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Abstract

The classical approach to investigating polynomial eigenvalue problems is lineariza-
tion, where the underlying matrix polynomial is converted into a larger matrix pencil
with the same eigenvalues. For any polynomial there are infinitely many lineariza-
tions with widely varying properties, but in practice the companion forms are typi-
cally used. However, these companion forms are not always entirely satisfactory, and
linearizations with special properties may sometimes be required.

Given a matrix polynomial P , we develop a systematic approach to generating
large classes of linearizations for P . We show how to simply construct two vector
spaces of pencils that generalize the companion forms of P , and prove that almost all
of these pencils are linearizations for P . Eigenvectors of these pencils are shown to
be closely related to those of P . A distinguished subspace, denoted DL(P ), is then
isolated, and the special properties of these pencils are investigated. These spaces of
pencils provide a convenient arena in which to look for structured linearizations of
structured polynomials, as well as to try to optimize the conditioning of linearizations.

Many applications give rise to nonlinear eigenvalue problems with an underly-
ing structured matrix polynomial; perhaps the most well-known are symmetric and
Hermitian polynomials. In this thesis we also identify several less well-known types
of structured polynomial (e.g., palindromic, even, odd), explore the relationships
between them, and illustrate their appearance in a variety of applications. Special
classes of linearizations that reflect the structure of these polynomials, and therefore
preserve symmetries in their spectra, are introduced and investigated. We analyze
the existence and uniqueness of such linearizations, and show how they may be sys-
tematically constructed.

The infinitely many linearizations of any given polynomial P can have widely
varying eigenvalue condition numbers. We investigate the conditioning of lineariza-
tions from DL(P ), looking for the best conditioned linearization in that space and
comparing its conditioning with that of the original polynomial. We also analyze the
eigenvalue conditioning of the widely used first and second companion linearizations,
and find that they can potentially be much more ill conditioned than P . Our results
are phrased in terms of both the standard relative condition number and the condi-
tion number of Dedieu and Tisseur for the problem in homogeneous form, this latter
condition number having the advantage of applying to zero and infinite eigenvalues.
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Chapter 1

Introduction

Polynomial eigenvalue problems P (λ)x = 0, where P (λ) =
∑k

i=0 λiAi with real or
complex coefficient matrices Ai, form the basis for (among many other applications)
the vibration analysis of buildings, machines, and vehicles [31], [47], [83], and numeri-
cal methods for the solution of these problems are incorporated into most commercial
and non-commercial software packages for structural analysis.

The classical and most widely used approach to solving polynomial eigenvalue
problems is linearization, i.e., the conversion of P (λ)x = 0 into a larger size linear
eigenvalue problem L(λ)z = (λX + Y )z = 0 with the same eigenvalues, so that
classical methods for linear eigenvalue problems can be pressed into service. The
linearizations most commonly commissioned are the companion forms for P (λ), one
of which is

L(λ) = λ




Ak 0 · · · 0

0 In
. . .

...
...

. . . . . . 0

0 · · · 0 In


 +




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0


 .

Yet many linearizations exist, and other than the convenience of their construc-
tion, there is no apparent reason for preferring the companion forms. Indeed one
obvious disadvantage is their lack of preservation of structural properties of P like
symmetry. But physical problems often lead to matrix polynomials that are struc-
tured in some way; for example, the coefficient matrices may all be symmetric [47], or
perhaps alternate between symmetric and skew-symmetric [65], or even have palin-
dromic structure [57]. Such structure in a matrix polynomial often forces symmetries
or constraints on its spectrum [57], [64], [65], [83] that have physical significance.
Numerical methods (in a finite precision environment) that ignore this structure can
destroy these qualitatively important spectral symmetries, sometimes even to the
point of producing physically meaningless or uninterpretable results [83]. Since the
companion form linearizations do not reflect any structure that may be present in
the original polynomial, their use for numerical computation in such situations may
be problematic. Therefore it is important to be able to construct linearizations that
reflect the structure of the given matrix polynomial, and then develop numerical
methods for the corresponding linear eigenvalue problem that properly address these
structures as well. The latter topic has been an important area of research in the last
decade, see, e.g., [8], [16], [24], [61], [64], [65] and the references therein.

13



14 CHAPTER 1. INTRODUCTION

An important issue for any computational problem is its conditioning, i.e., its
sensitivity to small perturbations. It is known that different linearizations for a given
polynomial eigenvalue problem can have very different conditioning [80], [83], so that
numerical methods may produce rather different results for each linearization. It
would clearly be useful to have available a large class of easily constructible lin-
earizations from which one could always select a linearization guaranteed to be as
well-conditioned as the original problem.

A further issue for linearizations concerns eigenvalues at ∞. Much of the liter-
ature on polynomial eigenvalue problems considers only polynomials whose leading
coefficient matrix Ak is nonsingular (or even the identity), so the issue of infinite eigen-
values doesn’t even arise. But there are a number of applications, such as constraint
multi-body systems [22], [73], circuit simulation [27], or optical waveguide design [74],
where the leading coefficient is singular. In such cases one must choose a lineariza-
tion with care, since not all linearizations properly reflect the Jordan structure of
the eigenvalue ∞ [63]. It has therefore been suggested [30], [49] that only strong
linearizations, which are guaranteed to preserve the structure of infinite eigenvalues,
can safely be used in such circumstances. Having a large class of linearizations that
are known to also be strong linearizations would make this issue of infinite eigenvalues
less of a concern in practice.

The first major aim of this thesis is to show how to systematically generate two
large classes of linearizations that address these issues, thereby broadening the menu
of linearizations that are readily available for computations. The linearizations in
these classes are easy to construct from the data in P , properly handle any infinite
eigenvalues, provide a fertile source of structured linearizations for many types of
structured polynomials [34], [57], and collectively constitute a well-defined arena in
which to look for “optimally” conditioned linearizations [35].

Taking the two companion forms as prototypes, we begin in Chapter 2 by showing
how to associate to a general matrix polynomial P two large vector space of pencils,
denoted by L1(P ) and L2(P ). The basic properties of these pencils are then devel-
oped, and almost all of them are found to be linearizations for P . Special subspaces
of L1(P ) and L2(P ) are then explored in even greater detail in Chapters 3 and 4.
These pencil spaces are the arenas in which the rest of the thesis is played out.

The second major theme of this work is structured matrix polynomials, and the
preservation of this structure in linearizations. The two main types of structure
considered here, indeed the ones that originally motivated the investigation leading
to this thesis, are symmetric and palindromic structure. We show in Chapters 5–
7 that the pencil spaces L1(P ) and L2(P ) developed in Chapters 2–4 for general
polynomials are rich enough to include subspaces of pencils that reflect symmetric or
palindromic structure, whenever the polynomial P has one of those structures.

Symmetric polynomials are of course well recognized as being important for ap-
plications, particularly for ones involving the vibration analysis of mechanical sys-
tems [47]. But why is it of any interest to preserve symmetry when we linearize
such a polynomial? A matrix polynomial that is real symmetric or Hermitian has
a spectrum that is symmetric with respect to the real axis, and the sets of left and
right eigenvectors coincide. These properties are preserved in any symmetric (Hermi-
tian) linearization by virtue of its structure—not just through the numerical entries
of the pencil. A symmetry-preserving pencil also has the practical advantages that
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storage and computational costs are reduced if a method that exploits symmetry is
applied. The eigenvalues of a symmetric (Hermitian) pencil L(λ) = λX + Y can
be computed, for small to medium size problems, by first reducing the matrix pair
(Y,X) to tridiagonal-diagonal form [81] and then using the HR [11], [14] or LR [72]
algorithms or the Ehrlich-Aberth iterations [10]. For large problems, a symmetry-
preserving pseudo-Lanczos algorithm of Parlett and Chen [68], [6, Sec. 8.6], based on
an indefinite inner product, can be used. For a quadratic polynomial Q(λ) that is
hyperbolic, or in particular overdamped, a linearization that is a symmetric definite
pencil can be identified [36, Thm. 3.6]; this pencil is amenable to structure-preserving
methods that exploit both the symmetry and the definiteness [85], and guarantee real
computed eigenvalues for any Q(λ) that is not too close to being non-hyperbolic.

Palindromic matrix polynomials, on the other hand, arise in a variety of appli-
cations, but heretofore have not been widely appreciated as a significant class of
problems worthy of separate analysis. Our main motivation for isolating this struc-
ture and studying it in some detail comes from a project investigating the rail traffic
noise caused by high speed trains [37], [38]. The eigenvalue problem that arises in
this project has the form

(λ2A + λB + AT )x = 0 , (1.0.1)

where A,B are complex square matrices with B complex symmetric and A singular.
Observe that the matrix polynomial in (1.0.1) has the property that reversing the
order of the coefficient matrices, followed by taking their transpose, leads back to the
original matrix polynomial. By analogy with linguistic palindromes, of which

Sex at noon taxes

is perhaps a less well-known example1, we call such matrix polynomials T-palindromic.
Quadratic real and complex T -palindromic eigenvalue problems also arise in the

mathematical modelling and numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters [89], whereas the computation of the Crawford num-
ber [36] associated with the perturbation analysis of symmetric generalized eigenvalue
problems produces a quadratic ∗-palindromic eigenvalue problem, where ∗ denotes
conjugate transpose. Higher order matrix polynomials with ∗-palindromic structure
also arise in problems of discrete optimal control [57].

Alternating matrix polynomials, i.e. polynomials whose matrix coefficients al-
ternate between symmetric and skew-symmetric, forms another significant class of
structured polynomial that deserves wider recognition. Although seemingly unre-
lated, palindromic and alternating structures turn out to be intimately connected with
each other via a matrix polynomial version of the Cayley transformation. This Cay-
ley connection is just one aspect of an interesting analogy that develops in Chapter 6
between palindromic and alternating polynomials on the one hand, and symplectic
and Hamiltonian matrices on the other. Indeed, we find in Chapters 6 and 7 that al-
ternating polynomials can be studied side-by-side with palindromic polynomials, and
their properties and structured linearizations developed using similar techniques.

