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Optimizing and Factorizing the
Wilson Matrix

Nicholas J. Higham and Matthew C. Lettington

Abstract. The Wilson matrix, W , is a 4× 4 unimodular symmetric positive definite matrix of
integers that has been used as a test matrix since the 1940s, owing to its mild ill-conditioning.
We ask how close W is to being the most ill-conditioned matrix in its class, with or without the
requirement of positive definiteness. By exploiting the matrix adjugate and applying various
matrix norm bounds from the literature we derive bounds on the condition numbers for the
two cases and we compare them with the optimal condition numbers found by exhaustive
search. We also investigate the existence of factorizations W = ZTZ with Z having integer
or rational entries. Drawing on recent research that links the existence of these factorizations
to number-theoretic considerations of quadratic forms, we show that W has an integer factor
Z and two rational factors, up to signed permutations. This little 4× 4 matrix continues to be
a useful example on which to apply existing matrix theory as well as being capable of raising
challenging questions that lead to new results.

1. INTRODUCTION. In the early days of digital computing there was much interest
in constructing matrices that could be used to test methods for solving linear systems
and computing eigenvalues. Such matrices should have known inverse or eigenvalues,
preferably of a simple form. A famous example is the Hilbert matrix, with (i, j) el-
ement 1/(i + j − 1), which was the subject of much investigation and about which
a great deal is known [3], [14, Sec. 28.1]. This and other test matrices have been col-
lected in books [10], [31, App. C] and made available in software, such as in MATLAB
[12, Sec. 5.1] and Julia [34].

While the Hilbert matrix is defined for any dimension, some matrices of a specific
small dimension have been proposed. Among these is the Wilson matrix

W =

 5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

 ,
which was a favorite of John Todd [28, 29, 30] and has been used by various authors,
for example in [1, 6, 8, 9, 13, 17]. The earliest appearance we know of the Wilson
matrix is in a 1946 paper by Morris [23], who investigates a linear system containing
the matrix “devised by Mr. T. S. Wilson.” A 1948 report by T. S. Wilson [32] acknowl-
edges “Capt. J. Morris of the Royal Aircraft Establishment,” so it appears that this
is the same T. S. Wilson—an employee of D. Napier and Son, a British engineering
company developing aircraft engines at the time (see also [33]).

Matrices with integer entries are of particular interest as test matrices because they
are stored exactly in floating-point arithmetic, provided that the entries are not too
large. By contrast, the Hilbert matrix is not stored exactly, and this can lead to diffi-
culties in interpreting the results of computational experiments, as explained by Moler
[20].

The Wilson matrix is symmetric positive definite and has determinant det(W ) = 1
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(so it is unimodular1) and inverse

W−1 =

 68 −41 −17 10
−41 25 10 −6
−17 10 5 −3
10 −6 −3 2

 .
The Wilson matrix is mildly ill-conditioned, with 2-norm condition number κ2(W ) =
‖W‖2‖W−1‖2 ≈ 2.98409× 103, where ‖A‖2 = maxx 6=0 ‖Ax‖2/‖x‖2 and ‖x‖2 =
(xTx)1/2. Recall that κ2(A) ≥ 1 and that κ2(A) is a measure of the sensitivity of
a linear system Ax = b to perturbations in A and b. Matrices with a large condi-
tion number are of interest for test purposes as they can pose various difficulties for
methods for solving linear systems and other problems.

We do not know how Wilson, working in the pre-digital computer era, constructed
his matrix, and in particular to what extent he maximized the condition number subject
to the matrix entries being small integers. Moler [21] asked how ill-conditioned W is
relative to matrices in the set

S = {A ∈ R4×4 : A is nonsingular and symmetric with integer entries

between 1 and 10 }. (1)

He carried out an experiment in which he generated one million random matrices from
S . About 0.21 percent of the matrices had a larger condition number than that of W .
The matrix with the largest condition number was

A1 =

 1 3 10 10
3 4 8 9
10 8 3 9
10 9 9 3

 , (2)

which is not positive definite and has κ2(A1) ≈ 4.80867× 104, determinant 1, and
inverse

A−11 =

 573 −804 159 25
−804 1128 −223 −35
159 −223 44 7
25 −35 7 1

 .
We will investigate the questions of what are the most ill-conditioned matrices in S

and what are the most ill-conditioned positive definite matrices in P , the subset of S
of positive definite matrices:

P = {A ∈ R4×4 : A is symmetric positive definite with integer entries between

1 and 10 }. (3)

We begin, in Section 2, by obtaining upper bounds on the condition numbers for these
two cases. In Section 3 we determine the maximal condition numbers experimentally,
by an exhaustive search.

