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1 Introduction

For two-class discrimination, Ref. [1] claims that, when covariance matrices of

the two classes are unequal, a (class) unbalanced data set has a negative effect

on the performance of linear discriminant analysis (LDA). We suggest that

such a claim is vague if not misleading and we could find no solid theoretical

analysis presented in [1]. However, their results of empirical experiments are

interesting in finding that the performance of LDA on balanced data sets are

superior to those of LDA on unbalanced data sets.

Following the notation used by [1], there are n = n1 + n2 observations with

d features in the training set, where {x1i}n1

i=1 arise from class ω1 and {x2i}n2

i=1

arise from class ω2.

The Gaussian-based discrimination assumes two normal distributions: (x|ω1) ∼

N (µ1, Σ1) and (x|ω2) ∼ N (µ2, Σ2) such that, for j = 1, 2,

gj(x) = log(p(x, ωj)) = −1

2
(x−µj)

T Σ−1
j (x−µj)−

1

2
log |Σj |−

d

2
log 2π+log p(ωj) ,

where p(ωj) is the prior probability of class ωj ; it is a quadratic function of x.

When we assume further a common covariance matrix such that Σ1 = Σ2 = Σ,

although gj(x) is still quadratic in x (not linear as stated in [1]), a discriminant

∗ Corresponding author. Tel.: +44 141 330 2474; fax: +44 141 330 4814.

Email addresses: jinghao@stats.gla.ac.uk (Jing-Hao Xue),

mike@stats.gla.ac.uk (D. Michael Titterington).
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function gL(x) = g1(x) − g2(x) becomes linear in x. Consequently, Gaussian-

based LDA is derived: gL(x) = wTx + w0, where w = Σ−1(µ1 − µ2), and

w0 = log
p(ω1)

p(ω2)
−1

2
(µT

1 Σ−1µ1−µT
2 Σ−1µ2) = log

p(ω1)

p(ω2)
−1

2
(µ1+µ2)

T Σ−1(µ1−µ2) .

Therefore, the optimal or Bayes discriminant rule of Gaussian-based LDA is

to classify x into ω1 if wTx + w0 ≥ 0, and into ω2 otherwise.

In practice, plug-in sample Gaussian-based LDA is commonly adopted by

using relative frequencies of samples p̂(ωj) = nj/(n1 + n2) to estimate p(ωj),

using sample means µ̂j to estimate µj , using sample within-class covariance

matrices Sj to estimate Σj and using the pooled sample covariance matrix S

to estimate Σ, where

S =
1

n − 2

(

n1
∑

i=1

(x1i − µ̂1)(x1i − µ̂1)
T +

n2
∑

i=1

(x2i − µ̂2)(x2i − µ̂2)
T

)

=
1

n − 2
{(n1 − 1)S1 + (n2 − 1)S2} .

Fisher’s linear discriminant rule is to classify x into ω1 if wTx ≥ c, where

wTx is a linear combination of x and the coefficients wT maximise the ratio

(wT µ̂1 −wT µ̂2)
2/(wTSw); the ratio is of the separation of the sample means

of wTx to the pooled sample variance of wTx. Differentiation of this ratio

with respect to w results in w = αS−1(µ̂1 − µ̂2), where α is a scalar related

to nj, µ̂j and S (not necessarily n− 2 alone as in [1]). Traditionally α is set to

be 1 with the threshold c being adapted accordingly.

Fisher’s linear discriminant rule does not assume Gaussian distributions for

x|ω1 and x|ω2. However, in theory, it is equivalent to plug-in sample Gaussian-

based LDA if the data satisfy the assumptions underlying the latter; in prac-

tice, it can be equivalent to the latter with c = −w0. However, when the
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assumptions underlying Gaussian-based LDA do not hold, for instance if

Σ1 6= Σ2, the optimal threshold c for a minimum classification error rate is

not equal to −w0 [2], and hence Fisher’s linear discriminant rule differs from

Gaussian-based LDA.

With the above formulae for Gaussian-based LDA, Ref. [1] claims that “if

the two sample covariance matrices are different, the huge imbalance in class

distribution is very problematic for LDA because the prior probability of ma-

jority class overshadows the differences in the sample covariance matrix terms.

That is, the imbalanced data sets may hinder the performance of LDA”. Such

a claim is supported by their experimental results using re-balanced data ob-

tained from original unbalanced data from four sampling methods [1].

