigate smooth regions characterized by a change in374

the probability of urbanization, between two arbitrary time points. We denote375

this area as changed, or increased probability region. For instance, an urban376

planner may want to investigate the location of increased probability regions377

between a current time t1 w.r.t. a past time t0, to track the urban areas378

which have developed more during that period of time. In order to track these379

changes at a high spatial detail, a relevant number of basis functions needs to380

be specified when building the basis matrixB. However, when the interest is in381

detecting changes occurring at a fairly large spatial scale, a moderate number382
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of basis functions is sufficient, which also helps in reducing the computational383

cost of model fitting.384

For monitoring large scale changes in urbanization between t0 and t1, our385

proposal is to compare the two marginal posterior for the surface at t0 and t1, in386

a pixel-wise manner and work out rules to select changed, or increased, pixels.387

The increased probability region is defined as the collection of pixels showing388

a significant increase. We firstly present a rule that compares marginals for389

the surface expressed in the scale of the linear predictor, where the distri-390

butions are more symmetric. We let the user specify a desired credible level391

100(1−α)%, then a pixel is assigned to the increased probability region when392

η̂rct1,α/2 ≥ η̂rct0,1−α/2, i.e. when the (equal-tails) credible intervals at level393

100(1 − α)% for η̂rct0 and η̂rct1 do not overlap. In Figure 1, see an example394

where this criteria is applied to two empirical marginals, π(ηrct1 |y) (blue) and395

π(ηrct0 |y) (red), referred to times t1 and t0, respectively. The sample quan-396

tiles involved in making the decision are also displayed in Figure 1, these are:397

η̂rct1,α/2 (blue solid line) and η̂rct0,1−α/2 (red dashed line). Note that, in this398

particular case the decision obtained on the basis of credible intervals at level399

95% (i.e. α = 0.05, left panel) is different from that obtained at 90% (i.e.400

α = 0.10, right panel). In principle, several rules with arbitrary level of con-401

servativeness can be created by changing α. For instance, choosing a credible402

level of 80% (i.e. α = 0.2) will return a less restrictive criteria and a larger403

increased probability region, as we will se in the application in section 4.404

Another intuitive rule to define the increased probability region may select405

pixels such that Pr(ηrct1 > ηrct0 |y) ≥ 1−α. This rule does not focus on when406

credible intervals do not overlap, but only on the probability than the surface407

at time t1 is higher than the one at time t0. For a given α, this rule is less408

conservative (w.r.t. the null model indicating no change between t0 and t1)409

than the criterion presented above. However, analogously to the rule presented410

first, choosing α = 0.05 may be overly conservative, because only the pixels411

showing a 95% increase in the probability of urbanization will be selected; the412

user may then set α to larger values than 0.05, to select pixels with 90% (i.e.413

α = 0.10) or 80% (i.e. α = 0.20) increase.414

We have seen that several selection rules with different level of conserva-415

tiveness may be designed to the purposes of monitoring urban sprawl at a416

given time and monitoring changes across time. Importantly, all these criteria417

are built on suitable summaries from the marginal posteriors, either in the418

response or linear predictor scales, which can be computed at no additional419

cost, as a by-product of the MCMC methods adopted to fit the model.420

4 Application421

4.1 Data description and goals422

The proposed framework is illustrated on land use maps taken from the city423

of Bologna, in the Emilia Romagna Region of Italy. The aim is to study the424
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Fig. 1 Graphical representation of the criterion described in section 3.2 to select increased
probability pixels, using a credible level equal to 95% (left panel) and 90% (right panel). In
each panel the empirical posterior distribution (i.e. a histogram from a large MCMC sample)
of the probability surface (expressed in the probit scale), evaluated at a given pixel, for t1
(red) and t0 (blue) are displayed. The vertical solid blue line and the vertical dashed red
line indicate the sample quantile η̂rc,t1,α/2 and η̂rc,t0,1−α/2. Note that, when 90% credible
level is set, the pixel is selected and, hence, assigned to the increased probability region (i.e.
η̂rc,t1,α/2 > η̂rc,t0,1−α/2), whereas, using 95% credibel level, the pixel is not selected.