Wilson may have constructedW as the product ZTZ, where Z is a simpler integral
matrix (one with integer entries). In Section 4 we identify a block triangular integral

1A unimodular matrix is one with integer entries and determinant ±1.
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factor Z. By exploiting recent research that links the existence of these factorizations
to number-theoretic considerations of quadratic forms, we show that W has not only
an integral factor Z but also two rational factors, up to signed permutations. Using
this new theory we also identify an integer factor and two rational factors of the most
ill-conditioned matrix in P .

The Wilson matrix may only be 4× 4, but it raises some interesting challenges. This
should not be surprising because Taussky noted in 1961 that “matrices with integral
elements have been studied for a very long time and an enormous number of problems
arise, both theoretical and practical.” [26] Our study is an example of work on what
have recently been termed “Bohemian matrices,” defined as families of matrices whose
entries are drawn from a finite discrete set, typically made up of small integers [5]. For
other recent results on this topic, see [2, 7].

2. CONDITION NUMBER BOUNDS. We wish to obtain upper bounds on κ2(A)
for A ∈ S , where S is defined in (1). We therefore need to bound ‖A‖2 and ‖A−1‖2.
First we consider ‖A‖2. We will use the inequality ‖A‖2 ≤ ‖A‖F , where the Frobe-

nius norm is given by ‖A‖F =
(∑

i,j a
2
ij

)1/2
. Equality in this inequality holds only

for the zero matrix and rank-1 matrices, so since A ∈ S is nonsingular we have strict
inequality. Nonsingularity also implies that matrices in S must have at least three en-
tries not equal to 10, and they include, for example, 10 10 10 10

10 9 10 10
10 10 9 10
10 10 10 9

 ,
 10 10 10 10
10 9 10 10
10 10 10 0
10 10 9 10

 .
(Both of these matrices have 2-norm condition number approximately 1.5× 102, so
they are quite well-conditioned.) Hence

A ∈ S ⇒ ‖A‖2 < ‖A‖F ≤ (13× 100 + 3× 81)1/2 =
√
1543. (4)

Bound 1. We now derive a bound on ‖A−1‖2 from first principles. The inverse of
A ∈ Rn×n is given by A−1 = adj(A)/ det(A), where the adjugate matrix

adj(A) = (−1)i+j det(Aji),

with Aij denoting the submatrix of A obtained by deleting row i and column j. Since
| det(A)| ≥ 1 for A ∈ S ,

|A−1| ≤ | adj(A)|, (5)

where the absolute value and the inequality are taken componentwise. We note in
passing that a nonsingular integral matrix A ∈ Rn×n has an integral inverse if and
only if det(A) = ±1. Hence if A and A−1 have integer entries then (5) is an equality.

Since A ∈ S is nonsingular, every 3× 3 submatrix of A ∈ S must contain at least
one entry less than or equal to 9. Hence from (5) we have, for A ∈ S ,

|
(
A−1

)
ij
| ≤ |det(Aji)| <

(
10× 31/2

)2 ×√281, (6)

where we have used Hadamard’s inequality [16, Cor. 7.8.3], which states that for B ∈
Rn×n, |det(B)| ≤

∏n
k=1 ‖bk‖2, where bk is the kth column of B. The inequality

OPTIMIZING THE WILSON MATRIX 3
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is strict because Hadamard’s inequality is attained only for matrices with mutually
orthogonal columns, and no Aij has this property since A ∈ S has positive elements.
Using

‖B‖2 ≤ nmax
i,j
|bij| (7)

[14, Sec. 6.2] with (6) and applying (4) we have

κ2(A) <
√
1543× 4× (10× 31/2)2 ×

√
281 ≈ 7.90164× 105, (8)

which is our first bound on the condition number of A ∈ S .

