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A New Dimension to Spectrum Management in IoT
Empowered 5G Networks

Rafay Iqbal Ansari, Haris Pervaiz, Syed Ali Hassan, Chrysostomos Chrysostomou, Muhammad Ali Imran, Shahid
Mumtaz and Rahim Tafazolli

Abstract—Paving the way for future 5G technologies requires a
need to overcome the spectrum crunch, which is one of the major
challenges impeding the growth of wireless technology. The issue
at hand becomes more pronounced when we consider Internet-
of-Things (IoT), where billions of devices require connectivity.
This article motivates the need for exploring new spectrum
opportunities with reference to the requirements of IoT networks.
Millimeter wave (mmWave) spectrum is considered as a panacea
for overcoming the spectrum crunch, providing the much needed
breathing space for introducing new applications that require
higher rates. A network based on control/data separation ar-
chitecture (CDSA) could further improve the performance by
utilizing the mmWave-based data base stations (DBSs). The
control base station (CBS) operates on the sub-6 GHz single
band, while the DBS possesses a dual-band capability. This article
presents a new dimension to spectrum heterogeneity by utilizing
a dual-band approach at the DBS. One of the unique aspects of
this work includes the analysis of a joint radio resource allocation
algorithm based on Lagrangian Dual Decomposition (LDD) and
we compare the proposed algorithm with the maximal-rate
(maxRx), Dynamic sub-carrier allocation (DSA) and Joint power
and rate adaptation (JPRA) algorithms. The analysis is further
expanded by showing an interplay between the utilization of
licensed and unlicensed mmWave resources and how the dynamic
spectrum management could help in their efficient utilization.

I. INTRODUCTION

Future 5G networks hold great prospects for introducing
new applications that provide users with a unique quality
of experience (QoE). The interconnection between a high
number of devices in the so called Internet-of-Things (IoT)
networks, signifies the need for higher capacity to support the
desired QoE. In order to meet the ever increasing demands
for capacity, a new air interface known as 5G New Radio (5G
NR) has been introduced. The first stage of development of 5G
NR is based on the improvements in microwave-based (µW)
long term evolution (LTE) and long term evolution-advanced
(LTE-A). However, the emergence of new and innovative
applications with enhanced QoE demands have rendered the
conventional µW networks insufficient and have signified the
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need for exploring other spectrum opportunities. The aim of 
this article is to identify the prospects and challenges with 
regards to the new opportunities.

During the previous decade, the concept of heterogeneous 
networks (HetNets) has gained ground as both academia and 
industry consider HetNets as a prime technology that could 
alleviate the situation with regards to spectrum management. 
HetNets are based on the concept of multi-tier networks with 
macrocells overlaid with small cells (micro, pico and femto). 
The concept behind the introduction of small cells is to reduce 
the distance between access network and the users, thereby 
improving the link quality. The traffic from macrocells is 
offloaded to small cells, relieving the burden on macrocells and 
allowing more and more users to gain access to high quality 
links provided by small cells. Small cells based on Millimeter 
wave (mmWave) frequency band (30 GHz to 300GHz) are 
considered as a potential candidate for providing the much 
needed space with regards to new spectrum opportunities and 
to avoid spectrum congestion. In the subsequent sub-sections, 
we overview the inevitable components of future networks, 
i.e., massive deployment of devices, the concept of green 
communications, and radio resource management in these 
networks, and then blend them together in the rest of the article 
to present an efficient system model.

A. Massive Internet-of-Things

One of the main objectives of 5G networks is to support 
applications that involve a high density of devices. In this 
regard, the concepts of massive machine-type communications 
(mMTC), enhanced mobile broadband (eMBB) and ultra-
reliable low-latency communications (URLLC) are being de-
veloped to support such applications. Machine-to-machine 
(M2M) is a concept associated with the future IoT, where 
billions of devices would be connected to the internet. The 
growth in industrial IoT has further aggravated the situation, 
where the applications based on the IoT platform are related to 
health, agriculture, automobile, power and environment sector, 
among others [1]. The requirement of providing ubiquitous 
connectivity to the massive IoT (mIoT) devices highlights 
the need for exploring new spectrum opportunities. The IoT 
traffic will increase as we move towards realizing applications 
with high rate requirements, lending credence to the need for 
overcoming the spectrum scarcity. However, energy 
efficiency is one of the key challenges with regards to 
mIoT. In the sequel, we highlight the need for energy 
efficient solution and the associated tradeoffs.
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B. Green Communication Networks