pattern of residential urban use in a subregion of Bologna province. In Figure 2,425

the urban residential pattern observed in 2008 for the sixty municipalities426

(identified by grey lines) included in the province of Bologna is shown as427

black pixels superimposed on terrain elevation data, displayed on a colour428

scale. The red box in Figure 2 shows the selected study region which includes429

the metropolitan belt region, an administrative area given by the union of all430

municipalities sharing borders with Bologna city, which is of particular interest431

for urban planning purposes and the focus of our application.432

Vectorial land use maps referring to four different time points (years 1976,433

1994, 2003 and 2008) have been taken from the Cartography Archive of the434

Emilia Romagna Region. They consist of a collection of polygons to which a435

category of land use has been assigned on the basis of the standard protocol de-436

fined by CORINE Land Cover programme (EEA, 1994). Data were converted437

from polygons to raster using the R package raster (Hijmans, 2013), to pro-438

duce the residential use binary pattern. In terms of resolution, each pixel in439

the raster map has side length of around 170 m and area of around 3 hectares,440

similarly to rasters produced by the Environmental European Agency display-441

ing the Urban Morphological Zones (UMZ) over Europe and recommended442

for studying urban sprawl (EEA, 2011): each UMZ pixel area is 1 hectare, in443

the highest resolution case and 6.25 hectares, in the lowest. The study region444

considered has a total area of around 1380 Km2, resulting in a raster matrix445

with n1 = n2 = 216 at each time.446
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Fig. 2 A map of the Bologna province consisting of sixty municipalities (boundaries as
grey lines). The urban residential pattern (black pixels) observed in 2008 is superimposed
on terrain elevation data (expressed in a colour scale). The red box shows the selected study
region, which includes the metropolitan area around Bologna city.

The analysis of this dataset has to deal with issues about the classification447

method, since the standard adopted for assigning polygons to land use classes448

has slightly changed between {1976, 1994} and {2003, 2008}; polygonal data449

for 2003 and 2008 have been created using more than 80 land use categories,450

while data from 1976 and 1994 are based on a less detailed classification.451

The framework proposed in this paper is able to overcome these problems452

by estimating the large scale pattern of urbanization, removing small scale453

structures which can be due, first, to land use misclassification incurred in454

the rasterization process and second, to heterogeneities in the classification455

standard adopted.456

The binary raster maps referred to the assumed study region at different457

years are shown in Figure 3. From visually inspecting these maps, we see that458

changes in size and fragmentation might have taken place in the residential459

pattern of Bologna during the last four decades. The most prominent feature in460

the spatial pattern is the polycentric shape of the metropolitan area: the main461

black patch in the middle represents residential urbanization inside the city of462

Bologna, with the surrounding smaller agglomerates denoting the centres of463
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neighbouring municipalities. The patterns referred to 2003 and 2008 are quite464

similar, but there seems to be some evidence of an increase in the intensity of465

urbanization in some regions, between 1976 and 2008. Also, a general increase466

in the level of urban sprawl and fragmentation seems to have occurred over467

time.468

4.2 Results469

In order to investigate the spatial extent of urban sprawl and its changes470

across time, we fit model (6) to our raster dataset and illustrate the methods471

proposed in Section 3. Covariates include a time dependent intercept, cap-472

turing the overall-space probability of urbanization at each time, and terrain473

elevation. The probability of urbanization surface was modelled with Bayesian474

P-splines as described in Section 2.3. To check how well MCMC computational475

time scales to changing knot-grid resolution, we ran model (6) choosing knot-476

spacing equal to 1 km (q = 1089), 500 m (q = 3969) and 350 m (q = 10609),477

approximately, along both rows and columns. The Gibbs sampler took around478

3, 4 and 6.5 minutes to run one hundred iterations for q = 1089, q = 3969 and479

q = 10609, respectively, using an Intel(R) Core(TM) i7 CPU 2.00GHz. Below,480

results are reported for q = 3969, thus the focus is on changes operating at a481