2 Comments on the Claim

We suggest that the above mentioned claim and the empirical study to support

it are vague if not misleading, even under an “ideal” condition such that µ̂j

and Sj perfectly estimate µj and Σj , respectively. Let us explain it on three

aspects.

First, if the true prior probabilities are approximately balanced such that

p(ω1) ≈ p(ω2) ≈ 0.5 but the training set is unbalanced such that n1 ≫ n2, then

plug-in estimates p̂(ωj) are poor estimates of p(ωj) because p̂(ω1) ≫ p̂(ω2),

even though when the two sample covariance matrices are identical S will be

a good estimate of Σ. Consequently, because of being based on p̂(ω1)
p̂(ω2)

, w0 is

wrongly estimated so that LDA performs poorly. In this case, the use of re-

balanced data, as in [1], will no doubt adjust p̂(ωj) such that p̂(ωj) ≈ 0.5 and
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thus improve the performance of LDA. However, in practice, the training set

is always given while the true priori probabilities are neither known nor nec-

essarily balanced, and therefore the preprocessing of re-balancing data cannot

guarantee a better performance of LDA.

Second, if the true prior probabilities are unbalanced such that p(ω1) ≫ p(ω2)

and the training set demonstrates the imbalance such that n1 ≫ n2, then

plug-in estimates p̂(ωj) ≈ p(ωj) are good estimates of p(ωj) and thus S =

p̂(ω1)S1 + p̂(ω2)S2 approaches the pooled population (within-class) covariance

matrix Σ = p(ω1)Σ1 + p(ω2)Σ2. When the two sample covariance matrices are

different, such that S1 6= S2, the weights p̂(ωj) truly reflect the contribution

of Σj to Σ. In contrast, if the training set is re-balanced by sampling as in [1],

then p̂(ωj) = 1
2

are poor estimates of p(ωj) and S = 1
2
(S1 + S2). There is

no reason to suggest that an LDA that uses S = 1
2
(S1 + S2) and a wrongly

estimated w0 (with the term log p̂(ω1)
p̂(ω2)

= 0) will perform better than LDA

that uses S = p̂(ω1)S1 + p̂(ω2)S2 where p̂(ωj) ≈ p(ωj). Even if we assume that

Ref. [1] uses accurate estimates of the prior probabilities p̂(ωj) from the original

data such that p̂(ωj) ≈ p(ωj) and uses the re-balanced data to estimate the

pooled covariance matrix such that S = 1
2
(S1 + S2) for Gaussian-based LDA,

there is still no justification that such a linear classifier will approach the

performance of the best “admissible” linear procedure under the condition

that Σ1 6= Σ2 [3], which is similar to Fisher’s linear discriminant but with

w = (t1Σ1 + t2Σ2)
−1(µ1 −µ2) (or in practice using sample statistics such that

w = (t1S1 + t2S2)
−1(µ̂1 − µ̂2)), where desired values of the scalars t1 and t2

have no closed-form solution so that systematic trials or computing algorithms

have to be adopted [3,4,5].
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Third, the misclassification error rate (ER) can be written as

ER = p(ω1)P (ω2|ω1) + p(ω2)P (ω1|ω2) ,

where P (ωj|ωk) is the probability of misclassifying an observation, who arises

from class k, into class j. For plug-in sample Gaussian-based LDA, when

(x|ω1) ∼ N (µ1, Σ1) and (x|ω2) ∼ N (µ2, Σ2), it follows that,

P (ω2|ω1) = P
(

wTx + w0 < 0|x ∼ N (µ1, Σ1)
)

,

P (ω1|ω2) = P
(

wTx + w0 ≥ 0|x ∼ N (µ2, Σ2)
)

.

Similarly to [4], the estimated probabilities of misclassification can be rewrit-

ten as

P (ω2|ω1) = Φ





− log p̂(ω1)
p̂(ω2)

− 1
2
(µ̂1 − µ̂2)

T S−1(µ̂1 − µ̂2)

[(µ̂1 − µ̂2)T S−1Σ1S−1(µ̂1 − µ̂2)]
1

2



 = Φ

(

−wT µ̂1 + w0√
wTΣ1w

)

,

P (ω1|ω2) = Φ





log p̂(ω1)
p̂(ω2)

− 1
2
(µ̂1 − µ̂2)

T S−1(µ̂1 − µ̂2)

[(µ̂1 − µ̂2)T S−1Σ2S−1(µ̂1 − µ̂2)]
1

2



 = Φ

(

wT µ̂2 + w0√
wT Σ2w

)

,

where Φ is the cumulative distribution function (CDF) of the standard nor-

mal distribution N (0, 1). Therefore, in the formula for ER, p(ωj) and Σj are

population parameters, or sample parameters from a sufficiently large original

dataset, while p̂(ωj), µ̂j and S are sample statistics obtained from a training

set.