The concept of green communications is emerging, where 
several new techniques have been introduced to enhance the 
energy efficiency (EE) of a network. Wireless networks com-
prise of energy hungry base stations (BSs), which highlights 
the need for ensuring EE with regards to the BS operation. 
Moreover, the energy consumption becomes more pronounced 
when we consider massive deployment of devices. Energy 
consumption can be reduced by employing dynamic resource 
allocation techniques that ensure optimal utilization of re-
sources. However, it is important to identify the performance 
tradeoffs with regards to the EE, i.e., maximizing the EE can 
have detrimental impacts on other performance metrics such as 
outage probability [2] [3]. Moreover, the energy consumption 
of a wireless network also depends on the desired quality-of-
service (QoS), e.g., a higher transmission success may lead 
to higher energy consumption. Therefore, in this article, we 
motivate the need for dynamic radio resource allocation that 
maximizes the spectral efficiency (SE) and EE of the network.

C. Radio Resource Management

Dynamic spectrum management techniques allow the de-
vices to switch between different options, thereby increasing 
the overall network capacity by providing more degrees of 
freedom [4]. The resource management problem becomes 
more pronounced when ultra dense network (UDN) deploy-
ment based on mmWave technology is considered. In the 
context of UDNs, the network performance gains such as EE 
can only be enhanced by developing network optimization 
framework. A dynamic user association and power allocation 
mechanism allows the optimal utilization of resources, while 
keeping in view the network constraints [5]. Recently, the 
concept of dual-band BSs has been explored for mitigating 
the interference and providing higher transmission bandwidths. 
Utilizing two different frequency bands with different prop-
agation characteristics could provide significant performance 
gains in terms of network capacity [6]. A dual-band approach 
may involve utilization of sub-6 GHz and mmWave band. 
In such a network, the user is able to associate with low 
data rate but more reliable sub-6 GHz links or high data rate 
but relatively unreliable mmWave links [7]. This integrated 
mmWave/sub-6 GHz approach allows shared use of unlicensed 
and licensed spectrum and highlights the need for dynamic 
radio resource management.

D. Contributions of this work

In this work, we utilize the concept of control data sepa-
ration architecture (CDSA), where the main concept behind
CDSA is to separate the control plane (CP) and the data plane
(DP). The CP operates at lower frequencies so that larger
coverage could be ensured. On the other hand, DP can operate
on higher frequency bands such as the mmWave bands for
providing higher capacity and more spectrum opportunities.
The nomenclature of CDSA architecture includes control BSs
(CBSs) that correspond to the macrocells, while the data

Figure 1: System model: Integration of licensed/unlicensed
band based on CDSA

BSs (DBSs) correspond to the small cells, which overlay the
CBSs. A detailed discussion on the CDSA architecture and its
potential benefits is presented in Section II.

In view of the challenges posed by future dense networks,
in this article, we present a system model that employs the
concept of CDSA and motivates a new dimension to spectrum
heterogeneity by analyzing a dual-band approach based on us-
ing both licensed and unlicensed spectrum. We employ a dual-
band approach at the DBS, where the DBS operates in both
unlicensed 26 GHz and licensed 60 GHz mmWave frequency
band. Viewing the importance of ensuring an energy-efficient
solution, we develop a multi-objective optimization problem,
which jointly optimizes conflicting objectives to analyze the
SE and EE. One of the unique aspects of this work includes
the analysis of a joint radio resource allocation algorithm
based on Lagrangian Dual Decomposition (LDD). The LDD-
based algorithm jointly optimizes the decisions with regards
to power allocation for CBS and DBS, conducts sub-carrier
pair allocation and determines the choice of transmission
strategy. Towards the end of the article, we present a case study
that provides a designer’s perspective for a network based
on CDSA, complemented by a dual-band approach. We also
present a comparison of relevant power allocation schemes
with our proposed scheme by quantifying the achievable EE
and SE.

II. CONTROL-DATA SEPARATION ARCHITECTURE

The 4G cellular networks prohibit to cater the future de-
mands, which highlights the need for exploring new oppor-
tunities. CDSA has been introduced as a key technology for
realizing new applications. The CDSA can prove beneficial
in UDNs, with the dense deployment of mmWave DBSs to
provide better SE by the efficient utilisation of radio resources,
whereas the controlling and signaling can be efficiently pro-
vided by the CBS [8].