1Invented by the mathematician Peter Hilton in 1947 for his advisor J.H.C. Whitehead. (It is
probable, Hilton says, that this palindrome was known before 1947.) When Whitehead lamented
its brevity, Hilton responded [39] by crafting the palindromic masterpiece “Doc, note, I dissent. A
fast never prevents a fatness. I diet on cod.” [53, p. 287] A much longer palindrome has recently
been discovered—a section of the DNA sequence in the human male Y chromosome. [71] [77] [87]
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More details concerning applications of alternating and palindromic polynomials
can be found in Section 6.4.

The profusion of pencils provided in Chapters 2–7 that potentially linearize a
polynomial P poses a possible problem for any potential user: how to choose which
linearization to use? The third (and final) goal of this thesis is to provide some guid-
ance on answering this question via an analysis of the conditioning of the eigenvalues
of linearizations in Chapter 8. The focus in this analysis is on pencils in the intersec-
tion L1(P ) ∩ L2(P ) =: DL(P ) ; the fact that both the left and right eigenvectors of
any pencil in DL(P ) are simply related to the left and right eigenvectors of P makes
it possible to directly compare the conditioning of any DL(P )-linearization with the
conditioning of P . Moreover, the special properties of DL(P )-pencils allow one to
identify a “near optimally” conditioned pencil in DL(P ) for any given eigenvalue of P .
Because of the central role of the companion forms in current computational practice,
we also give a separate analysis of the conditioning of these particular linearizations.
The resulting formulas reveal the possibility of instability of the companion forms in
certain circumstances. Some numerical experiments illustrating the efficacy of our
analysis are presented in Section 8.7 to conclude the thesis.

1.1 Some Preliminaries

In this section we establish some of the basic definitions and notational conventions
to be used throughout this thesis. The fundamental objects of study are n×n matrix
polynomials of the form

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak 6= 0 , (1.1.1)

where F denotes the field of real or complex numbers and k is the degree of P .

Definition 1.1.1. If λ ∈ C and nonzero x ∈ Cn satisfy P (λ)x = 0, then x is said to
be a right eigenvector of P corresponding to the (finite) eigenvalue λ.

Following standard usage, we will often abbreviate “right eigenvector” to just “eigen-
vector” when there is no ambiguity.

Our main concern is with regular matrix polynomials, i.e., polynomials P (λ) such
that det P (λ) is not identically zero for all λ ∈ C; for such polynomials the finite
eigenvalues are precisely the roots of the scalar polynomial det P (λ). Note, however,
that some of our results also hold for singular matrix polynomials (these are studied
in detail in [63], [76]).

It is also useful to allow ∞ as a possible eigenvalue of P (λ). The technical device
underlying this notion is the correspondence between the eigenvalues of P and those
of the polynomial obtained from P by reversing the order of its coefficient matrices.

Definition 1.1.2 (Reversal of matrix polynomials). For a matrix polynomial
P (λ) of degree k as in (1.1.1), the reversal of P (λ) is the polynomial

revP (λ) := λkP (1/λ) =
k∑

i=0

λiAk−i . (1.1.2)
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Note that the nonzero finite eigenvalues of revP are the reciprocals of those of P ;
the next definition shows how in this context we may also sensibly view 0 and ∞ as
reciprocals.

Definition 1.1.3 (Eigenvalue at ∞). Let P (λ) be a regular matrix polynomial
of degree k ≥ 1. Then P (λ) is said to have an eigenvalue at ∞ with eigenvector
x if revP (λ) has the eigenvalue 0 with eigenvector x. The algebraic, geometric,
and partial multiplicities of the infinite eigenvalue are defined to be the same as the
corresponding multiplicities of the zero eigenvalue of revP (λ).

The classical approach to solving and investigating polynomial eigenvalue prob-
lems P (λ)x = 0 is to first perform a linearization, that is, to transform the given
polynomial into a linear matrix pencil L(λ) = λX + Y with the same eigenvalues,
and then work with this pencil. This transformation of polynomials to pencils is me-
diated by unimodular matrix polynomials2, i.e., matrix polynomials E(λ) such that
det E(λ) is a nonzero constant, independent of λ.

Definition 1.1.4 (Linearization [31]). Let P (λ) be an n × n matrix polynomial
of degree k with k ≥ 1. A pencil L(λ) = λX + Y with X,Y ∈ Fkn×kn is called a
linearization of P (λ) if there exist unimodular matrix polynomials E(λ), F (λ) such
that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Note that an immediate consequence of this definition is that γ det(L(λ)) = det(P (λ))
for some nonzero constant γ, so that L and P have the same spectrum.

There are many different possibilities for linearizations, but probably the most im-
portant examples in practice have been the so-called companion forms [51, Sec. 14.1]
or companion polynomials [31].

Definition 1.1.5 (Companion Forms). If we let

X1 = X2 = diag(Ak, I(k−1)n), (1.1.3a)

Y1 =




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0


 , and Y2 =




Ak−1 −In · · · 0
Ak−2 0

. . .
...

...
...

. . . −In

A0 0 · · · 0


 , (1.1.3b)

then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are respectively called the first and
second companion forms for P (λ) in (1.1.1).

The notion of linearization in Definition 1.1.4 has been designed mainly for matrix
polynomials (1.1.1) with invertible leading coefficient Ak. In this case all the eigen-
values of P (λ) are finite, and their Jordan structures (i.e., their partial multiplicities)
may be recovered from any linearization [31]. However, the situation is somewhat
different when the leading coefficient of a regular P (λ) is singular, so that ∞ is an

2Unimodular matrix polynomials can also be characterized as the “invertible” matrix polynomi-
als, i.e., those with an inverse that is also a matrix polynomial.
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eigenvalue with some multiplicity m > 0. Although the Jordan structures of all the
finite eigenvalues of P are still faithfully recovered from any linearization of P , the
eigenvalue ∞ is problematic. Consider, for example, the fact that the identity matrix
is a linearization for any unimodular P (λ). Indeed, in [49] it is shown that any Jor-
dan structure for the eigenvalue ∞ that is compatible with its algebraic multiplicity
m can be realized by some linearization for P . Thus linearization in the sense of
Definition 1.1.4 completely fails to reflect the Jordan structure of infinite eigenvalues.

To overcome this deficiency, a modification of Definition 1.1.4 was introduced
in [30], and termed strong linearization in [49]. The correspondence between the
infinite eigenvalue of a matrix polynomial P and the eigenvalue zero of revP is the
source of this strengthened definition.

Definition 1.1.6 (Strong Linearization). Let P (λ) be a matrix polynomial of
degree k with k ≥ 1. If L(λ) is a linearization for P (λ) and revL(λ) is a linearization
for revP (λ), then L(λ) is said to be a strong linearization for P (λ).

For regular polynomials P (λ), the additional property that revL(λ) is a lineariza-
tion for revP (λ) ensures that the Jordan structure of the eigenvalue ∞ is preserved
by strong linearizations. The first and second companion forms of any regular polyno-
mial P have this additional property [30], and thus are always strong linearizations
for P . Most of the pencils we construct in this thesis will be shown to be strong
linearizations.

The following notation will be used throughout: I = In is the n × n identity,
R = Rk denotes the k × k reverse identity, and N = Nk is the standard k × k
nilpotent Jordan block, i.e.,

R = Rk =

[
1

. . .

1

]
, and N = Nk =




0 1
0

. . .

. . . 1
0


 . (1.1.4)

The vector
[
λk−1 λk−2 · · · λ 1

]T ∈ Fk of decreasing powers of λ is denoted by Λ.
We will also sometimes use Λ with an argument, so that

Λ(r) :=
[
rk−1 rk−2 · · · r 1

]T
. (1.1.5)

Denoting the Kronecker product by ⊗, the unimodular matrix polynomials

T (λ) =




1 λ λ2 · · · λk−1

1 λ
. . .

...
1

. . . λ2

. . . λ
1



⊗ I and G(λ) =




1 λk−1

. . .
...

1 λ
1


⊗ I (1.1.6)

are used in several places in this thesis. Observe that the last block-column of G(λ)
is Λ⊗ I, and that T (λ) may be factored as

T (λ) = G(λ)




I λI
I

I ...
I







I
I λI

I ...
I


 · · ·




I ...
I λI

I
I


 . (1.1.7)



Chapter 2

A Vector Space Setting for
Structured Linearizations

The first goal of this thesis is to show how to systematically associate to any given
matrix polynomial P two large vector spaces of easily constructible pencils, denoted
L1(P ) and L2(P ). We will see that these pencils, simply by virtue of being elements
of these spaces, are all very close to being linearizations for P . Thus these spaces
provide a “sehr bequeme” setting1 in which to search for linearizations with “extra”
properties, in particular structure preservation. In later chapters it will indeed be
seen that these spaces are fertile sources of structured linearizations for many kinds
of structured matrix polynomial.

2.1 Vector Spaces of “Potential” Linearizations

The companion forms of a matrix polynomial P (λ) have several nice properties that
make them attractive as linearizations for P :

• they are immediately constructible from the data in P ,

• eigenvectors of P are easily recovered from eigenvectors of the companion forms,

• they are always strong linearizations for P .

However, the companion forms have one significant drawback; they usually do not
reflect any structure or eigenvalue symmetry that may be present in the original
polynomial P . One would like to be able to draw on a source of linearizations for
P that allow for the preservation of structure while sharing as many of the useful
properties of companion forms as possible. To this end we introduce vector spaces of
pencils that generalize the two companion forms, and analyze some of the properties
these pencils have in common with the companion forms.

To motivate the definition of these spaces, let us recall the origin of the first com-
panion form. Imitating the standard procedure for converting a system of higher order
linear differential algebraic equations into a first order system (see [31]), introduce
the vector variables

x1 = λk−1x, x2 = λk−2x, . . . , xk−1 = λx, xk = x , (2.1.1)

1Apologies to Jacobi.
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into the n × n polynomial eigenvalue problem P (λ)x =
(∑k

i=0 λiAi

)
x = 0, thereby

transforming it into

Ak(λx1) + Ak−1x1 + Ak−2x2 + · · ·+ A1xk−1 + A0xk = 0 .

Then, together with the relations (2.1.1) between successive variables, this can all be
expressed as the kn× kn linear eigenvalue problem


λ




Ak 0 · · · 0

0 In
. . .

...
...