In the experiments performed by [1], the test set includes n1

4
observations

arising from ω1 and n2

4
from ω2 such that it conforms to the original relative

frequencies; the remaining 75% of observations are then re-sampled into a

training set with approximately equal number of observations from each class.

Without explicit indication in [1] of how they obtain the sample relative fre-

quencies p̂(ωj) (from the re-balanced training set or from the original data set)

and the weights in calculating the pooled sample covariance matrix in those
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experiments, we assume that all the parameters of the linear discriminant

function are estimated from the re-balanced training set such that p̂(ωj) ≈ 1
2

and S ≈ p̂(ω1)S1+p̂(ω2)S2 = 1
2
(S1+S2). In this context, a claim that using the

re-balanced data can reduce ER can be translated into the following equality:

1

2
= argmin

p̂(ω1)
{p(ω1)P (ω2|ω1; p̂(ω1)) + p(ω2)P (ω1|ω2; p̂(ω1))} .

In order to verify this equality, we first perform some numerical evaluations on

two specific scenarios: one is with Σ1 = Σ2, the other is with Σ1 6= Σ2. In each

scenario, we assume the original dataset is unbalanced with p(ω1) = 0.8, and

there are large number of observations in both the test set and the training

set such that µ̂j and Sj perfectly estimate µj and Σj , respectively, whether

the data in the training set are unbalanced or balanced. With the population

parameters p(ωj), µj and Σj known, ER becomes a function of p̂(ω1) alone:

ER(p̂(ω1)) = p(ω1)P (ω2|ω1; p̂(ω1)) + p(ω2)P (ω1|ω2; p̂(ω1)) ,

where

P (ω2|ω1; p̂(ω1)) = Φ





− log p̂(ω1)
1−p̂(ω1)

− 1
2
(µ1 − µ2)

T Σ−1(µ1 − µ2)

[(µ1 − µ2)T Σ−1Σ1Σ−1(µ1 − µ2)]
1

2



 ,

P (ω1|ω2; p̂(ω1)) = Φ





log p̂(ω1)
1−p̂(ω1)

− 1
2
(µ1 − µ2)

T Σ−1(µ1 − µ2)

[(µ1 − µ2)T Σ−1Σ2Σ−1(µ1 − µ2)]
1

2



 ,

in which Σ = p̂(ω1)Σ1 + (1 − p̂(ω1))Σ2.

Here we consider a simple case in which each observation only has one feature

(i.e., d = 1). The population parameters are known to be p(ω1) = 0.8, µ1 = 1,

µ2 = −1, Σ1 = 1 and Σ2 ∈ [0.2, 5.0]. The relationship between ER(p̂(ω1)) and

p̂(ω1) is drawn in the 3-Dimensional plot as a function of p̂(ω1) and Σ2 in the

left panel of Figure 1. The surface of ER(p̂(ω1)) does not have a minimum
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Figure 1. The misclassification error rates ER(p̂(ω1)).

point at p̂(ω1) = 0.5.

In the right panel of Figure 1, we draw the curves of ER(p̂(ω1)) for Σ2 = 0.2, 1,

and 5, respectively. We observe the following.

(1) When Σ2 = 0.2 or 5 such that Σ2 6= Σ1, the best performance of LDA is

obtained at p̂(ω1) = 0.8, which is equal to the true prior probability of

class ω1, rather than from the re-balanced data, which gives p̂(ω1) = 0.5;

the procedure of re-balancing data has a negative effect on the perfor-

mance of LDA if the original unbalanced data conform to the truly un-

balanced population.

(2) When Σ2 = 1 such that Σ2 = Σ1, the best performance of LDA is also

obtained at p̂(ω1) = 0.8 rather than from the re-balanced data; the pro-

cedure of re-balancing data may also have a negative effect.

(3) In general, the data with a compact within-class distribution (in the

sense of a small within-class covariance matrix) may result in a better

performance of LDA (in the sense of smaller ER(p̂(ω1))), compared with

the data with a dispersed within-class distribution.
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(4) In fact, in this case, since min(p(ω1), p(ω2)) = 0.2, in practice the maxi-

mum ER(p̂(ω1)) can be controlled to be 0.2, the smaller prior probability,

if we always classify observations into the class with higher prior proba-

bility.