spatial scale not lower than 500 m.482

Next we show an application of the tools described in Sections 3.1 and483

3.2 to analyse changes across space and time. Figure 4 shows contour analysis484

maps for years 1976 (left) and 2008 (right), with red contour lines at level th485

equal to 0.7 (top panels), 0.5 (central panels) and 0.2 (bottom panels). Con-486

tour uncertainty regions (blue shadowed areas) have been calculated applying487

the rule reported in Table 1 at credible level equal to 95%. In each panel of488

Figure 4, contours and uncertainty regions are superimposed to the estimated489

probability surface, indicated in a grey color scale. Looking at both 1976 and490

2008 estimates, we note that uncertainty regions are typically located at the491

boundary or in proximity of the core of urban agglomerates, where urban492

sprawl is usually expected.493

Different levels of the threshold th are used in Figure 4 in an exploratory494

analysis aimed to highlight several urban sprawl patterns, occurring at differ-495

ent urban intensity levels. In the top panels, for instance, areas with estimated496

probability higher than th = 0.7 are displayed depicting quite clearly the his-497

torical residential pattern of the city, which is a large scale feature of the urban498

pattern. In the bottom panel the contour lines at level th = 0.2 can highlight499

multiple residential urban agglomerates of smaller extension w.r.t. the histor-500

ical residential area. By comparing the left and right hand panels of Figure 4,501

we see that uncertainty regions are sprawling and fragmenting more in 2008502

than in 1976, for any intensity level th. This shows that the leap frog type of503

sprawling in the metropolitan area around Bologna has increased in the last504

four decades.505
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Fig. 3 The urban residential land use pattern and its evolution over years
{1976, 1994, 2003, 2008} in the study region identified by the red box in Figure 2, i.e. the
metropolitan area around Bologna city. The polycentric nature of the metropolitan area
is evident from the maps. The central urban agglomerate shows the residential pattern in
the city of Bologna, while the smaller urban patches placed around it represent neighouring
municipalities.

Figure 5 focuses on the detection of increased probability regions to monitor506

changes between t0 = 1976 and t1 = 2008. Each panel displays the residential507

urban pixels, for both 1976 (black) and 2008 (red), together with the increased508

probability regions (grey shadowed areas). The increased probability regions509

are identified using the first rule presented in section 3.2, which compares510

pixel-wise credible intervals in the probit scale. Again, we use this tool for511

exploratory purposes, considering credible intervals at different levels, namely512

95% (i.e. α = 0.05), 80% (i.e. α = 0.2) and 60% (i.e. α = 0.4), respectively,513

from left to right. As expected, the higher α the larger the increased probability514

region selected, as a result of applying a less restrictive rule. We also applied515

the rule given at the end of Section 3.2 looking at the posterior probability516

for the surface at time t1 being higher than the one at time t0 and obtained517

similar results.518

In conclusion, it is worth noting that regardless the level of conservativeness519

specified, the detected increased probability regions match well the areas with520
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Fig. 4 Contour analysis maps. Each panel displays the estimated probability surface in grey
colors, for t = 1976 (left hand panels) and t = 2008 (right hand panels), with red contour
lines at levels th = 0.7 (top panels), th = 0.5 (central panels) and th = 0.2 (bottom panels).
Uncertainty regions for the contour lines are displayed as blue shadowed areas, at 95% cred-
ible level. Uncertainty regions are typically located at the boundary of urban agglomerates,
where urban sprawl is usually expected. At any th level, we see that uncertainty regions are
more extended and fragmented in 2008 than in 1976, as an indication that urban sprawl in
the metropolitan area around Bologna has increased in the last four decades.
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Fig. 5 Surface comparison maps: 2008 versus 1976. Grey shadowed areas indicate increased
probability regions in 2008 with respect to 1976, with an estimated increase of at least 95%
(left), 80% (central) and 60% (right). In each panel, urban pixel referred to year 1976 (2008)
are shown in black (red). Note, increased probability regions detect regions of change, rather
than simply identifying the location of new urbanized pixel.