The CDSA promises to overcome the limitations of tradi-
tional networks by providing ubiquitous coverage and is well
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suited for diverse applications and use cases defined for the 5G
networks. Moreover, the CDSA allows to distinguish between
active and idle modes of the cellular users (or IoT devices),
which helps in efficient allocation of resources. The active
devices1 establish association with both the CBS and DBS,
while the idle devices are only connected to the CBS. When
a device initiates any activity, the CBS can designate the best
DBS to the device. The DBSs can be densely deployed in
UDNs, but they can be switched off during the low/off peak
traffic loads in order to reduce the energy consumption.

In contrast to the conventional cellular networks, CDSA
manages the issue of frequent handovers by utilizing a mo-
bility management mechanism that incurs lower signaling
overhead [8]. The handovers taking place between DBSs
falling within the coverage area of CBS are centrally managed,
leading to lower signaling overhead and smooth handovers.
Fig. 1 depicts the deployment of CBSs and DBSs for empow-
ering IoT applications, where each DBS possesses a dual-band
capability to provide transmission to its devices and CBS oper-
ate on a single sub-6 GHz band. In the subsequent section, we
build the case for combining the dual-band network operation
with CDSA and discuss the importance of a radio resource
management technique for optimal performance of dual-band
mmWave with CDSA.

III. CASE STUDY: A NEW DIMENSION TO SPECTRUM
HETEROGENEITY

Deviating from traditional spectrum heterogeneity involving
integration of sub-6 GHz band with the mmWave bands, we,
herein, employ a dual-band approach at the DBSs, where
each DBS operates at both licensed and unlicensed mmWave
frequency bands. Our aim is to extend the CDSA architecture
to investigate the dual band mmWave DBSs as a possible
solution to develop a joint energy and spectral efficient radio
resource management procedure to provide energy savings in
comparison to the traditional networks. The studies reveal that
the power consumed in the BS comprises of 80% of the total
energy consumption of the network. The high share of power
consumption by the BS highlights the need for ascertaining
an energy-efficient solution for the ultra-dense networks [9].
The CDSA architecture can be further categorized into the
following cases as listed below:

1) The CBS is responsible for supporting the CP only,
while the DP is supported by the DBS.

2) The CBS is responsible for supporting both the CP as
well as the DP, while the DBS supports the DP.

The average traffic load at different time intervals of the
day at each DBS can be predicted by self-learning traffic
prediction mechanisms based on the historical call data records
using support vector machine (SVM) regression model. The
historical data is split into the training and testing datasets. The
traffic prediction module is trained on the training dataset and
then it predicts the average traffic load for the considered DBS
for the testing dataset to evaluate the accuracy and precision
of the proposed training prediction mechanism. In our model,

1 The term devices refer to both cellular users or IoT devices

the whole day is divided into 24 equal time intervals with
duration of one hour, where the time intervals are denoted by
t ∈ {t1, t2, · · · t24}. It is also assumed that the average traffic
load remains constant within the two measuring time intervals,
however, the devices are assumed to be moving with the speed
of 3 km/hr randomly within the coverage area of the DBS and
the CBS.

Fig.2 depicts the proposed CDSA architecture with licensed
and unlicensed mmWave bands DBSs f2 and f3, respectively,
by employing the realistic blockage model overlaid within the
geographical coverage region of the single band CBS on f1.
Once the average traffic load for each DBS at the time interval
ti is predicted, i = {1,2, · · · 24}, the devices are associated with
either CBS or DBS along with the selection of the frequency
bands, f ∈ { f1, f2, f3}, which is followed by the resource block
(RB) allocation. The partitioning of radio resources among the
CBS and DBS for both signaling/controlling and data trans-
missions are quite dependent on the factors such as density
of devices, density of DBSs, the propagation environment
including areas covered by the buildings, height distribution
of the buildings and the locations/heights of the DBSs that
impact the blockage model.