In summary, under the condition of large number of observations, with regard

to ER as the measure of performance, there is no evidence from our numerical

evaluations to justify the claim that re-balancing original data can improve

the performance of Gaussian-based LDA, and the best performance of LDA is

always obtained when the estimated priori probabilities conforms to the true

population prior probabilities.

3 AUC or ER

Unbalanced datasets are quite common in practice. For two-class discrimina-

tion, conventionally one of two classes which has higher prior probability is

called the majority or negative class, and the other class is called the minor-

ity or positive class. In practice, many discrimination techniques are not very

successful in identifying the minority class [6].

There are many approaches to dealing with data imbalance (rarity) [7]. The

simplest approaches are random over-sampling with replacement and under-

sampling, where the former is to increase the number of the minority class

and the latter is to reduce the number of the majority class. Such sampling

will modify the class distributions of the training data. Random over-sampling

cannot gain new information about the minority class; random under-sampling

may lose useful information about the majority class. Nevertheless, for practi-
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cal datasets, such sampling may improve the performance of LDA with regard

to certain evaluation metrics, as shown by [1].

The ER, also called “accuracy” in [8,9,7], is the most widely used evaluation

metric for classifiers such as LDA. However, as an average over all the obser-

vations that are classified, it inevitably favours the majority class given the

assumption that the error in the minority class is of equal importance to that

in the majority class. Therefore, it can be biased by the prior probabilities

if errors have in practice different importance between the two classes; it is

recommended to use a loss function in this case.

For two-class discrimination of unbalanced data, where the error in the mi-

nority class may be more important in practice, the Receiver Operating Char-

acteristic (ROC) curve and the area under the curve, the so-called AUC, are

commonly used [9,7]. The ROC curve is a plot of the true positive rate vs.

the false positive rate, and hence a higher AUC generally indicates a better

classifier. As pointed out by [10], there is a three-way equivalence between

AUC, the Wilcoxon-Mann-Whitney statistic and the probability of a correct

ranking of a randomly chosen (negative, positive) pair. More precisely, sup-

pose that a discriminant function such as gL(x) is designed to provide a high

score for a positive observation and a low score for a negative one, then, given

a randomly chosen (negative, positive) pair denoted by (xN ,xP ), it holds that

AUC = Prob(xN < xP ).

Such equivalence to the Wilcoxon-Mann-Whitney statistic is also mentioned

in [8,11,1], and hence AUC is concerned more about ranking than about the

misclassification error of the predictions [11]. In contrast to ER, AUC is in-

variant to the prior probabilities [8].
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The ROC is obtained by varying the discriminant threshold, while, in practice,

ER is obtained for some classifiers such as LDA at a conventionally fixed,

discriminant threshold which is optimal under certain assumptions. Therefore,

AUC is independent of the discriminant threshold while ER is not.

Concerning the relationship between AUC and ER, Ref. [8] shows that there

is good agreement between these two evaluation metrics in ranking 9 classifi-

cation algorithms including C4.5 (an algorithm based on classification trees)

and plug-in sample Gaussian-based quadratic discriminant analysis (QDA).

Furthermore, the theoretical analysis in [11] shows that the mean of AUC is

monotonically decreasing as ER increases. Meanwhile, Ref. [11] shows that,

the more unbalanced the data, the higher the coefficient of variation of AUC

and the lower the mean of AUC. This not only indicates that AUC may suggest

a different conclusion from that drawn by ER with regard to classifier perfor-

mance on unbalanced data, but also suggests that using AUC as the evaluation

metric favours balanced data. In fact, using C4.5, Ref. [12] presents a thorough

empirical study of 26 real-world datasets; their results show that, in general,

ER is better with original data while AUC is better with re-balanced data.

Ref. [1] uses AUC to evaluate the performance of plug-in sample Gaussian

LDA (denoted by LDA-Σ hereafter); in our study, we will use both AUC and

ER to evaluate the performance of LDA-Σ and one of its special versions which

assumes that the common covariance matrix is diagonal (denoted by LDA-Λ).