new urbanization. The pixel-wise procedure proposed in Section 3.2 seems521

effective in identifying regions within the metropolitan area around Bologna522

where land use exploitation for residential purposes has been more intensive523

over the last forty years.524

5 Discussion525

Relevant changes in the urban phenomena across space are not easily identi-526

fiable by visually inspecting raster maps, as the large scale spatial pattern is527

typically masked by both small scale structures and random noise. There is a528

vast literature on statistical detection of significant patterns in spatial data,529

such as spatial hot-spots and clusters (Duczmal et al., 2010; Lawson, 2010;530

Patil et al., 2010). These methods often use different techniques to achieve531

similar goals to those pursued in this paper, and are applied in several fields532

from ecology to epidemiology. In the applied context of this work, a mod-533

elled representation of the urban spatial pattern helps in detecting significant534

changes over a wide urban agglomerate, such as a metropolitan area, discount-535

ing changes occurring at a small scale which are more likely attributable to536

local features. Working on a smooth representation of the raster map, it is537

easier to detect spatially structured changes over time. This has been done by538

comparing surfaces at two different times, which is a practical solution to the539

problem of identifying large spatial regions changing across time. Note that540
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this is different from the problem of detecting changes at the pixel level, i.e.541

the new urbanized pixels. In this sense, the methods proposed in this work542

may be seen as alternative, or complementary, to traditional change detection543

methods.544

On the computational side, P-spline is a stable and efficient method for545

smoothing, which is a crucial aspect when analyzing large rasters. This arises546

for basically two reasons. First, P-spline smoothing implements low-rank bases547

of spatial B-spline functions, hence the number of parameters to estimate is548

much lower than the number of pixels composing the surface. Second, the549

B-splines are local functions, i.e. non zero in a limited spatial domain, thus550

sparse matrix computation can be adopted which speeds up sampling from the551

full conditional distribution of the surface coefficients, needed at each MCMC552

iteration.553

Surface smoothness depends to some extent on the number of basis func-554

tions adopted. In cases where the observed pattern is the result of several pro-555

cesses going on simultaneously at different spatial levels, a possible strategy556

is to focus on a scale of interest and utilize smoothing as a mean of removing557

variation at smaller scales; this is the approach used here, where a geographic558

criterion to define the resolution of the knot-grid is adopted. Alternatively,559

several smoothness levels can be applied with the aim of detecting features at560

different spatial resolutions.561

Working on a raster representation of widely available land use maps al-562

lowed us to build a general framework, applicable by practitioners of environ-563

mental agencies, for instance. The advantage of working with publicly available564

data comes to a price in terms of inability to account for errors in data pre-565

processing, e.g. classification of land use polygons (Foody, 2002) and polygon-566

to-raster conversion (Lechner et al., 2009). Accuracy of land use classifications567

algorithms is very important when the target is to detect land cover changes568

at a very fine spatial scale. For our purpose of modelling large scale spatial569

trends, the choice of the polygon-to-raster conversion criterion seems a much570

more critical issue. Errors due to polygon-to-raster conversion might be sensi-571

bly reduced by using more detailed rasterization criteria at the first stage of572

our framework. Increasing the grid resolution does not give a practical solu-573

tion, because of the trade-off between high raster resolution and computational574

efficiency. However, given a “feasible” raster resolution, one may use a vector-575

to-raster conversion algorithm producing binomial proportion data, i.e. the576

percentage of the pixel covered by the land use category under study. In this577

way, the raster will appear as a grey-coloured intensity map, instead of black578

and white, yielding a more precise representation of the urban pattern. A first579

attempt in this direction showed that the rasterization algorithm is slower,580

but loss of information is substantially reduced w.r.t. the binary rasterization.581