. . . . . . 0
0 · · · 0 In


 +




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0







︸ ︷︷ ︸
= C1(λ)




x1
...

xk−1

xk


 = 0 . (2.1.2)

Conversely, if we start with (2.1.2), then the last k − 1 block rows immediately
constrain any solution of (2.1.2) to have the form




x1
...

xk−1

xk


 =




λk−1x
...

λx
x


 = Λ⊗ x

for some vector x ∈ Fn. Thus to solve (2.1.2) it is reasonable to restrict attention to
products of the form C1(λ) · (Λ⊗ x

)
. But

C1(λ) · (Λ⊗ x
)

=
[ (

P (λ)x
)T

0 · · · 0
]T

for all x ∈ Fn, (2.1.3)

and so any solution of (2.1.2) leads to a solution of the original problem P (λ)x = 0.
Now observe that (2.1.3) with its “for all x” quantifier is equivalent to the single
identity

C1(λ) · (Λ⊗ In

)
= C1(λ)




λk−1In...
λIn

In


 =




P (λ)
0
...
0


 = e1 ⊗ P (λ) . (2.1.4)

Thus to generalize the companion form we consider the set of all kn × kn matrix
pencils L(λ) = λX + Y satisfying the property

L(λ) · (Λ⊗ In) = L(λ)




λk−1In...
λIn

In


 =




v1P (λ)
...

vk−1P (λ)
vkP (λ)


 = v ⊗ P (λ) (2.1.5)

for some vector v = [v1, · · · , vk]
T ∈ Fk. This set of pencils will be denoted by L1(P ) as

a reminder that it generalizes the first companion form of P . To work with property
(2.1.5) more effectively we also introduce the notation

VP = {v ⊗ P (λ) : v ∈ Fk} (2.1.6)

for the set of all possible right-hand sides of (2.1.5). Thus we have the following
definition.
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Definition 2.1.1. L1(P ) :=
{

L(λ) = λX + Y : X, Y ∈ Fkn×kn, L(λ) · (Λ⊗ In) ∈
VP

}
.

We will sometimes use the phrase “L(λ) satisfies the right ansatz with vector v” or
“v is the right ansatz vector for L(λ)” when L(λ) ∈ L1(P ) and the vector v in (2.1.5)
is the focus of attention. We say “right” ansatz here because L(λ) is multiplied on
the right by the block column Λ⊗ In; later we introduce an analogous “left ansatz”.

From the properties of Kronecker product it is easy to see that VP is a vector
space isomorphic to Fk, and consequently that L1(P ) is also a vector space.

Proposition 2.1.2. For any polynomial P (λ), L1(P ) is a vector space over F.

Since C1(λ) is always in L1(P ), we see that L1(P ) is a nontrivial vector space for any
matrix polynomial P .

Our next goal is to show that, like the companion forms, pencils in L1(P ) are
easily constructible from the data in P . A consequence of this construction is a
characterization of all the pencils in L1(P ), and a calculation of dimL1(P ). To
simplify the discussion, we introduce the following new operation on block matrices
as a convenient tool for working with products of the form L(λ) · (Λ⊗ In).

Definition 2.1.3 (Column Shifted Sum). Let X and Y be block k × k matrices

X =




X11 · · · X1k
...

...
Xk1 · · · Xkk


 , Y =




Y11 · · · Y1k
...

...
Yk1 · · · Ykk




with blocks Xij, Yij ∈ Fn×n. Then the column shifted sum of X and Y is defined to
be

X ¢→Y :=




X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0


 +




0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk


 ,

where the zero blocks are also n× n.

As an example, for the first companion form C1(λ) = λX1 + Y1 of P (λ) =∑k
i=0 λiAi , the column shifted sum X1 ¢→Y1 is just




Ak 0 · · · 0

0 In
. . .

...
...

. . . . . . 0

0 · · · 0 In


 ¢→




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0


 =




Ak Ak−1 · · · A0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 .

Thus, the property C1(λ) ·(Λ⊗ In) = e1⊗P (λ) from (2.1.4) translates in terms of the
column shifted sum into X1 ¢→Y1 = e1 ⊗ [Ak Ak−1 · · · A0]. In fact, this shifted sum
operation is specifically designed to imitate the product of a pencil L(λ) = λX + Y
with the block column matrix Λ⊗ In, in the sense of the following lemma.
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Lemma 2.1.4. Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial, and L(λ) =
λX + Y a kn× kn pencil. Then for v ∈ Fk,

(λX + Y ) · (Λ⊗ In) = v ⊗ P (λ) ⇐⇒ X ¢→Y = v ⊗ [Ak Ak−1 · · · A0] , (2.1.7)

and so the space L1(P ) may be alternatively characterized as

L1(P ) =
{

λX + Y : X ¢→Y = v ⊗ [Ak Ak−1 · · · A0] , v ∈ Fk
}

. (2.1.8)

The proof follows from a straightforward calculation which is omitted. The column
shifted sum now allows us to directly construct all the pencils in L1(P ).

Theorem 2.1.5 (Characterization of pencils in L1(P )).
Let P (λ) =

∑k
i=0 λiAi be an n× n matrix polynomial, and v ∈ Fk any vector. Then

the set of pencils in L1(P ) with right ansatz vector v consists of all L(λ) = λX + Y
such that

X =
[ n (k−1)n

v ⊗ Ak −W
]

and Y =
[ (k−1)n n

W +
(
v ⊗ [

Ak−1 · · · A1

])
v ⊗ A0

]
,

with W ∈ Fkn×(k−1)n chosen arbitrarily.

Proof. Consider the multiplication map M that is implicit in the definition of L1(P ):

L1(P )
M−→ VP (2.1.9)

L(λ) 7−→ L(λ) (Λ⊗ In) .

Clearly M is linear. To see that M is surjective, let v⊗P (λ) be an arbitrary element
of VP and construct

Xv =
[ n (k−1)n

v ⊗ Ak 0
]

and Yv =
[ (k−1)n n

v ⊗ [
Ak−1 · · · A1

]
v ⊗ A0

]
.

Then Xv ¢→Yv = v ⊗ [Ak Ak−1 · · · A0], so by Lemma 2.1.4 the pencil Lv(λ) :=
λXv + Yv is an M-preimage of v ⊗ P (λ). The set of all M-preimages of v ⊗ P (λ) is
then Lv(λ) + kerM, so all that remains is to compute kerM. By (2.1.7), the kernel
of M consists of all pencils λX + Y satisfying X ¢→Y = 0. The definition of the
shifted sum then implies that X and Y must have the form

X =
[ n (k−1)n

0 −W
]

and Y =
[ (k−1)n n

W 0
]
,

where W ∈ Fkn×(k−1)n is arbitrary. This completes the proof.

Corollary 2.1.6. dimL1(P ) = k(k − 1)n2 + k .

Proof. Since M is surjective, dimL1(P ) = dim kerM+dimVP = k(k− 1)n2 +k .

Thus we see that L1(P ) is a relatively large subspace of the full pencil space (with
dimension 2k2n2), yet the pencils in L1(P ) are still easy to construct from the data in
P . The next corollary isolates a special case of Theorem 2.1.5 that plays an important
role in Section 2.2.
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Corollary 2.1.7. Suppose L(λ) = λX + Y ∈ L1(P ) has right ansatz vector v = αe1.
Then

X =

[
αAk X12

0 −Z

]
and Y =

[
Y11 αA0

Z 0

]
(2.1.10)

for some Z ∈ F(k−1)n×(k−1)n.

Note that C1(λ) fits the pattern in Corollary 2.1.7 with v = e1 and Z = −I(k−1)n.

The second important property of the companion form is the simple relationship
between its eigenvectors and those of the polynomial P that it linearizes. From the
discussion following (2.1.2) it is evident that every eigenvector of C1(λ) has the form
Λ ⊗ x, where x is an eigenvector of P . Thus eigenvectors of P are recovered simply
by extracting the last n coordinates from eigenvectors of the companion form. The
next result shows that linearizations in L1(P ) also have this property.

Theorem 2.1.8 (Eigenvector Recovery Property for L1(P )).
Let P (λ) be an n × n matrix polynomial of degree k, and L(λ) any pencil in L1(P )
with nonzero right ansatz vector v. Then x ∈ Cn is an eigenvector for P (λ) with
finite eigenvalue λ ∈ C if and only if Λ⊗x is an eigenvector for L(λ) with eigenvalue
λ. If, in addition, P is regular and L ∈ L1(P ) is a linearization for P , then every
eigenvector of L with finite eigenvalue λ is of the form Λ⊗ x for some eigenvector x
of P .

Proof. The first statement follows immediately from the identity

L(λ)
(
Λ⊗ x

)
= L(λ)

(
Λ⊗ In

)
(1⊗ x) =

(
v ⊗ P (λ)

)
(1⊗ x) = v ⊗ (

P (λ)x
)
.

For the second statement, assume that λ ∈ C is a finite eigenvalue of L(λ) with
geometric multiplicity m, and let y ∈ Ckn be any eigenvector of L(λ) associated with
λ. Since L(λ) is a linearization of P (λ), the geometric multiplicity of λ for P (λ) is
also m. Let x1, . . . , xm be linearly independent eigenvectors of P (λ) associated with
λ, and define yi = Λ⊗ xi for i = 1, . . . , m. Then y1, . . . , ym are linearly independent
eigenvectors for L(λ) with eigenvalue λ, and so y must be a linear combination of
y1, . . . , ym. Thus y has the form y = Λ⊗ x for some eigenvector x ∈ Cn for P .

A result analogous to Theorem 2.1.8 is also valid for the eigenvalue ∞. Because
additional arguments are needed, this will be deferred until Section 2.2.

The above development and analysis of the pencil space L1(P ) has a parallel
version in which the starting point is the second companion form C2(λ) = λX2 + Y2

as in (1.1.3). The analog of (2.1.4) is the identity

[
λk−1In · · · λIn In

] · C2(λ) =
[
P (λ) 0 · · · 0

]
,

expressed more compactly as
(
ΛT ⊗ In

) ·C2(λ) = eT
1 ⊗P (λ). This leads us to consider

pencils L(λ) = λX + Y satisfying the “left ansatz”

(
ΛT ⊗ In

) · L(λ) = wT ⊗ P (λ) , (2.1.11)

and to a corresponding vector space L2(P ). The vector w in (2.1.11) will be referred
to as the “left ansatz vector” for L(λ).
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Definition 2.1.9. With WP = {wT ⊗ P (λ) : w ∈ Fk}, we define

L2(P ) =
{

L(λ) = λX + Y : X, Y ∈ Fkn×kn,
(
ΛT ⊗ In

) · L(λ) ∈ WP

}
.