We first replicate the experiments in [1] on 10 datasets from the UCI ma-

chine learning repository [13] with our implementations, and then investigate

4 simulated datasets of normally distributed data and normal mixture data.
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4 Replication of Experiments on UCI Datasets

As with [12] and [1], the test set is constructed by including n1

4
observations

arising from the minority class ω1 and n2

4
from the majority class ω2 such that

it maintains the prevalence rate of each class; the remaining 75% of obser-

vations in the original, unbalanced training set are then re-sampled into two

training sets with equal numbers of observations from each class, respectively

by random over-sampling with replacement and random under-sampling.

We implement such constructions randomly T times; such a validation is not

a cross-validation since the training set and test set are not necessarily crossed

over. However, it can be expected that such a validation is as effective as T -

fold cross-validation, if T is a large number. In our implementation, T = 200.

As suggested in [8], we average over the T AUCs to obtain one average AUC,

rather than average over the T ROCs to calculate one AUC.

The AUC is obtained through calculating the Wilcoxon-Mann-Whitney statis-

tic of the predicting scores for LDA. It is implemented by an R function

wilcox.test from a standard package stats in R to perform the Mann-Whitney

test (equivalently the Wilcoxon rank sum test) for two unpaired samples. In

order to exercise the test, scores of the discriminant function gL(x) are used

as the varying discriminant threshold and for ranking.

Table 1 presents the description of the 10 UCI datasets being studied (the

class prior probabilities different from Table 1 of [1] are highlighted in italics).

As with [8] and [14], the UCI data are rescaled into the range [0, 1]. In addition,

before carrying out LDA, we perform for each feature xi|y the Shapiro-Wilk
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Data set Observations Features Class (min., maj.) Prior (min., maj.)

Letter-a 20,000 16 (A, remainder) (3.94%, 96.06%)

Satimage-3 6,435 36 (3, remainder) (21.1%, 78.9%)

Waveform 5,000 21 (1, remainder) (32.94%, 67.06% )

Image 2,310 18 (BRICKFACE, remainder) (14.29%, 85.71%)

Vehicle 846 18 (van, remainder) (23.52%, 76.48%)

Pima 768 8 (1, 0) (34.9%, 65.1% )

New-thyroid 215 5 (hypo, remainder) (13.95%, 86.05% )

Glass 214 9 (3, remainder) (7.94%, 92.06%)

Wine 178 13 (3, remainder) (26.97%, 73.03%)

Iris 150 4 (Iris-virginica, remainder) (33.33%, 66.67% )

Table 1

Description of data

test for within-class normality and Levene’s test for homogeneity of variance

across the two classes at the significance level 0.05. If for a feature the within-

class normality is rejected in any of the two classes, we mark the feature

as “Normality rejected”. Results of these two tests, as shown in Table 2,

suggest that for all 10 datasets under study the null hypotheses of within-

class normality and homoscedasticity across the classes are rejected, including

the dataset “Pima” which is stated to have nearly equal sample covariance

matrices in [1].
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Data set Features Normality rejected Homoscedasticity rejected

Letter-a 16 16 12

Satimage-3 36 36 36

Waveform 21 15 15

Image 18 18 18

Vehicle 18 18 14

Pima 8 8 5

New-thyroid 5 5 3

Glass 9 9 2

Wine 13 12 10

Iris 4 3 3

Table 2

Results of the Shapiro-Wilk test for within-class normality and Levene’s test for

homogeneity of variance across the two classes.

Table 3, 4, 5 and 6 list our results, obtained from LDA-Σ and LDA-Λ, of

medians of AUC and ER for the original and re-balanced data, as well as

p-values for the Wilcoxon signed rank test for the pairs of (original, over-

sampling) and of (original, under-sampling). From the tables, we can observe

the following.

(1) Concerning LDA-Σ, AUCs of re-balanced data are significantly (at the
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Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Letter-a 0.977 0.986 0.986 0 0

Satimage-3 0.987 0.988 0.987 0 0

Waveform 0.943 0.945 0.944 0 0

Image 0.994 0.995 0.995 0 0

Vehicle 0.989 0.993 0.991 0 0

Pima 0.835 0.840 0.834 0 0.801

New-thyroid 0.995 1 0.997 0 0.083

Glass 0.827 0.918 0.801 0 0.018

Wine 1 1 1 0.005 0.01

Iris 0.977 0.990 0.987 0 0

Table 3

Results from LDA-Σ: medians of AUC for the original and re-balanced data and

p-values for the Wilcoxon signed rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

level 0.05) better than those of original data, except for the under-sampled

data of “Pima”, “New-thyroid” and “Glass”. Although the increase of its

median (and thus the improvement of classifier performance) from re-

balancing is not relatively large in amount, in general, it can be said

that, for the datasets being studied, AUC favours re-balanced data.