Bound 2. Richter [24] and Mirsky [19] proved that for B ∈ Rn×n,

‖ adj(B)‖F ≤
‖B‖n−1F

n(n−2)/2 ,

which implies

κF (B) ≤ ‖B‖nF
n(n−2)/2|det(B)|

.

For A ∈ S , using (4), we obtain

κ2(A) < κF (A) ≤
15432

4
≈ 5.95212× 105, (9)

which is a useful improvement on (8). The proof in [19] makes use of an inequality for
elementary symmetric functions applied to the singular values of A.

Bound 3. We can obtain another bound using a result of Guggenheimer, Edelman, and
Johnson [11], which is obtained by applying the arithmetic-geometric mean inequality
to a function of the singular values.The result states that for nonsingular B ∈ Rn×n,

κ2(B) <
2

|det(B)|

(
‖B‖F
n1/2

)n

. (10)

Using (4) gives, for A ∈ S ,

κ2(A) < 2

(√
1543

2

)4

≈ 2.97606× 105, (11)

which improves on (9) by a factor 2.

Bound 4. We can also use the bound for nonsingularB ∈ Rn×n of Merikoski, Urpala,
Virtanen, Tam, and Uhlig [18, Theorem 1],

κ2(B) ≤
(
1 + x

1− x

)1/2

, x =
√
1− (n/‖B‖2F )n|det(B)|2. (12)

4
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Applying this bound to A ∈ S , using the fact that (1 + x)/(1− x) is monotonically
increasing for x ∈ (0, 1), gives

κ2(A) ≤ 2.97606 . . .× 105. (13)

Computing at 100-digit precision shows that the bound (13) is approximately 3.36×
10−6 smaller than (11), so this is our best bound! It is shown in [18] that the bound
(12) is the smallest bound that can be obtained based on ‖B‖F , det(B), and n only,
so to obtain a better bound on κ2(A) we would need to exploit symmetry or the integer
nature of the entries.

Bound for the positive definite case. Let us now add a definiteness requirement and
maximize over the set P in (3), which comprises the positive definite matrices in S .
Can we obtain a smaller condition number bound over P than over S?

We can modify the derivation of the first bound. Since A is positive definite,
adj(A) = det(A)A−1 is positive definite and so its largest element lies on the di-
agonal. Therefore ‖ adj(A)‖2 ≤ 4maxi |(adj(A))ii| by (7), and |(adj(A))ii| =
|det(Aii)| ≤ 103 by Hadamard’s inequality (det(C) ≤ c11 · · · cnn for a symmetric
positive definite C ∈ Rn×n). Hence, using (4),

κ2(A) ≤ ‖A‖2‖ adj(A)‖2 ≤
√
1543× 4× 103 ≈ 1.57124× 105, (14)

which improves on our best bound (13) for the general symmetric case.
We can obtain another upper bound for κ2(A) from [18, Theorem 2] (a bound

for matrices with real, positive eigenvalues) which, when specialized to symmetric
positive definite matrices C ∈ Rn×n, gives

κ2(C) ≤
1 + x

1− x
, x =

√
1− (n/ trace(C))n det(C).

For A ∈ P we obtain, since det(A) ≥ 1,

κ2(A) ≤
1 + x

1− x
, x =

√
1− (1/10)4,

which evaluates to

κ2(A) ≤ 3.99980× 104. (15)

The bound (15) is a significant improvement on (14).
Table 1 summarizes all the bounds we have obtained.

3. EXPERIMENTS. It is possible to maximize κ2(A) over S or P by exhaustively
searching the whole set with a computer program. These are large sets: S has 1010

elements. In order to minimize the computation time of several hours one needs to
optimize the code. This can be done by looping over all members A of S or P and
• evaluating det(A) from an explicit expression (exactly computed for such matrices)

and discarding A if the matrix is singular;
• computing the eigenvalues λi ofA and obtaining the condition number as κ2(A) =
maxi |λi|/mini |λi| (since A is symmetric); and

• for P , checking whether A is positive definite by checking whether the smallest
eigenvalue is positive.

OPTIMIZING THE WILSON MATRIX 5
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Table 1. Upper bounds, to six significant figures, for κ2(A), for A in the set specified in the first column,
which is S in (1) or P in (3).