The analysis of L2(P ) is aided by the introduction of the following block matrix
operation.

Definition 2.1.10 (Row Shifted Sum). Let X and Y be block matrices

X =




X11 · · · X1k
...

...
Xk1 · · · Xkk


 , Y =




Y11 · · · Y1k
...

...
Yk1 · · · Ykk




with blocks Xij, Yij ∈ Fn×n. Then the row shifted sum of X and Y is defined to be

X ¢↓ Y :=




X11 · · · X1k
...

...
Xk1 · · · Xkk

0 · · · 0


 +




0 · · · 0
Y11 · · · Y1k
...

...
Yk1 · · · Ykk


 ,

where the zero blocks are also n× n.

The following analog of Lemma 2.1.4 establishes the correspondence between the left
ansatz and row shifted sums.

Lemma 2.1.11. Let P (λ) =
∑k

i=0 λiAi be an n× n matrix polynomial, and L(λ) =
λX + Y a kn× kn pencil. Then for any w ∈ Fk,

(ΛT ⊗ In) · (λX + Y ) = wT ⊗ P (λ) ⇐⇒ X ¢↓ Y = wT ⊗



Ak...
A0


 . (2.1.12)

Using these tools one can characterize the pencils in L2(P ) in a manner completely
analogous to Theorem 2.1.5, and thus conclude that

dimL2(P ) = dimL1(P ) = k(k − 1)n2 + k . (2.1.13)

An even stronger relationship between the spaces L1(P ) and L2(P ), which again
immediately implies (2.1.13), is established in Section 3.1 using the notion of block-
transpose.

The analog of Theorem 2.1.8 for pencils in L2(P ) involves left eigenvectors of P (λ)
rather than right eigenvectors. Since the definition of a left eigenvector of a matrix
polynomial does not seem to be completely standardized in the literature, we include
here the definition used in this thesis.

Definition 2.1.12 (Left eigenvectors). A left eigenvector of an n × n matrix
polynomial P associated with a finite eigenvalue λ is a nonzero vector y ∈ Cn such
that y∗P (λ) = 0. A left eigenvector for P corresponding to the eigenvalue ∞ is a left
eigenvector for revP associated with the eigenvalue 0.
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This definition differs from the one adopted in [31], although it is compatible with
the usual definition for left eigenvectors of a matrix [33], [79]. We have chosen Defini-
tion 2.1.12 here because it is the one typically used in formulas for condition numbers
of eigenvalues, a topic investigated in Chapter 8. The following result shows that
left eigenvectors of P are easily recovered from linearizations in L2(P ). The proof is
completely analogous to that given for Theorem 2.1.8.

Theorem 2.1.13 (Eigenvector Recovery Property for L2(P )).
Let P (λ) be an n×n matrix polynomial of degree k, and L(λ) any pencil in L2(P ) with
nonzero left ansatz vector w. Then y ∈ Cn is a left eigenvector for P (λ) with finite
eigenvalue λ ∈ C if and only if Λ⊗y is a left eigenvector for L(λ) with eigenvalue λ.
If, in addition, P is regular and L ∈ L2(P ) is a linearization for P , then every left
eigenvector of L with finite eigenvalue λ is of the form Λ⊗y for some left eigenvector
y of P .

Just as for Theorem 2.1.8, there is an analogous result for the eigenvalue ∞ that can
be found in Section 2.2.

In this section we have seen that pencils in L1(P ) and L2(P ) closely resemble the
companion forms, and have eigenvectors that are simply related to those of P . Thus
one can reasonably view L1(P ) and L2(P ) as large classes of “potential” linearizations
for P (λ). So far, though, we have not shown any of these “good candidates” to
actually be linearizations. It is to this question that we turn next.

2.2 When is a Pencil in L1(P ) a Linearization?

It is clear that not all pencils in the spaces L1(P ) and L2(P ) are linearizations of
P — consider, for example, any pencil in L1(P ) with right ansatz vector v = 0.
In this section we focus on L1(P ) and obtain criteria for deciding whether a pencil
from L1(P ) is a linearization for P or not. We show, for example, that for any given
L ∈ L1(P ) there is typically a condition (specific to L) on the coefficient matrices of
P that must be satisfied in order to guarantee that L is actually a linearization for
P . Specific examples of such “linearization conditions” can be found in Section 2.2.2
and in the tables in Chapter 4. Analogs of all the results in this section also hold for
L2(P ), with very similar arguments.

2.2.1 The Strong Linearization Theorem

We begin with a result concerning the special case of the right ansatz (2.1.5) consid-
ered in Corollary 2.1.7. Note that P is not assumed here to be regular.

Theorem 2.2.1. Suppose P (λ) =
∑k

i=0 λiAi with Ak 6= 0 is an n × n matrix poly-
nomial, and L(λ) = λX + Y ∈ L1(P ) has nonzero right ansatz vector v = αe1, so
that

L(λ) · (Λ⊗ In) = αe1 ⊗ P (λ) . (2.2.1)

Partition X and Y as in (2.1.10) so that

L(λ) = λX + Y = λ

[
αAk X12

0 −Z

]
+

[
Y11 αA0

Z 0

]
, (2.2.2)
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where Z ∈ F(k−1)n×(k−1)n. Then Z nonsingular implies that L(λ) is a strong lineariza-
tion of P (λ).

Proof. We show first that L(λ) is a linearization of P (λ). Begin the reduction of
L(λ) to diag(P (λ), I(k−1)n) using the unimodular matrix polynomials T (λ) and G(λ)
defined in (1.1.6). In the product L(λ)G(λ), clearly the first k− 1 block-columns are
the same as those of L(λ); because the last block-column of G(λ) is Λ ⊗ I, we see
from (2.2.1) that the last block-column of L(λ)G(λ) is αe1 ⊗ P (λ). Partitioning Z
in (2.2.2) into block columns [Z1 Z2 . . . Zk−1], where Zi ∈ F(k−1)n×n, we thus obtain

L(λ)G(λ) =

[
∗ ∗ . . . ∗ ∗
Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) −λZk−1

]
G(λ) ,

=

[
∗ ∗ . . . ∗ αP (λ)

Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) 0

]
.

Further transformation by block-column operations yields

L(λ)T (λ) = L(λ) G(λ)




I λI
I

I ...
I







I
I λI

I ...
I


 · · ·




I ...
I λI

I
I




︸ ︷︷ ︸
= T (λ)

=

[
∗ αP (λ)

Z 0

]
.

Scaling and block-column permutations on L(λ)T (λ) show that there exists a uni-
modular matrix polynomial F (λ) such that

L(λ)F (λ) =

[
P (λ) W (λ)

0 Z

]

for some matrix polynomial W (λ). (Note that we have reached this point without
any assumptions about Z.) Now if Z is nonsingular, then L(λ) is a linearization for
P (λ), since [

I −W (λ)Z−1

0 Z−1

]
L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

To show that L(λ) is also a strong linearization for P (λ), it remains to show that
revL(λ) = λY + X is a linearization for revP (λ). Now it would be nice if revL(λ)
was a pencil in L1(revP ), but it is not; however, a small modification of revL(λ) is
in L1(revP ). Observe that λk−1 · Λ(1/λ) = [1, λ, . . . , λk−2, λk−1]T = RkΛ, where Rk

denotes the k × k reverse identity matrix. Thus replacing λ by 1/λ in (2.2.1) and
multiplying both sides by λk yields

λL(1/λ) ·
(
λk−1Λ(1/λ)⊗ I

)
= αe1 ⊗ λkP (1/λ) ,

or equivalently, revL(λ)·((RkΛ)⊗I
)

= αe1⊗revP (λ). Thus, L̂(λ) := revL(λ)·(Rk⊗I)
satisfies

L̂(λ) · (Λ⊗ I) = αe1 ⊗ revP (λ), (2.2.3)
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and so L̂ ∈ L1(revP ). (Observe that L̂(λ) is just revL(λ) = λY + X with the block-

columns of Y and X arranged in reverse order.) Since L̂ and revL are equivalent

pencils, the proof will be complete once we show that λX̂+Ŷ := L̂(λ) is a linearization

for revP (λ). But X̂ = Y · (Rk ⊗ I) and Ŷ = X · (Rk ⊗ I), and hence from (2.2.2) it
follows that

X̂ =

[
αA0 X̂12

0 −Ẑ

]
and Ŷ =

[
Ŷ11 αAk

Ẑ 0

]
,

where Ẑ = −Z · (Rk−1⊗I). Clearly Ẑ is nonsingular if Z is, and so by the part of the

theorem that has already been proved, L̂ (and therefore also revL) is a linearization
for revP (λ).

Remark 2.2.2. The fact (first proved in [30]) that the first companion form of any
polynomial is always a strong linearization is a special case of Theorem 2.2.1.

When a matrix polynomial P (λ) is regular, then it is easy to see from Defini-
tion 1.1.4 that any linearization for P (λ) must also be regular. The next result shows
something rather surprising: when a pencil L is in L1(P ), the minimal necessary
condition of regularity is actually sufficient to guarantee that L is a linearization for
P . This serves to emphasize just how close a pencil is to being a linearization for P ,
even a strong linearization for P , once it satisfies the ansatz (2.1.5).

Theorem 2.2.3 (Strong Linearization Theorem).
Let L(λ) ∈ L1(P ) for a regular matrix polynomial P (λ). Then the following state-
ments are equivalent:

(i) L(λ) is a linearization for P (λ).

(ii) L(λ) is a regular pencil.

(iii) L(λ) is a strong linearization for P (λ).

Proof. “(i) ⇒ (ii)”: If L(λ) is a linearization for P (λ), then there exist unimodular
matrix polynomials E(λ), F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Thus the regularity of P (λ) implies the regularity of L(λ).