(2) Concerning LDA-Λ: of the 10 datasets, AUCs of re-balanced “Satimage-
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Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Letter-a 0.011 0.044 0.045 0 0

Satimage-3 0.051 0.076 0.077 0 0

Waveform 0.126 0.170 0.171 0 0

Image 0.019 0.033 0.036 0 0

Vehicle 0.047 0.047 0.052 0.827 0.002

Pima 0.224 0.234 0.240 0 0

New-thyroid 0.056 0.019 0.037 0 0

Glass 0.075 0.226 0.292 0 0

Wine 0 0.023 0.023 0 0

Iris 0.081 0.108 0.108 0 0

Table 4

Results from LDA-Σ: medians of ER for the original and re-balanced data and p-

values for the Wilcoxon signed rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

3” and “Image” are significantly worse than those of the original data

for both re-sampling methods, and AUC of re-balanced “Glass” is signif-

icantly worse than that of original data for the under-sampling. Mean-

while, no significant difference exists between AUCs of “Vehicle”. This

may be because of the different estimates of the covariance matrix be-

tween LDA-Σ and LDA-Λ; this indicates that the accuracy of estimation
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Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Letter-a 0.951 0.952 0.952 0 0

Satimage-3 0.982 0.981 0.981 0 0

Waveform 0.916 0.917 0.917 0 0

Image 0.873 0.864 0.865 0 0

Vehicle 0.783 0.782 0.783 0.204 0.06

Pima 0.818 0.822 0.820 0 0.023

New-thyroid 0.997 1 1 0 0.136

Glass 0.709 0.750 0.653 0 0

Wine 1 1 1 0 0.096

Iris 0.990 0.990 0.990 0 0

Table 5

Results from LDA-Λ: medians of AUC for the original and re-balanced data and

p-values for the Wilcoxon signed rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

can play a more important role in AUC than the re-balancing does.

(3) In contrast to AUC, ER is significantly increased by re-balancing except

for “New-thyroid” and “Vehicle”. The increase of its median (and thus

the decline of classifier performance) from re-balancing is relatively large.

In general, it can be said that, for the datasets being studied, ER favours

original data.
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Figure 2. Scatter plots of AUC on re-balanced data (by over-sampling and un-

der-sampling) vs. original data, obtained from LDA-Σ.
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Figure 3. Scatter plots of ER on re-balanced data (by over-sampling and un-

der-sampling) vs. original data, obtained from LDA-Σ.

19



original over−sampling under−sampling

0.
96

0.
97

0.
98

0.
99

AUC of LDA − Σ

Letter−a

AU
C

original over−sampling under−sampling

0.
98

0
0.

98
2

0.
98

4
0.

98
6

0.
98

8
0.

99
0

0.
99

2

AUC of LDA − Σ

Satimage−3

AU
C

original over−sampling under−sampling

0.
93

0
0.

93
5

0.
94

0
0.

94
5

0.
95

0
0.

95
5

0.
96

0

AUC of LDA − Σ

Waveform

AU
C

original over−sampling under−sampling
0.

98
0

0.
98

5
0.

99
0

0.
99

5
1.

00
0

AUC of LDA − Σ

Image

AU
C

original over−sampling under−sampling

0.
96

5
0.

97
0

0.
97

5
0.

98
0

0.
98

5
0.

99
0

0.
99

5
1.

00
0

AUC of LDA − Σ

Vehicle

AU
C

original over−sampling under−sampling

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

AUC of LDA − Σ

Pima

AU
C

original over−sampling under−sampling

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

AUC of LDA − Σ

New−thyroid

AU
C

original over−sampling under−sampling

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

AUC of LDA − Σ

Glass

AU
C

original over−sampling under−sampling

0.
98

8
0.

99
0

0.
99

2
0.

99
4

0.
99

6
0.