This option is worth to investigation in the future, since the smoothing models582

and fitting procedures proposed in this work apply straightforwardly to the583

case of Binomial responses.584

As a second issue, the pixel-wise procedures proposed in Sections 3.1 and585

3.2 do not account for multiple testing. Methods to build simultaneous credible586
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intervals for penalized splines have been proposed by Krivobokova et al. (2010)587

for Gaussian data. Extension to the spatial case and to non Gaussian data588

can be computationally demanding and is currently an open research line589

in spatial statistics. In a recent paper, Bolin and Lindgren (2013) proposed590

methods based on excursion sets; this approach could be applied in our context591

to identify pixels exceeding a certain threshold, ensuring that the statement592

holds for all of them simultaneously. Another possibility to control for multiple593

testing is to estimate the false discovery rate associated to any set of selected594

pixels; see Ventrucci et al. (2010) for an application in spatial epidemiology.595

Both strategies are worthwhile to be investigated in the future for building596

inferential tools dealing with simultaneous inferences over the smooth surface.597

Finally, methods presented in this work can be adapted to the analysis of598

spatial point patterns, when points over a continuous space are summarized599

into grid counts, and generally to remotely sensed data available in raster600

format, such as land cover maps adopted in landscape fragmentation, defor-601

estation and plant ecology studies.602
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Supplemental material726

Augmented model representation727

Let us recall the spatiotemporal model described in equation (6), section 2.5728

of our paper.729

yrct|δt,γ, θt ∼ Ber(µrct)

g(µrct) = δt + xT

rctγ +Brctθt t = 1, ..., T ; (7)

The posterior distribution of model (7) is intractable, thus MCMC methods730

based on Metropolis Hasting (M-H) are needed to draw a sample from the731

posterior distribution of the probability surface. A simpler approach which732

allows to avoid complicated M-H algorithms is to use the popular alternative733

representation of a probit model proposed by Albert and Chib (1993). Under734

their approach, model (7) is equivalent to the augmented model:735

yrc =

{

1 if srct > 0
0 otherwise

where,736

srct = δt + xT

rctγ +Brctθt + ǫrct (8)

ǫrct ∼ N(0, 1)

In the first level of the hierarchy, a set of nT auxiliary variables, one at each737

pixel and time, is introduced by adding standard normal random variables ǫrct738

to the linear predictor, as shown in equation (8). These auxiliary variables can739

be collected in vector s which represents a set of pseudo-data. Note that the740

binary response yrc is now determined by the sign of srct.741

At the second level of the hierarchy the model is completed by priors for742

the intercepts δ1, ..., δT , the slopes γ and the vectors of spline coefficients θt,743

t = 1, ..., T , (as described in section 2.5 of our paper).744

δt ∼ N
(

0, τ−1
)

t = 1, ..., T,

γ ∼ N
(

0, τ−1Ip
)

θt ∼ N
(

0,Q−1
t

)

t = 1, ..., T, (9)

where Qt = λtK is the IGMRF prior precision matrix, while τ is the prior745

precision for the fixed effects which we take equal to 10−5. At the third level746

of the hierarchy, a prior uninformative Gamma(a, b), with shape a = 1 and747

rate b = 5 · 10−5 is assumed for the precision parameters λt, t = 1, ..., T .748
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Model fitting details749

Below find some more detail about model fitting via MCMC. For simplicity of750

notation we collect the fixed effects (i.e. the intercept terms and the slopes)751

in a unique vector β =
[

δ1, ..., δT ,γ
T
]T

(extension to time-specific slopes is752

straightforward). In addition, we specify θ =
[

θT
1 , ..., θ

T

T

]T
as the full vector of753

spline coefficients (where θt is the vector of q spline coefficients representing754

the surface at time t) and λ = [λ1, ..., λT ]
T the associated precision parameters.755