Set Bound Value

S (8) 7.90164× 105

S (9) 5.95212× 105

S (11) 2.97606× 105

S (13) 2.97606× 105

P (14) 1.57124× 105

P (15) 3.99980× 104

Most of the time is spent computing eigenvalues. Our computation was done in
MATLAB R2020a on a PC with an Intel Core i7-6800K processor and took just under
six hours to find both maximizers. The computation can be sped up by using explicit
formulas for the eigenvalues instead of calling the MATLAB eigensolver eig (which is
not optimized for small matrices), but the explicit formulas are difficult to implement
in a numerically reliable way. The code we used is available at https://github.
com/higham/wilson-opt.

The maximum over S is attained for the matrix

A2 =

 2 7 10 10
7 10 10 9
10 10 10 1
10 9 1 9

 ,
which has κ2(A) ≈ 7.6119× 104, determinant −1, and inverse

A−12 =

 640 −987 323 240
−987 1522 −498 −370
323 −498 163 121
240 −370 121 90

 .
Symmetric permutations of A2 are of course also maximizers. The condition number
κ2(A2) is a factor 3.9 smaller than the upper bound (13) and 25.5 times larger than
κ2(W ). We note that A2 is clearly not positive definite because the 2 × 2 principal
submatrices involving row and column 1 all have negative determinant. (In fact, the
smallest eigenvalue of A2 is −0.11.)

The maximum over P is attained for

A3 =

 9 1 1 5
1 10 1 9
1 1 10 1
5 9 1 10

 , (16)

for which κ2(A3) ≈ 3.5529× 104, det(A3) = 1, and

A−13 =

 188 347 −13 −405
347 641 −24 −748
−13 −24 1 28
−405 −748 28 873

 .
6
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Table 2. Matrices and their condition numbers, to six significant figures. The matrix A1 in (2) was found by
Moler [21] by taking a million random samples from S.

Matrix Comment κ2(A)

W Wilson matrix 2.98409× 103

A1 By random sampling 4.80867× 104

A2 Optimal matrices in S 7.61190× 104

A3 Optimal matrices in P 3.55286× 104

We see that κ2(A3) is a factor 1.126 smaller than the upper bound 39998 in (15) and
11.9 times larger than κ2(W ).

We have also run experiments using the genetic optimization code ga from the
MATLAB Global Optimization Toolbox to attempt to maximize κ2(A) subject to
A ∈ S and A ∈ P . This code requires only function values and not derivatives. With
repeated runs, these experiments producedA2 andA3 after just a few minutes of com-
putation time, but they provide no indication of optimality.

Table 2 summarizes what we have found.

4. FACTORIZATIONS WITH INTEGER ENTRIES. Every symmetric positive
definite matrixA has a Cholesky factorizationA = RTR, whereR is upper triangular
with positive diagonal elements. The factorization is used in solving linear systems
Ax = b. The Cholesky factor of the Wilson matrix does not have integer entries. Sup-
pose we drop the requirement of triangularity and ask whether the Wilson matrix has
a factorization W = ZTZ with a 4 × 4 matrix Z of integers. It is known that ev-
ery symmetric positive definite n × n matrix A of integers with determinant 1 has
a factorization A = ZTZ with Z an n × n matrix of integers as long as n ≤ 7, but
examples are known for n = 8 for which the factorization does not hold. This result
is mentioned by Taussky [25, p. 336], [27, pp. 812–813] and goes back to Hermite,
Minkowski, and Mordell [22].

By using the ga function to minimize ‖W − ZTZ‖F over integer matrices Z we
found the integer factor

Z0 =

 2 3 2 2
1 1 2 1
0 0 1 2
0 0 1 1

 (17)

for the Wilson matrix. This factor Z0 is rather special: it has nonnegative elements and
is block upper triangular, so it can be thought of as a block Cholesky factor.

The number-theoretic properties relating to the factorization of symmetric positive
definite n × n integer matrices A with determinant Dn have classical connections
to the theory of positive definite quadratic forms in n variables, as discussed by the
authors mentioned above. In particular, Mordell considered two such n× n matrices
A,B to be in the same class if there exists a unimodular integral matrix Z such that
A = ZTBZ, where the number of such classes is denoted by hn.