99
8

1.
00

0

AUC of LDA − Σ

Wine

AU
C

original over−sampling under−sampling

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

AUC of LDA − Σ

Iris

AU
C

Figure 4. Box-plots of AUC on original and re-balanced data (by over-sampling and

under-sampling), obtained from LDA-Σ.
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Figure 5. Box-plots of ER on original and re-balanced data (by over-sampling and

under-sampling), obtained from LDA-Σ.
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Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Letter-a 0.023 0.076 0.076 0 0

Satimage-3 0.121 0.136 0.135 0 0

Waveform 0.154 0.163 0.163 0 0

Image 0.218 0.310 0.310 0 0

Vehicle 0.363 0.363 0.358 0.002 0.001

Pima 0.245 0.260 0.260 0 0

New-thyroid 0.037 0.019 0.019 0 0

Glass 0.075 0.509 0.509 0 0

Wine 0.023 0.045 0.045 0 0

Iris 0.135 0.162 0.162 0 0

Table 6

Results from LDA-Λ: medians of ER for the original and re-balanced data and p-

values for the Wilcoxon signed rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

Obtained from LDA-Σ on the 10 datasets, scatter plots of AUC and ER on re-

balanced (by over-sampling and under-sampling) vs. original data are shown

in Figures 2 and 3, and box-plots of AUC and ER on original and re-balanced

data are shown in Figures 4 and 5, respectively. Results from LDA-Λ are

similar and thus are omitted here.
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5 Simulation Studies

Although we may observe some patterns from the empirical study using real-

world datasets such as those from the UCI machine learning repository, it is not

reliable to generalise the patterns into a conclusion beyond the tested datasets.

In this sense, a study on simulated datasets can be a good complement to the

empirical study.

In [4], simulation studies by Monte Carlo methods are used to compare the

performance of the so-called best linear function [3], the quadratic and Fisher’s

linear discriminant function, under the condition that Σ1 6= Σ2. One of the

simulation studies with respect to p(ωj) and p̂(ωj) shows that ER is smaller

when p̂(ωj) is closer to p(ωj).

Fisher’s linear discriminant rule as used in [4] is in fact a variant of the plug-in

sample Gaussian-based LDA with w = S−1(µ̂1 − µ̂2), and

w0 = log
p(ω1)

p(ω2)
− 1

2
(µ̂1 + µ̂2)

T S−1(µ̂1 − µ̂2) ,

where population prior probabilities p(ωj) are used for the term log p(ω1)
p(ω2)

in w0

while sample prior probabilities p̂(ωj) are used in S = p̂(ω1)S1 + p̂(ω2)S2. In

practice, since the p(ωj) are unknown, log p̂(ω1)
p̂(ω2)

is more widely used in w0.

In this section, we simulate 4 datasets; each dataset consists of 1000 observa-

tions and is divided into two classes, ω1 and ω2, with 200 observations from

the minority class ω1 and 800 observations from the majority class ω2 such

that each dataset is unbalanced with p̂(ω1) = 0.2. The first dataset is ran-

domly generated from two 4-variate normal distributions, x|ω1 ∼ N (µ1, Σ1)

and x|ω2 ∼ N (µ2, Σ2), with equal covariance matrices such that Σ1 = Σ2;
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the second dataset is similar to the first one except that Σ1 6= Σ2. The third

and fourth datasets are randomly generated from two 4-variate normal mix-

tures; each mixture has two components. The third one has equal covariance

matrices across the two classes while the fourth one does not.

For x|ω1 ∼ N (µ1, Σ1) and x|ω2 ∼ N (µ2, Σ2), as with [4] and [2], we can use a

linear transformation to reduce Σ1 to the identity matrix I and diagonalise Σ2.

Therefore, without loss of generality, in this section, we use a canonical form

with µ1 = 0, Σ1 = I and µ2 = (−1.5,−0.75, 0.75, 1.5)T , and with Σ2 a diagonal

covariance matrix. For the dataset with equal covariance matrices, Σ2 = I =

Σ1; for the dataset with unequal covariance matrices, Σ2 is a diagonal matrix

with 4 diagonal elements which are (0.25, 0.75, 1.25, 1.75), so that Σ2 6= Σ1.

Compared with the normal distribution, the mixture of normal distributions

is a better approximation to real data in a variety of situations. In this section,

2 simulated datasets are randomly generated from two mixtures, ω1 and ω2,

of 4-variate normal distributions.