In this trend, this work investigates the impact of the
partition of spectral resources among the CBS and DBSs on
the system performance such as achievable EE and SE. It is
assumed that there are N1 RBs exclusively reserved for the
CBS operating at f1 band based on its operating bandwidth,
whereas the total number of RBs at DBSs operating at f2
and f3 bands are assumed to be N2 and N3, respectively. The
total number of RBs at the CBS can be divided into two
orthogonal sub-partitions, namely as NC

DBS
and N1. NC

DBS
is

the set of RBs reserved exclusively for the unserved devices
covered by the DBSs while initiating the data connections
with the CBS. N1 can be further repartitioned into ND

CBS
and NC

CBS
, respectively, where ND

CBS is the set of RBs that
serve the devices that are provided data coverage by the CBS.
NC
CBS

is the set of RBs reserved for the control and signaling
mechanisms of the CBS. For the simplicity of the analysis,
we define the proportion of the RBs reserved by the CBS
(or ratio of NC

DBS
and N1) for providing data transmission to

the unserved devices lying within the DBS by α. Similarly,
the proportion of the RBs reserved by the CBS (or ratio of
ND
CBS and N1) for providing data transmission to the unserved

devices lying within the CBS by β.
One of the key contributions of this work is to provide some

design insights to the network providers to dynamically adjust
the partition of resources among the CBS and DBS considering
the aforementioned factors of the simulated environment and
the priority of the two considered objectives (EE and SE) to
obtain the better system performance. In this regard, the joint
EE and SE maximization problem is formulated as a multi-
objective optimization (MOO) problem, which tries to maxi-
mize the two conflicting objectives simultaneously subject to
the partition of spectral resources among the CBS and DBSs,
the minimum QoS requirements, and maximum input power
constraint. The MOO problem is transformed into a single
objective optimization (SOO) problem using the Weighted
Tchebycheff method [10]. The transformed SOO problem can
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Figure 2: Proposed radio resource management procedure CDSA-based 5G networks

be solved using standard interior point methods, such as LDD
method, allowing us to obtain the Pareto optimal solution
resulting in a complete Pareto-Frontier curve by dynamically
adjusting the weights of both the objectives. The main steps
outlined in the proposed radio resource management procedure
to evaluate the system performance in terms of the achievable
SE and EE are depicted in Fig. 2. We have defined EE as the
ratio of total system power and total system rate observed at
per unit bandwidth, while the SE is defined as the ratio of
total system rate and system bandwidth.

A. Simulation Setup and Performance Evaluation

In this article, our emphasis is on the Case 2, where the 
CBS is responsible for supporting both the CP as well as the 
DP, while the DBS supports the DP. We analyze the proposed 
CDSA network consisting of dual band DBSs lying within 
the coverage region of a single band CBS in the downlink 
transmission scheme as depicted in Fig. 1, assuming that 
perfect channel state information (CSI) is available at the CBS. 
We assume that the sector level beam alignment is already 
established and the coarse grained beam level alignment takes 
place in order to establish the high directivity links. We further 
assume that the CBS is operating at the unlicensed sub-6 
GHz industrial, scientific and medical (ISM) band, namely 
as f1 = 2.4 GHz with an operating bandwidth of 20 MHz, 
resulting in N1 = 100 RBs. The DBSs are operating at 
the licensed mmWave band, f2 = 26 GHz and unlicensed 
mmWave band, f3 = 60 GHz with an operating bandwidth of 1

GHz, and we assume the total number of RBs as N2 = 192 and 
N3 = 192 in each band, respectively. In this work, we don’t 
strictly follow the 5G new radio (5G NR) recommendations 
regarding variable RB size. Moreover, we assume that the RB 
size N1, N2 and N3 is fixed and it doesn’t vary with the 
traffic requirements. However, our system model is flexible 
and can be analyzed for different values of frequencies and 
RBs. In the simulation environment, we assume 6 DBSs 
lying within the geographical coverage region of the CBS 
with randomly distributed devices within the region of interest. 
The maximum transmission ranges of the CBS and the DBSs 
are assumed to be 1 km and 100 m, respectively. A 
maximum of 10 devices are assumed within the coverage 
area of a DBS. Moreover, the number of devices outside the 
coverage area of DBSs and distributed within the coverage 
area of CBS is also assumed to be 10.