In the case that B = In, the identity matrix, so that Dn = 1, we have that A is in
the same class as In, and hence A factors as A = ZTZ, with Z an integer matrix. The
corresponding quadratic form associated with the matrixA can therefore be written as
(Zx)T (Zx), a sum of squares of n linear factors. For the Wilson matrix this gives the

OPTIMIZING THE WILSON MATRIX 7
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quadratic form, for x ∈ R4,

q(x) = (2x1 + 3x2 + 2x3 + 2x4)
2 + (x1 + x2 + 2x3 + x4)

2

+ (x3 + 2x4)
2 + (x3 + x4)

2,

a sum of four squares. The coordinate transformation y = Z0x is unimodular because
det(Z0)

2 = det(W ) = 1, and it diagonalizes the quadratic form such that q(y) =
y21 + y22 + y23 + y24 . By Lagrange’s four-square theorem, it follows that the quadratic
form generated by the Wilson matrix is universal [4], i.e., it generates the positive
integers, so that for a given positive integer n there exists a vector y with nonnegative
integer entries with q(y) = n.

In what follows, a key concept is the idea of the weight wM of an n ×m matrix
M , defined to be the sum of its entries divided by the number of entries nm. If the
matrix under consideration is square and has integer entries, then the matrix weight
wM is an integer divided by n2, so that wM ∈ 1

n2Z. For the Wilson matrix the weight
wW = 119

16
.

Another important concept is the idea of the matrix M having a unique decompo-
sition M =MV +MS + wMEn over the type V and type S matrix symmetry spaces
[15], where En is the n× n matrix with every entry 1. We say that MV = (mij) has
the (type V) vertex cross-sum property if for i 6= i′ and j 6= j′, we havemij +mi′j′ =
mij′ +mi′j and that the sum of all the elements in MV is zero. The matrix MS has
row and column sums all equal to zero, so that MS + wMEn has constant row and
column sums nwM . Such a matrix is traditionally known as a semi-magic square.

In essence this decomposition splits the matrixM into a semi-magic square,MS +
wMEn, with weightwM , and the converse type V symmetry type matrixMV described
above. The direct sum of these two symmetry spaces S ⊕ V forms what is traditionally
known as a Z2-graded algebra (also known as a superalgebra) which has a decompo-
sition into an “even” subalgebra and an “odd” complementary part that is a bimodule
over the “even” subalgebra and squares into it. Here the type V symmetry space is the
“odd” part of the superalgebra, and the type S symmetry space the “even” part. The
product of two type V matrices or two type S matrices is type S, whereas the product
of a type V and a type S matrix is of type V. The type S and type V symmetry spaces
are orthogonal with respect to the Frobenius norm.

Additionally, as established by the authors in conjunction with Schmidt [15], if M
is symmetric, then in this decomposition the odd part MV takes the form

MV = a1Tn + 1na
T ,

for some vector a ∈ Rn, with 1n the n-dimensional vector with every entry 1. The
vector a can be obtained explicitly from the formula

ai =
1

n

n∑
j=1

mij − wM , i ∈ {1, . . . , n},

so that a is perpendicular to 1n. In particular, ifM is an integer matrix, then the vector
n2a has integer entries.

As established in [15], a necessary (but not sufficient) condition for an integer ma-
trix M to be factored as M = ZTZ is that the weights in the S ⊕ V decomposi-
tions of the matrix and the matrix factor equate. Setting Z = ZV + ZS + wZEn with
ZV = a1Tn + 1na

T , we obtain the quadratic equation [15, Theorem 3.1]

wM = |a|2 + n (wZ)
2. (18)

8
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For the factor Z0 of the Wilson matrix we find that the S ⊕ V decomposition Z0 =
ZV + ZS + wZ0

E4 is given by

Z0 = ZV + ZS + wZ0
E4

=
1

8

 5 7 11 11
−3 −1 3 3
−7 −5 −1 −1
−9 −7 −3 −3

+
1

16

 3 15 −9 −9
3 −1 7 −9
−5 −9 −1 15
−1 −5 3 3

+
19

16
E4,

so that Z0 has weight wZ0
= 19

16
and, as expected, the entries of ZV and ZS are in

1
16
Z.
For the Wilson matrix, (18) gives the quadratic equation

119

16
= 2(a21 + a22 + a23 + a1a2 + a1a3 + a2a3) + 4 (wZ)