“(ii) ⇒ (iii)”: Since L(λ) ∈ L1(P ), we know that L(λ) · (Λ ⊗ In) = v ⊗ P (λ) for
some v ∈ Fk. But L(λ) is regular, so v is nonzero. Let M ∈ Fk×k be any nonsingular

matrix such that Mv = αe1. Then the regular pencil L̃(λ) := (M ⊗ In) · L(λ) is in
L1(P ) with right ansatz vector αe1, since

L̃(λ)(Λ⊗ In) = (M ⊗ In)L(λ)(Λ⊗ In) = (M ⊗ In)(v ⊗ P (λ))

= Mv ⊗ P (λ)

= αe1 ⊗ P (λ) .



28 CHAPTER 2. A VECTOR SPACE SETTING FOR LINEARIZATIONS

Hence by Corollary 2.1.7 the matrices X̃ and Ỹ in L̃(λ) := λX̃ + Ỹ have the forms

X̃ =

n (k−1)n


αAk X̃12

0 −Z̃




n

(k−1)n
and Ỹ =

(k−1)n n


Ỹ11 αA0

Z̃ 0




n

(k−1)n
.

Now if Z̃ was singular, there would exist a nonzero vector w ∈ F(k−1)n such that
wT Z̃ = 0. But this would imply that

[
0 wT

]
(λX̃ + Ỹ ) = 0 for all λ ∈ F ,

contradicting the regularity of L̃(λ). Thus Z̃ is nonsingular, and so by Theorem 2.2.1

we know that L̃(λ), and hence also L(λ), is a strong linearization for P (λ).

“(iii) ⇒ (i)” is trivial.

Now recall from Definitions 1.1.3 and 2.1.12 that a vector x ∈ Cn is a right
(left) eigenvector for a polynomial P with eigenvalue ∞ if and only if x is a right
(left) eigenvector for revP with eigenvalue 0. Translating statements about infinite
eigenvalues to ones about zero eigenvalues allows us to use Theorems 2.1.8, 2.1.13,
and 2.2.3 to extend the eigenvector recovery properties of L1(P ) and L2(P ) to the
eigenvalue ∞.

Theorem 2.2.4 (Eigenvector Recovery at ∞).
Let P (λ) be an n × n matrix polynomial of degree k, and L(λ) any pencil in L1(P )
(resp., L2(P )) with nonzero right (left ) ansatz vector v. Then x ∈ Cn is a right
(left ) eigenvector for P (λ) with eigenvalue ∞ if and only if e1 ⊗ x is a right (left )
eigenvector for L(λ) with eigenvalue ∞. If, in addition, P is regular and L ∈ L1(P )
(resp., L2(P )) is a linearization for P , then every right (left ) eigenvector of L with
eigenvalue ∞ is of the form e1 ⊗ x for some right (left ) eigenvector x of P with
eigenvalue ∞.

Proof. We give the proof only for right eigenvectors of L ∈ L1(P ) here. The argument
for recovery of left eigenvectors of L ∈ L2(P ) is essentially the same, given the analogs
of Theorems 2.2.1 and 2.2.3 for L2(P ).

For any L(λ) define L̂(λ) := revL(λ) · (Rk ⊗ I). Then the reasoning used in

Theorem 2.2.1 to obtain (2.2.3) shows that L ∈ L1(P ) ⇒ L̂ ∈ L1(revP ), with the
same nonzero right ansatz vector v. By Theorem 2.1.8 we know that x is a right
eigenvector for revP with eigenvalue 0 if and only if Λ ⊗ x = ek ⊗ x is a right
eigenvector for L̂ with eigenvalue 0. But ek ⊗ x is a right eigenvector for L̂ if and
only if e1⊗x = (Rk⊗ I)(ek⊗x) is a right eigenvector for revL, both with eigenvalue
0. This establishes the first part of the theorem.

If P is regular and L ∈ L1(P ) is a linearization for P , then by Theorem 2.2.3

L̂ ∈ L1(revP ) is a linearization for revP . Theorem 2.1.8 then implies that every

right eigenvector of L̂ with eigenvalue 0 is of the form ek ⊗ x, where x is a right
eigenvector of revP with eigenvalue 0; equivalently every right eigenvector of revL
with eigenvalue 0 is of the form e1 ⊗ x for some right eigenvector x of revP with
eigenvalue 0. This establishes the second part of the theorem.
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2.2.2 Linearization Conditions

A useful by-product of the proof of Theorem 2.2.3 is a simple procedure for generating
a symbolic “linearization condition” for any given pencil L ∈ L1(P ), i.e., a necessary
and sufficient condition (in terms of the data in P ) for L to be a linearization for P .
We describe this procedure and then illustrate with some examples.

Procedure to determine the linearization condition for a pencil in L1(P ):

1) Suppose P (λ) is a regular matrix polynomial and L(λ) = λX + Y ∈ L1(P ) has
nonzero right ansatz vector v ∈ Fk, i.e., L(λ) · (Λ⊗ In) = v ⊗ P (λ).

2) Select any nonsingular matrix M such that Mv = αe1.

3) Apply the corresponding block-transformation M ⊗ In to L(λ) to produce

L̃(λ) := (M ⊗ In)L(λ), which must be of the form

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
, (2.2.4)

where X̃11 and Ỹ12 are n×n. Since only Z is of interest here, it suffices to form
just Ỹ = (M ⊗ In)Y .

4) Extract det Z 6= 0 , the linearization condition for L(λ).

Note that this procedure can readily be implemented as a numerical algorithm to
check if a pencil in L1(P ) is a linearization: choose M to be unitary, e.g., a House-
holder reflector, then use a rank revealing factorization such as the QR-decomposition
with column pivoting or the singular value decomposition to check if Z is nonsingular.

Example 2.2.5. Consider the general quadratic polynomial P (λ) = λ2A + λB + C
(assumed to be regular ) and the following pencils in L1(P ):

L1(λ) = λ

[
A B + C
A 2B − A

]
+

[ −C C
A−B C

]
, L2(λ) = λ

[
0 −B
A B − C

]
+

[
B 0
C C

]
.

Since [
A B + C
A 2B − A

]
¢→

[ −C C
A−B C

]
=

[
A B C
A B C

]
,

we have L1(λ) ∈ L1(P ) with right ansatz vector v =
[

1 1
]T

. Subtracting the first
entry from the second reduces v to e1, and the corresponding block-row-operation on
Y yields

Ỹ =

[ −C C
A−B + C 0

]
.

Hence Z = A − B + C, and det(A − B + C) = det P (−1) 6= 0 is the linearization
condition. Thus L1(λ) is a linearization for P if and only if λ = −1 is not an
eigenvalue of P . On the other hand, for L2(λ) we have

[
0 −B
A B − C

]
¢→

[
B 0
C C

]
=

[
0 0 0
A B C

]
,
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so L2(λ) ∈ L1(P ) with v =
[

0 1
]T

. Permuting the entries of v gives e1, and
applying the analogous block-row-permutation to Y yields

Ỹ =

[
C C
B 0

]
.

Thus Z = Ỹ21 = B, and so det B 6= 0 is the linearization condition for L2(λ).

The next example shows that the linearization condition for a pencil in L1(P )
may depend on some nonlinear combination of the data in P , and thus its meaning
may not be so easy to interpret.

Example 2.2.6. Consider the general cubic polynomial P (λ) = λ3A+λ2B +λC +D
(again assumed to be regular ) and the pencil

L3(λ) = λX + Y = λ




A 0 2C
−2A −B − C D − 4C

0 A −I


 +




B −C D
C −B 2C −D −2D
−A I 0




in L1(P ). Since X ¢→Y =
[
1 −2 0

]T⊗[
A B C D

]
, we have v =

[
1 −2 0

]T
.

Adding twice the first block-row of Y to the second block-row of Y gives

Z =

[
B + C −D
−A I

]
,

and hence the linearization condition det Z = det(B + C −DA) 6= 0. (Recall that for
n × n blocks W,X, Y, Z with Y Z = ZY , we have det [ W X

Y Z ] = det(WZ −XY ). See
[56]. )

We have seen in this section that each pencil in L1(P ) has its own particular
condition on the coefficient matrices of P that must be satisfied in order for that
pencil to be a linearization for P . From this point of view it seems conceivable that
there could be polynomials P for which very few of the pencils in L1(P ) are actually
linearizations for P . However, the following result shows that this never happens;
when P is regular the “bad” pencils in L1(P ) always form a very sparse subset of
L1(P ).

Theorem 2.2.7 (Linearizations are Generic in L1(P )).
For any regular n × n matrix polynomial P (λ) of degree k, almost every pencil in
L1(P ) is a linearization for P (λ). (Here by “almost every” we mean for all but a
closed, nowhere dense set of measure zero in L1(P ). )

Proof. Let d = dimL1(P ) = k + (k − 1)kn2, and let L1(λ), L2(λ), . . . , Ld(λ) be any
fixed basis for L1(P ). Since any L(λ) ∈ L1(P ) can be uniquely expressed as a linear
combination

L(λ) = β1L1(λ) + β2L2(λ) + · · ·+ βdLd(λ) ,

we can view det L(λ) as a polynomial in λ whose coefficients c0, c1, c2, . . . , ckn are
each polynomial functions of β1, . . . , βd, that is, ci = ci(β1, . . . , βd).

Now by Theorem 2.2.3 we know that L(λ) ∈ L1(P ) fails to be a linearization for
P (λ) if and only if det L(λ) ≡ 0, equivalently if all the coefficients ci are zero. Thus
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the subset of pencils in L1(P ) that are not linearizations for P (λ) can be characterized
as the common zero set Z of the polynomials

{
ci(β1, β2, . . . , βd) : 0 ≤ i ≤ kn

}
, i.e.,

as an algebraic subset of Fd.
Since proper algebraic subsets of Fd are well known to be closed, nowhere dense

subsets of measure zero, the proof will be complete once we show that Z is a proper
subset of Fd, or equivalently, that there exists some pencil in L1(P ) that is a lin-
earization for P . But this is immediate: the first companion form C1(λ) for P (λ) is
in L1(P ) and is always a linearization for P (see [31] or Remark 2.2.2).

Although L1(P ) and L2(P ) contain a large supply of linearizations for P , there do
exist simple linearizations for P that are neither in L1(P ) nor in L2(P ). We illustrate
this with a recent example from [3].