The links operating at the sub-6 GHz band follow Rayleigh 
small scale fading, whereas Nakagami fading is assumed for 
the links operating at mmWave bands. The noise spectral 
density is assumed to be -174 dBm/Hz. The blockage model 
considered in this analysis is a rectangle Boolean scheme 
giving the probability of the line-of-sight (LoS) link as the 
negative exponential function of the distance d between the 
devices and the DBS, e.g., exp{−µd}. It is important to 
highlight that µ is dependent on the size and density of the 
blockages [11]. We apply this LoS probability function based 
on the real building statistics of the simulated envi-ronment 
[11]. There is a simplified version of the Boolean
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rectangular scheme wherein the link between the devices and
the DBS is assumed LoS if it falls within the critical radius
RC , and non-line-of-sight (NLoS) otherwise [12].

The path loss exponent for NLoS and LoS links are assumed
to be ρn = 4 and ρl = 2, respectively whereas the path loss
exponent for transmissions at sub-6 GHz band is assumed to be
2.7. The standard deviation of shadowing for NLoS and LoS
links are assumed to be 7.2 dB and 5.2 dB, respectively. The
sector level beamwidth is assumed to be 90o, while the beam-
level beamwidth is assumed to be 30o. The total time slot
duration is assumed to be 65535µs, which is a combination
of the alignment time and the data transmission time [13]. The
pilot transmission time for beam alignment phase is considered
to be 20µs, where the pilot transmission time is always less
than the total time slot duration.

Fig. 3 demonstrates the EE versus SE for the proposed

LDD-based scheme by dynamically tuning the priority of both
the objectives resulting in the corresponding Pareto optimal
solution at α = 50% for various values of β. Moreover, a
comparison between the proposed LDD-based scheme and
the maximal-rate (maxRx), Dynamic sub-carrier allocation
(DSA) [14] and Joint power and rate adaptation (JPRA)
[15] algorithms is presented. In the following, we briefly
explain the functionality of these schemes. The average traffic
load LDBS for each DBS at the 5th measuring time interval
denoted by t5, is predicted by the traffic prediction module as
LDBS = [50% 30% 30% 60% 20% 30%], where LDBS = 50%
denotes 50% loading at the DBS, i.e., 5 users, as the maximum
number of users assumed at the DBS=10.

• Maximal-rate (maxRx)
In the first step, equal water-filling level is assumed for
all users by assigning equal transmit power for all the
sub-carriers. Next, the sub-carrier allocation and user as-
sociation with the BSs is conducted to maximize the sum
rate. The process is reduced to a single objective problem,
where the achievable SE and EE for this single-objective
problem at α = 50%, β = [50% 60% 70% 80%] is shown
in Fig. 3. MaxRx scheme provides a higher SE but a lower
EE due to more power consumption as compared to the
LDD-based scheme at α = 50%, β = 50%. However, for
higher values of β, both SE and EE are impacted and a
lower value for both factors is observed as compared to
the LDD-based scheme.

• Dynamic sub-carrier allocation (DSA)
The worst sub-carriers are eliminated and equal transmit
power is assumed for all the remaining sub-carriers. The
sub-carrier allocation and user association is conducted
to maximize the sum rate, where the scheme is based
on a single objective problem. As shown in Fig. 3, DSA
scheme provides a lower SE and EE as compared to the
proposed LDD-based scheme.

• Joint power and rate adaptation (JPRA)
The worst sub-carriers are eliminated by assigning zero
power on those sub-carriers. The power of the elimi-
nated sub-carriers is added to the total available power
and is subsequently redistributed among the remaining
sub-carriers. The sub-carrier allocation is fixed and the
power allocation is based on the the multi-level water-
filling approach for maximizing the total number of bits
transmitted on each sub-carrier. It is pertinent to note
that the elimination of sub-carriers reduces the network
capacity, thereby leading to less SE and EE as compared
to the LDD-based scheme.

Considering the results for LDD-based scheme, it can be
observed that an increase in SE leads to an increase in EE
up to a peak value. This trend is a result of the dominance of
circuit power of the BS as compared to the transmit power.
However, following the peak value, the EE decreases sharply
with an increase in SE as now the transmit power dominates
the total power consumption of the transmission that leads to a
quasi-concave behavior of EE-SE tradeoff. The Pareto frontier
curve shown in the figure also signifies three points of interest,
i.e., the power minimization point, the EE maximization point,
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and the SE maximization point. These points are important
from the designer’s perspective, highlighting the extremities
of SE/EE tradeoff.