2,

where we have set n = 4, a4 = −a1 − a2 − a3 in (18). Multiplying through by 44,
setting xi = 16ai, w = 16wZ , and then dividing through by 2, we find that a neces-
sary condition for the Wilson matrix to factor as W = ZTZ, is for integer solutions
to exist to the quadratic equation

2w2 + x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 = 952. (19)

Solving for w, x1, x2, x3 in Mathematica 11.0 on a PC with a Intel Core i7
6500CPU, for nonnegative weights w, we found 1728 solutions in just under 6 sec-
onds. Substituting each integer solution to (18) into the overall matrix factorization
problem (discussed in more detail in [15]) and solving took considerably longer at 34
minutes, yielding 576 matrices Z with W = ZTZ. Hence exactly one third of the
solutions to (19) correspond to matrix factorization solutions.

For any two matrix factorizations Zi, Zj , with W = ZT
i Zi = ZT

j Zj , there exists
a rational orthogonal matrix U with Zi = UZj . However, if we restrict U to being a
signed permutation matrix, then the factorization matrices can be grouped into three
classes, represented by the matrix Z0 and the two rational matrices Z1 and Z2, where

Z0 =

 2 3 2 2
1 1 2 1
0 0 1 2
0 0 1 1

 , Z1 =


1
2

1 0 1
3
2

2 3 3
1
2

1 0 0
3
2

2 1 0

 , Z2 =


3
2

2 2 2
3
2

2 2 1
1
2

1 1 2

− 1
2
−1 1 1

 .

These three factorizationsW = ZT
0 Z0 = ZT

1 Z1 = ZT
2 Z2, respectively correspond to

the (w, x1, x2, x3) solutions to (19),

(19, 17, 1,−7), (18,−8, 20,−12), (19, 11, 7,−1), (20)

highlighting that it is possible for different matrix factorizations to have different
weights. In total we found that there are 11 different positive weights for the factoriza-
tion matrices. However, up to multiplication by signed permutation matrices, Z0, Z1

and Z2, are the only rational matrix factors of W with entries in 1
16
Z, highlighting the

power of the analysis that this approach can offer.

OPTIMIZING THE WILSON MATRIX 9
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In summary, we have shown how equating the weight of the Wilson matrix with the
weights arising from the assumed factorization and using number-theoretic considera-
tions leads to rational factorizations of the Wilson matrix.

We applied the same technique to the matrix A3 in (16). Again, we found one
integral factor and two rational factors (up to signed permutations):

Z0 =

−2 1 −2 0
0 0 1 0
1 3 1 3
2 0 −2 1

 , Z1 =


− 3

2
2 1 1

− 1
2
−1 −2 −1

− 1
2
−2 2 −2

5
2

1 1 2

 ,

Z2 =


1
2

1 3 1

− 3
2

2 0 1
5
2

1 0 2
1
2

2 −1 2

 .
No permutation of the integral factor is block triangular, however.

For larger matrices, this approach will usually become more complicated, due to
the existence of a larger number of solutions to the quadratic form, arising from the
matrix weights in the factorization.

5. CONCLUSIONS. Wilson’s matrixW is a symmetric positive definite integer ma-
trix with an integer inverse. It is mildly ill-conditioned, with κ2(W ) ≈ 2.9841× 103,
but is some way from being the most ill-conditioned matrix of its type: the extreme
case has a condition number about 25 times larger, or about 12 times larger if positive
definiteness is required.

The best upper bounds that we could derive for the condition number of matrices
in S in (1) are factors 3.9 and 1.13 (with a positive definiteness constraint) larger than
the worst-case condition numbers, and so are reasonably sharp.

The integer matrix factorization W = ZT
0 Z0, with the block upper triangular Z0 in

(17), demonstrates that the quadratic form xTWx arising from the Wilson matrix is
universal, representing all positive integers. When this matrix factorization in general-
ity is considered in terms of the quadratic forms arising from the matrix weights, we
find that, ignoring permutations and sign changes, there are fundamentally only three
rational factorization matrices with entries in 1

16
Z.

Despite its modest dimensions, the Wilson matrix has generated a lot of interest
over the more than seventy years since it was proposed, and we have been able to shed
more light on its properties. Regarding our question in Section 1 about how Wilson
constructed his matrix, we think it most likely that he formed it via the block triangular
matrix Z0 in (17).
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