Example 2.2.8. For the cubic matrix polynomial P (λ) = λ3A3 + λ2A2 + λA1 + A0,
the pencil

L(λ) = λ




0 A3 0
I A2 0
0 0 I


 +



−I 0 0
0 A1 A0

0 −I 0




is shown in [3] to be a linearization for P . Using shifted sums it is easy to see that
L(λ) is in neither L1(P ) nor L2(P ).

2.3 Another View of L1(P ) and L2(P )

In Section 2.1 we defined the pencil space L1(P ) by generalizing one particular prop-
erty of the first companion form C1(λ) of P . A different connection between L1(P )
and C1(λ) can be established, which gives an alternative insight into why the pencils
in L1(P ) retain so many of the attractive features of C1(λ). Using the first three steps
of the procedure in Section 2.2.2, together with the characterization of L1(P )-pencils
given in Theorem 2.1.5 and Corollary 2.1.7, one can show that any L(λ) ∈ L1(P ) can
be factored (non-uniquely) in the form

L(λ) = (K ⊗ In)

[
αIn U

0 −Z

]
C1(λ) , (2.3.1)

where Z ∈ F(k−1)n×(k−1)n is the same as the block Z in Corollary 2.1.7 and (2.2.4), and
K ∈ Fk×k is nonsingular. It is also straightforward to check that any pencil of the form
(2.3.1) satisfies L(λ) · (Λ⊗ In) = αKe1 ⊗ P (λ), and so is in L1(P ) with right ansatz
vector v = αKe1. Consequently the scalar α ∈ F in the middle factor is zero if and
only if the right ansatz vector v of L(λ) is zero. This factorization gives another reason
why the right eigenvectors of pencils in L1(P ) have the same Kronecker product
structure as those of C1(λ), and why pencils in L1(P ) are either strong linearizations
of P (like C1(λ)) or singular pencils, depending on the nonsingularity or singularity
of the block Z and the scalar α.

In a completely analogous fashion one can factor any L(λ) ∈ L2(P ) as

L(λ) = C2(λ)

[
βIn 0

T −V

]
(H ⊗ In) , (2.3.2)



32 CHAPTER 2. A VECTOR SPACE SETTING FOR LINEARIZATIONS

thus providing a different insight into the left eigenvector structure of pencils in
L2(P ), and the fact that almost all pencils in L2(P ) are strong linearizations for P
(like C2(λ)).

On the other hand, certain aspects of L1(P ) and L2(P ) are less apparent from
the point of view of these factorizations. For example, the fact that L1(P ) and L2(P )
are vector spaces is no longer so obvious anymore. In addition, the criterion for a
pencil to be an element of L1(P ) or L2(P ) is now implicit rather than explicit, and
therefore harder to verify.

We are also interested in the possibility of the existence of pencils that are simul-
taneously in L1(P ) and L2(P ). The factored forms (2.3.1) and (2.3.2) might make it
seem rather unlikely that there could be any nontrivial pencils in this intersection.
However, in the next chapter we will see (using shifted sums) that this is an erroneous
impression.

Finally, it is worth pointing out that the ansatz equations (2.1.5) and (2.1.11)
enjoy the advantage of being identities in the variable λ, and so can be treated
analytically as well as algebraically. This property is exploited in the analysis of the
conditioning of eigenvalues of linearizations in Chapter 8.



Chapter 3

DL(P ) and Block-symmetry

The spaces L1(P ) and L2(P ) provide large sources of linearizations for any regular
matrix polynomial P , structured or unstructured, but pencils in the intersection
L1(P ) ∩ L2(P ) are of particular interest. Any such pencil has simultaneously both
left and right eigenvector recovery properties as described in Theorems 2.1.8, 2.1.13
and 2.2.4, and so is especially amenable to an analysis of the conditioning of its
eigenvalues, as will be seen later in Chapter 8. Hence we introduce some special
notation for this intersection.

Definition 3.0.1. DL(P ) := L1(P ) ∩ L2(P ) .

The primary goal of this chapter is to understand the space DL(P ) of “double
ansatz” pencils for a general matrix polynomial P , and to show how all the pencils
in DL(P ) may be explicitly constructed. A priori there is no obvious reason why
DL(P ) should contain any nontrivial pencils at all. However, initial investigation of
these pencil spaces for P of degree 2 and 3 indicates that nontrivial DL(P )-pencils do
exist, and that they all seem to have an unanticipated additional structure — block-
symmetry — even when P is itself unstructured. It turns out that a preliminary
independent study of block-symmetric pencils in L1(P ) provides an efficient pathway
to the properties of DL(P ); hence we begin this chapter with the notions of block-
transpose and block-symmetry, and a development of some of their basic properties.

3.1 The Block-transpose Operation

This section introduces the simple operation of block-transpose, and shows how it
establishes a fundamental relationship between the spaces L1(P ) and L2(P ).

Recall from chapter 2 that pencils in L1(P ) and L2(P ) are of size kn× kn, where
k is the degree of the n×n matrix polynomial P (λ). The shifted sum operations ¢→
and ¢↓ treat these pencils as block k× k matrices with blocks of size n× n, and this
convention concerning pencils in L1(P ) and L2(P ) will be maintained throughout.
Indeed, for the purposes of this thesis we only consider block matrices in which all
the blocks have the same size, as in the following formal definition.

Definition 3.1.1 (Block matrix). Let Eij ∈ Fk×` denote the matrix that is every-
where zero except for a 1 in the (i, j) entry. Then a km× `n matrix A written in the

33
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form

A =
∑
i,j

(Eij ⊗Bij)

with Bij ∈ Fm×n is said to be a block k × ` matrix with m× n blocks Bij.

For this restricted class of block matrices one can give a very simple and straight-
forward description of the block-transpose operation. Let A = (Bij) be a block k× `
matrix with m×n blocks Bij. Then the block transpose of A is the block `×k matrix
AB, with m× n blocks defined by (AB)ij = Bji. However, for giving formal proofs of
some of the basic properties of block-transpose the following definition is sometimes
more convenient.

Definition 3.1.2 (Block-transpose). Suppose A =
∑

i,j(Eij⊗Bij) is a block k× `
matrix with m×n blocks Bij. Then the block-transpose of A is the block `×k matrix

AB :=
∑
i,j

(ET
ij ⊗Bij),

also with m×n blocks. Note that if A is expressed as a sum A =
∑

(Ki⊗Mi) where
Ki ∈ Fk×` and Mi ∈ Fm×n, then

AB =
∑

(KT
i ⊗Mi).

Block-transpose has some, but not all, of the same algebraic properties as ordinary
matrix transpose.

Lemma 3.1.3. For any block matrices A,C that are conformable for block-addition
we have

(A + C)B = AB + CB . (3.1.1)

Proof. The straightforward proof is omitted.

Note that block-matrices A and C do not in general satisfy (AC)B = CBAB. However,
if each block of A commutes with each block of C then the analog of the multiplicative
property of transpose does hold.

Lemma 3.1.4. Suppose A =
∑

i,j(Eij ⊗ Aij) is a (k × `)-block-matrix with n × n
blocks Aij, and C =

∑
p,q(Epq⊗Cpq) is an (`×m)-block-matrix with n×n blocks Cpq.

Further suppose that each Aij commutes with each Cpq. Then

(AC)B = CBAB . (3.1.2)
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Proof. We have

(AC)B =

(∑
i,j

(Eij ⊗ Aij) ·
∑
p,q

(Epq ⊗ Cpq)

)B

=

( ∑
i,j,p,q

(EijEpq ⊗ AijCpq)

)B

=
∑
i,j,p,q

(
(EijEpq)

T ⊗ AijCpq

)

=
∑
i,j,p,q

(
ET

pqE
T
ij ⊗ CpqAij

)

=
∑
p,q

(
ET

pq ⊗ Cpq

) ·
∑
i,j

(
ET

ij ⊗ Aij

)
= CBAB .

Remark 3.1.5. Note that the hypothesis of Aij commuting with every Cpq is stronger
than needed in Lemma 3.1.4. It suffices to assume that Aij commutes with every Cpq

with p = j for the calculation proving Lemma 3.1.4 to be valid.

The block-transpose operation establishes an intimate link between the pencil
spaces L1(P ) and L2(P ). Keep in mind our convention that pencils in L1(P ) and
L2(P ) are to be regarded as block k × k matrices with n× n blocks, and that block-
transpose is performed relative to this partitioning.

Theorem 3.1.6 (A Fundamental Isomorphism).
For any matrix polynomial P (λ), the block-transpose map

L1(P )
B−→ L2(P )

L(λ) 7−→ L(λ)B

is a linear isomorphism between L1(P ) and L2(P ). In particular, if L(λ) ∈ L1(P )
has right ansatz vector v, then L(λ)B ∈ L2(P ) with left ansatz vector w = v.

Proof. Suppose L(λ) ∈ L1(P ) with right ansatz vector v. Then using Definition 3.1.2
and Lemma 3.1.4 we have

(
L(λ) · (Λ⊗ I)

)B
=

(
v ⊗ P (λ)

)B
=⇒ (Λ⊗ I)B · L(λ)B = vT ⊗ P (λ)

=⇒ (ΛT ⊗ I) · L(λ)B = vT ⊗ P (λ) .

This last equation says that L(λ)B ∈ L2(P ) with left ansatz vector v, and so block-
transpose gives a well-defined map B from L1(P ) to L2(P ). By Lemma 3.1.3 this
map is linear. The kernel is clearly just the zero pencil, since L(λ)B = 0 ⇒ L(λ) = 0,
so B is injective. An analogous argument shows that block-transpose also gives a
well-defined one-to-one linear map backwards from L2(P ) to L1(P ), thus showing B

to be an isomorphism.

Remark 3.1.7. In section 2.1 it was shown that dimL1(P ) = dimL2(P ). Note that
Theorem 3.1.6 provides an independent proof of that fact.
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Example 3.1.8. The companion forms give a nice illustration of Theorem 3.1.6. One

sees by inspection that C2(λ) =
(
C1(λ)

)B
; observe also that C1(λ) ∈ L1(P ) with right

ansatz vector v = e1 while C2(λ) ∈ L2(P ) with left ansatz vector w = v = e1.

The final result of this section shows how the block-transpose operation interacts
with shifted sums, and provides a different insight into how block-transpose connects
L1(P ) with L2(P ).