Each mixture has two components with equal mixing coefficients. The two

components, A and B, of the mixture ω1 are normally distributed with proba-

bility density functions N (µ1A, Σ1) and N (µ1B, Σ1), respectively, where µ1A =

0 and µ1B = (2, 0, 0, 0)T ; and the two components, C and D, of the mixture

ω2 are normally distributed with probability density functions N (µ2C, Σ2) and

N (µ2D, Σ2), respectively, where µ2C = (−1.5,−0.75, 0.75, 1.5)T and µ2D =

(−3.5,−0.75, 0.75, 1.5)T . In such a way, when Σ1 and Σ2 are equal/unequal,

the covariance matrices of the two mixtures will become equal/unequal. Mean-

while, we set Σ1 and Σ2 in the same way as for the normally distributed data.

In our simulation studies, both Σ1 and Σ2 are diagonal; the performance of
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LDA-Λ is found similar to that of LDA-Σ, and thus only the results obtained

from LDA-Σ are presented in the following.

The simulations from the multivariate normal distributions and normal mix-

tures are based on an R function mvrnorm for simulating from a contributed

R package MASS. As with the UCI datasets being studied, the simulated

data are rescaled into the range [0, 1].

Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Normal-equ 0.962 0.963 0.962 0 0.012

Normal-unequ 0.943 0.949 0.948 0 0

Mixture-equ 0.981 0.982 0.981 0 0.26

Mixture-unequ 0.992 0.992 0.992 0.151 0.001

Table 7

Results from LDA-Σ: medians of AUC for the original and re-balanced data and

p-values for the Wilcoxon signed-rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

Table 7 and 8 list our results, obtained from LDA-Σ, of medians of AUC and

ER for the original and re-balanced data, as well as p-values for the Wilcoxon

signed-rank test for the pairs of (original, over-sampling) and of (original,

under-sampling). From the tables, we can observe the following.

(1) Concerning AUC obtained from both LDA-Σ, although for the simulated

datasets being studied it generally favours re-balanced data, the increase

of its median (and thus the improvement of performance of LDA) from
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Data set Original Over. Under. p-v. (Ori.-Over.) p-v. (Ori.-Under.)

Normal-equ 0.072 0.108 0.112 0 0

Normal-unequ 0.060 0.096 0.096 0 0

Mixture-equ 0.056 0.068 0.068 0 0

Mixture-unequ 0.032 0.044 0.044 0 0

Table 8

Results from LDA-Σ: medians of ER for the original and re-balanced data and p-

values for the Wilcoxon signed-rank test for pairs of (original, over-sampling) and

of (original, under-sampling).

re-balancing is relatively small. We observe that, of the two simulated

mixture datasets, there is no significant change in AUC between under-

sampled and original data for one dataset and between over-sampled and

original data for the other dataset.

(2) Concerning ER obtained from both LDA-Σ, in contrast to AUC, all ERs

are significantly increased after the data are re-balanced. ER favours orig-

inal data and the increase of its median (and thus the decline in perfor-

mance of LDA) from re-balancing is noticeably large.

Obtained from LDA-Σ on the 4 simulated datasets, scatter plots of AUC and

ER on re-balanced (by over-sampling and under-sampling) vs. original data

are shown in Figures 6 and 7, and box-plots of AUC and ER on original and

re-balanced data are shown in Figures 8 and 9, respectively.
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Figure 6. Scatter plots of AUC on re-balanced data (by over-sampling and un-

der-sampling) vs. original data, obtained from LDA-Σ.
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Figure 7. Scatter plots of ER on re-balanced data (by over-sampling and un-

der-sampling) vs. original data, obtained from LDA-Σ.
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Figure 8. Box-plots of AUC on original and re-balanced data (by over-sampling and

under-sampling), obtained from LDA-Σ.
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Figure 9. Box-plots of ER on original and re-balanced data (by over-sampling and

under-sampling), obtained from LDA-Σ.
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6 Conclusions

In general, we can draw the following conclusions with regard to the datasets

in our study.

(1) Concerning AUC obtained from LDA, although it generally favours re-

balanced data, the increase of its median (and thus the improvement of

performance of LDA) from re-balancing is relatively small. In contrast to

AUC, ER favours original data and the increase of its median (and thus

the decline in performance of LDA) from re-balancing is relatively large.

This shows that AUC and ER can lead to quite different conclusions on

the discrimination performance of LDA for unbalanced datasets.

(2) Therefore, from our study, there is no reliable empirical evidence to sup-

port the claim that a (class) unbalanced data set has a negative effect on

the performance of LDA.

(3) Re-balancing affects the performance of LDA for both the datasets with

equal or unequal covariance matrices. This indicates that having unequal

covariance matrices is not a key reason for the difference in performance

between original and re-balanced data.
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