The fixed effect design matrix X includes covariates and additional dummy756

variables for the time-specific intercepts (or simply a row of ones if an overall757

intercept δ is assumed in the model). The full basis matrix is given by B =758

IT ⊗Bt, with Bt = C ⊗R (see section 2.5 of our paper).759

The joint posterior of our model is760

π(s,β, θ|y) ∝ π(y|s)π(s|β, θ)π(β)π(θ|λ)π(λ), (10)

Note that π(y|s) is equal to 1 by assumption, as the observed data are not761

random in an augmented model approach. Thus, conditionally on the auxiliary762

variables s, the binary observations y and parameters (γ, θ) are independent.763

The full conditional distribution for the set of pseudo-data s is a truncated764

multivariate normal (Albert and Chib, 1993),765

srct|all ∼







N
(

δt + xT
rctγ +Brctθt, 1

)

I (srct > 0) if yrct = 1;

N
(

δt + xT
rctγ +Brctθt, 1

)

I (srct ≤ 0) otherwise,
(11)

where, as specified in section 2 of our paper, recall that notation Brct indicates766

the specific row entry of Bt with B-splines evaluated at pixel (r, c) and time t.767

From (11) it follows that the full conditional distributions for both fixed effects768

β and spline coefficients θ are Gaussian Markov Random Fields (GMRFs, Rue769

and Held (2005)). These full conditionals are reported below.770

β|all ∼ N
(

Q−1
β bβ ,Q

−1
β

)

(12)

Qβ = XTX + τ

bβ = XT (s−Bθ)

θ|all ∼ N
(

Q−1
θ bθ,Q

−1
θ

)

(13)

Qθ = BTB + diag(λ)⊗K

bθ = BT (s−Xβ)

λt|all ∼ G

(

a+
rank(K)

2
, b+

θT
t Kθt

2

)

∀t = 1, ..., T (14)
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A Gibbs algorithm can be implemented by sampling in turn from the full771

conditionals (11), (12), (13) and (14). Sampling from full conditionals in (13)772

can be done efficiently in one block, using the algorithms proposed by Rue773

and Held (2005), which perform solve operations on the Cholesky factor of774

the sparse precision matrix Qθ. A computationally intensive Cholesky up-775

date must be done at each MCMC iteration when sampling a new θ, which776

contains several thousand elements. However, the computational cost of each777

Cholesky update can be substantially reduced when the sparse structure of778

the Cholesky triangle is known (Furrer and Sain, 2010). The algorithm has779

been implemented in R using the package spam (Furrer and Sain, 2010) which780

includes fast routines for sampling GMRFs based on sparse Cholesky decom-781

position. Sampling from truncated normal distributions (11) is efficiently done782

using the package truncnorm (Trautmann et al., 2012). For identifiability of783

the P-spline components and the intercept terms, suitable sum-to-zero con-784

straints must be applied to the spline coefficients sampled at each MCMC785

iteration. If the model includes time dependent intercepts (as the model used786

in the application in section 4 of our paper), we need to center θt such that787

(C ⊗ R)θt = 0, at each MCMC iteration. (If the model contained only an788

overall intercept δ, it would suffice to center θ such that Bθ = 0).789

In the application in section 4 of our paper, results are based on an MCMC790

sample obtained by thinning a total of 30000 Gibbs iterations, after removal791

of 10000 burn-in iterations. We choose to collect only one sample every 30 in792

order to remove chain autocorrelation and guarantee a large effective sample793

size (ESS). As an alternative to thinning, to guarantee large ESS one could794

store a very large MCMC sample (perhaps much larger than 1000) of the795

probability surface (of n1n2 pixels), but this can require huge memory storage796

even with rasters of moderate size. Finally, as regards computational time,797

the Gibbs algorithm takes around 3, 4 and 6.5 minutes to run one hundred798

iterations of model (7) when using knot spacing equal to 1 km (q = 1089),799

500 m (q = 3969) and 350 m (q = 10609), respectively, using an Intel(R)800

Core(TM) i7 CPU 2.00GHz. R code is available on request.801