Lemma 3.1.9. For any block k × k matrices X and Y (with n× n blocks) we have

(X ¢→Y )B = XB ¢↓ Y B . (3.1.3)

Proof. By definition of the row and column shifted sums,

(X ¢→Y )B =
([

X 0
]
+

[
0 Y

])B
=

[
X 0

]B
+

[
0 Y

]B

=

[
XB

0

]
+

[
0

Y B

]
= XB ¢↓ Y B .

Remark 3.1.10. Note that an alternative proof of Theorem 3.1.6 can be given using
the shifted sum property (3.1.3). If L(λ) = λX +Y ∈ L1(P ) with right ansatz vector
v, then X ¢→Y = v ⊗ [Ak Ak−1 · · · A0] ; from Lemma 3.1.9 we have

(
X ¢→Y

)B
=

(
v ⊗ [Ak Ak−1 · · · A0]

)B
=⇒ XB ¢↓ Y B = vT ⊗




Ak...
A0


 .

Thus L(λ)B = λXB + Y B is an element of L2(P ) with left ansatz vector v. The rest
of the proof then proceeds as before.

3.2 Block-symmetry and Shifted Sum Equations

Given the notion of block-transpose, it is natural to consider block-symmetric matri-
ces, which will play a central role in our development.

Definition 3.2.1 (Block-symmetry). A block k × k matrix A with m× n blocks
is said to be block-symmetric if AB = A.

For example, a block 2 × 2 matrix is block-symmetric if and only if it has the

form
[

A
C

C
D

]
. Note also that if each block Aij ∈ Fn×n in a block-symmetric matrix A

is symmetric, then A is itself symmetric.
It is easy to see that the set of all block-symmetric matrices of any fixed shape is

closed under linear combinations, and hence forms a vector space. Thus we consider

B(P ) :=
{

λX + Y ∈ L1(P ) : XB = X, Y B = Y
} ⊆ L1(P ) , (3.2.1)

the subspace of all block-symmetric pencils in L1(P ). As an immediate corollary of
Theorem 3.1.6 we see that any block-symmetric pencil in L1(P ) is automatically in
DL(P ). This fact motivates a thorough preliminary study of B(P ) as preparation for
a characterization of DL(P ).
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Corollary 3.2.2. For any matrix polynomial P (λ), B(P ) ⊆ DL(P ).

Proof. Let L(λ) ∈ B(P ) ⊂ L1(P ). From Theorem 3.1.6 we know that L(λ)B = L(λ)
is in L2(P ), and so L(λ) ∈ DL(P ).

Because of Lemma 2.1.4, the construction of pencils in B(P ) reduces to finding
solutions of the shifted sum equation X ¢→Y = Z with block-symmetric X and Y .
It is to this task that we turn next.

3.2.1 Shifted Sum Equations

We investigate the existence and uniqueness of block-symmetric solutions of the equa-
tion X ¢→Y = Z, where Z is a given arbitrary matrix. We show that the equation
X ¢→Y = Z may always be solved with block-symmetric X and Y , and that the only
block-symmetric solution of X ¢→Y = 0 is X = Y = 0.

First we define several special types of block-symmetric matrix that play a central
role in the constructions to come. Let

R` =

[
1

. . .

1

]

`×`

and N` =




0 1
0

. . .

. . . 1
0




`×`

. (Note that N1 = [ 0 ].)

(3.2.2)
Then for an arbitrary n × n block M , define three block-Hankel, block-symmetric,
block `× ` matrices as follows:

H(0)
` (M) :=

[
M

. . .

M

]
= R` ⊗M,

H(1)
` (M) :=




M 0
. . . . . .

M . . .

0


 = (N`R`)⊗M =




1 0
. . . . . .

1 . . .

0


⊗M,

H(−1)
` (M) :=




0
. . . M

. . . . . .

0 M


 = (R`N`)⊗M =




0
. . . 1

. . . . . .

0 1


⊗M.

The superscript (0), (1), or (−1) here specifies that the blocks M are on, above,
or below the anti-diagonal, respectively. Note that all three of these block-Hankel
matrices are symmetric if M is.

Lemma 3.2.3. Let Z be an arbitrary block k×(k+1) matrix with n×n blocks. Then
there exist block-symmetric block k× k matrices X and Y with n×n blocks such that
X ¢→Y = Z.

Proof. Let E`
ij ∈ F`×(`+1) denote the matrix that is everywhere zero except for a 1 in

the (i, j) entry. Our proof is based on the observation that for arbitrary M, P ∈ Fn×n,
the shifted sums

H(0)
` (M) ¢→

(
−H(1)

` (M)
)

=




0 . . . . . . 0 0
... . . . . . .

...

0 0 . . .
...

M 0 . . . . . . 0


 = E`

`1 ⊗M, (3.2.3)
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−H(−1)
` (P ) ¢→H(0)

` (P ) =




0 . . . . . . 0 P... . . . 0 0
... . . . . . .

...
0 0 . . . . . . 0


 = E`

1,`+1 ⊗ P (3.2.4)

place M and P at the bottom left corner and top right corner of a block `× (` + 1)
matrix, respectively.

The shifted sum ¢→ is compatible with ordinary sums, i.e.,

(∑
Xi

)
¢→

(∑
Yi

)
=

∑
(Xi ¢→Yi).

Hence if we can show how to construct block-symmetric X and Y that place an
arbitrary n × n block into an arbitrary (i, j) block-location in Z, then sums of such
examples will achieve the desired result for an arbitrary Z.

For indices i, j such that 1 ≤ i ≤ j ≤ k, let ` = j− i + 1 and embed H(0)
` (M) and

−H(1)
` (M) as a principal submatrix in block rows and block columns i through j of

the block k × k zero matrix to get

X̃ij ¢→Ỹij :=

i j

i

j




H(0)
` (M)


 ¢→

i j

i

j




−H(1)
` (M)


 (3.2.5)

=

i j+1

i

j


 H(0)

` (M) ¢→(−H(1)
` (M))




= Eji ⊗M (i ≤ j).

Note that embedding H(0)
` (M) and −H(1)

` (M) as principal block-submatrices guar-

antees that X̃ij and Ỹij are block-symmetric. Similarly, defining the block-symmetric
matrices

X̂ij =

i j

i

j


 −H(−1)

` (P )


 , Ŷij =

i j

i

j


 H(0)

` (P )


 , (3.2.6)

we have
X̂ij ¢→Ŷij = Ei,j+1 ⊗ P (i ≤ j). (3.2.7)

Thus sums of these principally embedded versions of (3.2.3) and (3.2.4) can produce
an arbitrary block k×(k+1) matrix Z as the column-shifted sum of block-symmetric
X and Y .

Lemma 3.2.4. Suppose X and Y are both block-symmetric block k×k matrices with
n× n blocks. Then X ¢→Y = 0 ⇐⇒ X = Y = 0.
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Proof. The proof is by induction on k. We focus on the nontrivial direction (⇒).
There are two base cases to be checked, k = 1 and k = 2. The k = 1 case is
immediate. Because X and Y are block-symmetric, for k = 2 we have

X ¢→Y =

[
X11 X12 0
X12 X22 0

]
+

[
0 Y11 Y12

0 Y12 Y22

]
=

[
X11 X12 + Y11 Y12

X12 X22 + Y12 Y22

]
.

Then X ¢→Y = 0 clearly implies that X = Y = 0.
Now consider k > 2 and X and Y with their blocks “around the edges” grouped

together as indicated in the diagram:

X ¢→Y = (1a)

(3a)

(2a)

X̃ (4a) ¢→ (4b)

(2b)

(3b)

Ỹ (1b) .

The only contribution to the first block column of X ¢→Y comes from (1a), and
the only contribution to the last block column of X ¢→Y comes from (1b). Thus
X ¢→Y = 0 implies (1a) and (1b) are all zeros. (Note that this would be true for
general X and Y .) The block-symmetry of X and Y now implies that the blocks
in (2a) and (2b) are zero. The blocks of (2a) interact in the shifted sum with those
in (3b); the (2a) blocks being zero imply that all the (3b) blocks are zero. Similarly
the (2b) blocks all zero imply that all the (3a) blocks are zero. Finally, the block-
symmetry of X and Y can be invoked once again to see that all the (4a) and (4b)
blocks are zero. At this point we have that X ¢→Y = 0 implies

X ¢→Y =




0 . . . 0
... X̃

...
0 . . . 0


 ¢→




0 . . . 0
... Ỹ

...
0 . . . 0


 =




0 . . . 0
... X̃ ¢→Ỹ

...
0 . . . 0


 = 0.

Since X̃ ¢→Ỹ = 0, the induction hypothesis implies X̃ = Ỹ = 0, and consequently
that X = Y = 0.

The results of this section are concisely summarized by the following corollary of
Lemmas 3.2.3 and 3.2.4.

Corollary 3.2.5. Let Z be an arbitrary block k × (k + 1) matrix with n × n blocks.
Then there exist unique block-symmetric block k × k matrices X and Y with n × n
blocks such that X ¢→Y = Z.

3.3 Block-symmetric Pencils in L1(P )

We are now in a position to characterize the subspace B(P ) of all block-symmetric
pencils in L1(P ), and to give explicit formulas for a useful basis of this subspace.
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3.3.1 The Subspace B(P )

Using the results of Section 3.2.1 we now characterize the subspace B(P ) ⊆ L1(P ).
Later in Section 5.3 we will see that almost all of these pencils are indeed linearizations
for P .

Theorem 3.3.1 (Characterization of B(P )).
For any matrix polynomial P (λ) of degree k, dimB(P ) = k, and for each vector
v ∈ Fk there is a uniquely determined block-symmetric pencil in B(P ).

Proof. The theorem is proved if we can show that the restriction to B(P ) of the
multiplication map (2.1.9), that is

B(P )
M−→ VP := { v ⊗ P (λ) : v ∈ Fk } (3.3.1)

L(λ) 7−→ L(λ) (Λ⊗ In) ,

is a linear isomorphism.
First, recall from Lemma 2.1.4 that for any pencil λX + Y ∈ L1(P ),

(λX + Y )(Λ⊗ In) = v ⊗ P (λ) ⇐⇒ X ¢→Y = v ⊗ [ Ak Ak−1 . . . A0 ]. (3.3.2)

Thus λX + Y is in kerM iff X ¢→Y = 0. But X and Y are block-symmetric, so by
Lemma 3.2.4 we see that kerM = {0}, and hence M is 1-1.