Similarly, Fig. 4 shows the variation of EE with different
partition sets of (α, β) at the 10th measuring time interval,
denoted by t10, where the corresponding predicted traffic
load is LDBS = [40% 25% 30% 45% 50% 35%]. This
figure signifies the maximum achievable EE for the partition
set (α, β), providing a designer’s perspective for identifying
the desired partition set. However, as discussed earlier, it is
important to note that maximum achievable EE and maximum
achievable SE are observed at different partition sets. For
example, Fig. 4 shows that maximum EE=2.98 (b/J/Hz) can
be achieved at partition set (75%,50%) with the corresponding
SE=9.45 (b/s/Hz). On the other hand, minimum EE=1.87
(b/J/Hz) is observed at partition set (40%,55%), with the
corresponding SE=11.5 (b/s/Hz), which signifies the impact
of partition set on the EE and SE.

Fig. 5 presents the EE versus the different partition sets
of (α, β) at the 1st measuring time interval denoted by
t1. The average traffic load of each DBS predicted by
the traffic prediction module at t1, is given by, LDBS =

[40% 30% 20% 50% 60% 30%]. The maximum EE of 1.45
b/J/Hz is observed for the partition set (25%,60%). Similarly,
from Fig. 6, we can observe that the corresponding achiev-
able SE approximately equals to 11.2 b/s/Hz for the same
partition set. The 11.2 b/s/Hz observed at the same partition
set (25%,60%) is not the maximum value of SE. It shows the
corresponding SE observed at the partition set that provides
maximum EE. These figures help in identifying the optimal
(α, β) combination for achieving the maximum EE and the
corresponding SE at that combination. If the desired criteria is
to achieve maximum SE, then similar results could be obtained
showing the variation of SE with (α, β) combination and the
corresponding EE. The optimal combination can change with
the number of users and the bandwidth available at CBS.
The users leaving the network frequently could impact the
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optimal combination for achieving the desired EE and SE. If 
several users enter the coverage area of a CBS and fall outside 
the coverage of all the 6 DBSs, then an optimal combination 
would have a higher β requirement. Similarly, an increase in 
the number of users lying within the coverage area of DBS but 
are not served by DBS would lead to a higher α requirement.

The aforementioned results depict the significance of the 
performance gains that can be achieved through CDSA. From 
a network designer’s perspective, the optimal control-data 
partition can be identified depending on the network rate 
requirements and the density of the devices in the network. 
Moreover, the traffic load patterns influence the performance 
of CDSA, which signifies the need for developing new traffic 
prediction techniques. To summarize, the proposed network 
provides a direction towards employing CDSA for achieving 
better performance as compared to the conventional cellular 
networks.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this article, we built the case for employing dual-band 
mmWave network based on CDSA, presenting a new dimen-
sion to spectrum heterogeneity. Viewing the spectrum crunch 
and the ever increasing demand for higher bandwidth, dual-
band mmWave network could go a long way in alleviating the 
spectrum scarcity. The utilization of mmWave wireless com-
munication for future 5G networks is motivated by delineating 
the design aspects. We reason that despite these factors, the 
popularity of mmWave licensed and unlicensed bands would 
increase with time and lead to the development of several new 
applications. We employ the CDSA architecture to evaluate 
the dual-band mmWave network by splitting the available 
RBs between control and data plane. A MOO problem is 
formulated, which jointly optimizes conflicting objectives; SE 
and EE. A case study is presented for analyzing the SE-EE 
tradeoff, providing a designer’s perspective for a CDSA-based 
network.
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As a future direction of this work, the DBS switching
mechanism could be employed to analyze the network perfor-
mance based on the traffic patterns. The evaluation of energy
savings and the impact of switching DBS on the end-to-
end transmission delay could provide significant insight into
the network robustness. Although, the centralized approach
followed by CDSA allows CBS/DBS coordination, the CBS
needs to extract the context information such as the position of
nodes for smooth coordination. The collection and storage of
context information is also one of the research challenges that
needs to be addressed. Moreover, the exchange of signaling
information between CBS and DBS requires an ultra-reliable
and low latency back-haul mechanism, which triggers the need
to explore techniques that incur minimum signaling overhead
for CDSA. In a nutshell, there are several aspects associated
with CDSA that require further research, making them a strong
contender for 5G networks.
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