To see that M is onto, let v ⊗ P (λ) with v ∈ Fk be an arbitrary element of VP .
With Z = v ⊗ [Ak Ak−1 . . . A0], the construction of Lemma 3.2.3 shows that there
exist block-symmetric X and Y such that X ¢→Y = v ⊗ [Ak Ak−1 . . . A0]. Then by
(3.3.2) we have M(λX + Y ) = v ⊗ P (λ), showing that M is onto.

3.3.2 The “Standard Basis” for B(P )

The isomorphism established in the proof of Theorem 3.3.1 immediately suggests the
possibility that the basis for B(P ) corresponding (via the map M in (3.3.1)) to the
standard basis {e1, . . . , ek} for Fk may be especially simple and useful. In this section
we derive a general formula for these “standard basis pencils” in B(P ) as a corollary
of the shifted sum construction used in the proof of Lemma 3.2.3.

In light of Lemma 2.1.4, then, our goal is to construct for each 1 ≤ m ≤ k a
block-symmetric pencil λXm + Ym such that

Xm ¢→Ym = em ⊗ [ Ak Ak−1 . . . A0 ]. (3.3.3)

This is most easily done in two separate steps. First we show how to achieve the initial
m block-columns in the desired shifted sum, i.e., how to get em⊗[ Ak . . . Ak−m+1 0 . . . 0 ].
Then the final k−m+1 block-columns em⊗ [ 0 . . . 0 Ak−m . . . A1 A0 ] are produced
by a related but slightly different construction. In each of these constructions we use
the following notation for principal block submatrices, adapted from [40]: for a block
k× k matrix X and index set α ⊆ {1, 2, . . . , k}, X(α) will denote the principal block
submatrix lying in the block rows and block columns with indices in α.

To get the first m block-columns in the desired shifted sum we repeatedly use
the construction in (3.2.5) to build block k × k matrices X̂m and Ŷm , embedding
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once in each of the principal block submatrices X̂m(αi) and Ŷm(αi) for the index sets
αi = {i, i + 1, . . . , m}, i = 1: m, pictured in the following diagram.

1 m

1

m




p p p




(3.3.4)

Accumulating these embedded submatrices, we obtain

X̂m =

m


Ak
. . . Ak−1

. . . . . .
...

. . . . . .
...

Ak Ak−1 . . . . . . Ak−m+1

0

0 0




m ,

Ŷm = −

m


Ak 0
. . . Ak−1 0

. . . . . .
...

...
Ak Ak−1 . . . Ak−m+2 0
0 . . . . . . 0 0

0

0 0




m ,

with the property that X̂m ¢→Ŷm = em ⊗ [ Ak . . . Ak−m+1 0 . . . 0 ] .

To obtain the last k −m + 1 columns we use the construction outlined in (3.2.6)

and (3.2.7) k −m + 1 times to build block k × k matrices X̃m and Ỹm , embedding

once in each of the principal block submatrices X̃m(βj) and Ỹm(βj) for the index sets
βj = {m,m + 1, . . . , j} where j = m : k, as in diagram (3.3.5).

m k

m

k




p p p




(3.3.5)
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This yields

X̃m = −

m k


0 0

0

0 0 . . . . . . 0
0 Ak−m−1

. . . A1 A0...
... . . . . . .

... A1 . . .

0 A0




m

k

,

Ỹm =

m k


0 0

0

Ak−m . . . . . . A1 A0... . . . A0... . . . . . .

A1 . . .

A0




m

k

,

satisfying X̃m ¢→Ỹm = em ⊗ [ 0 . . . 0 Ak−m . . . A1 A0 ] . With Xm := X̂m + X̃m and

Ym := Ŷm + Ỹm we have Xm ¢→Ym = em⊗ [ Ak Ak−1 . . . A1 A0 ] , so λXm + Ym is the
mth standard basis pencil for B(P ).

A more concise way to express the mth standard basis pencil uses the following
block-Hankel matrices. Let Lj(P (λ)) denote the lower block-anti-triangular, block-
Hankel, block j × j matrix

Lj(P (λ)) :=




Ak
. . . Ak−1

. . . . . .
...

Ak Ak−1 . . . Ak−j+1


 (3.3.6)

formed from the first j matrix coefficients Ak, Ak−1, . . . , Ak−j+1 of P (λ). Similarly,
let Uj(P (λ)) denote the upper block-anti-triangular, block-Hankel, block j×j matrix

Uj(P (λ)) :=




Aj−1 . . . A1 A0... . . . . . .

A1 . . .

A0


 (3.3.7)

formed from the last j matrix coefficients Aj−1, Aj−2, . . . , A1, A0 of P (λ). Then the
block-symmetric matrices Xm and Ym in the mth standard basis pencil (m = 1: k)
can be neatly expressed as a direct sum of block-Hankel matrices:

Xm = Xm(P (λ)) =

[Lm(P (λ)) 0
0 −Uk−m(P (λ))

]
, (3.3.8a)

Ym = Ym(P (λ)) =

[−Lm−1(P (λ)) 0
0 Uk−m+1(P (λ))

]
. (3.3.8b)
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Table 3.3.1: “Standard basis pencils” in B(Q) for quadratic Q(λ) = λ2A + λB + C.

v L(λ) ∈ B(Q)

[
1
0

]
λ

[
A 0
0 −C

]
+

[
B C
C 0

]

[
0
1

]
λ

[
0 A
A B

]
+

[ −A 0
0 C

]

(Lj and Uj are taken to be void when j = 0.) From (3.3.8) it now becomes obvious
that the coefficient matrices in successive standard basis pencils are closely related:

Ym(P (λ)) = −Xm−1(P (λ)), m = 1: k. (3.3.9)

Thus we have the following explicit formula for the standard basis pencils in B(P ).

Theorem 3.3.2 (Standard Basis for B(P )).
Let P (λ) be a matrix polynomial of degree k. Then for m = 1: k the block-symmetric
pencil in B(P ) with ansatz vector em is λXm−Xm−1, where Xm is given by (3.3.8a).

The standard basis pencils in B(P ) for general polynomials of degree 2 and 3 are
listed in Tables 3.3.1 and 3.3.2, where the partitioning from (3.3.8) is shown in each
case. As an immediate consequence we have, for the important case of quadratic
polynomials Q(λ) = λ2A + λB + C, the following description of all block-symmetric
pencils in L1(Q),

B(Q) =

{
L(λ) = λ

[
v1A v2A
v2A v2B − v1C

]
+

[
v1B − v2A v1C

v1C v2C

]
: v ∈ C2

}
.

v L(λ) ∈ B(P )




1
0
0


 λ




A 0 0
0 −C −D
0 −D 0


 +




B C D
C D 0
D 0 0







0
1
0


 λ




0 A 0
A B 0
0 0 −D


 +



−A 0 0
0 C D
0 D 0







0
0
1


 λ




0 0 A
0 A B
A B C


 +




0 −A 0
−A −B 0
0 0 D




Table 3.3.2: “Standard basis pencils” in B(P ) for cubic P (λ) = λ3A+λ2B +λC +D.
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3.4 Double Ansatz Pencils for General P

With a complete characterization of B(P ) in hand, an efficient development of the
space DL(P ) of double ansatz pencils can now be given. By definition, a pencil
L(λ) ∈ DL(P ) simultaneously satisfies both

a “right ansatz” L(λ) · (Λ⊗ I) = v ⊗ P (λ) (3.4.1)

and a “left ansatz” (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) (3.4.2)

for some vectors v, w ∈ Fk. But can every vector pair (v, w) actually be realized as the
right/left ansatz vectors of some DL(P )-pencil? From Theorem 3.1.6, Theorem 3.3.1,
and the containment B(P ) ⊆ DL(P ) from Corollary 3.2.2 we know that any pair
(v, w) with w = v is achieved by a block-symmetric pencil in DL(P ). But are any
other pairs attained? Indeed, are there ever any pencils in DL(P ) that are not block-
symmetric?

In this section we show that the answer to all these questions is NO ; every pencil
in DL(P ) is block-symmetric, i.e., the containment B(P ) ⊆ DL(P ) is actually an
equality. We begin by considering the special case of DL(P )-pencils with right ansatz
vector v = 0, showing that in this case w = 0 is forced and the pencil is unique.

Lemma 3.4.1. Suppose L(λ) = λX + Y ∈ DL(P ) has right ansatz vector v and left
ansatz vector w. Then v = 0 implies that w must also be 0, and that X = Y = 0.

Proof. We first show that the `th block-column of X and the `th coordinate of w is
zero for ` = 1: k by an induction on ` .

Suppose ` = 1. From Lemma 2.1.4 we know that X ¢→Y = v⊗ [Ak Ak−1 . . . A0].
Since v = 0 we have X ¢→Y = 0, and hence the first block-column of X is zero.
But from Theorem 3.1.6, L(λ) being in L2(P ) with left ansatz vector w implies that
L(λ)B ∈ L1(P ) with right ansatz vector w, which can be written in terms of the
shifted sum as

XB ¢→Y B = w ⊗ [Ak Ak−1 . . . A0]. (3.4.3)

The (1, 1)-block of the right-hand side of (3.4.3) is w1Ak, while on the left-hand side
the (1, 1)-block of XB ¢→Y B is the same as the (1, 1)-block of X. Hence w1Ak = 0.
But the leading coefficient Ak of P (λ) is nonzero by assumption, so w1 = 0.

Now suppose that the `th block-column of X is zero and that w` = 0. Then
by (3.4.3) the `th block-row of XB ¢→Y B is zero, which together with the `th block-
row of XB being zero implies that the `th block-row of Y B is zero or equivalently,
the `th block-column of Y is zero. Combining this with X ¢→Y = 0 implies that the
(` + 1)th block-column of X is zero. Now equating the (` + 1, 1)-blocks of both sides
of (3.4.3) gives w`+1Ak = 0, and hence w`+1 = 0. This concludes the induction, and
shows that X = 0 and w = 0.

Finally, X = 0 and X ¢→Y = 0 implies Y = 0, completing the proof.

We can now give a precise description of all right/left ansatz vector pairs (v, w)
that can be realized by some DL(P )-pencil. Consequently DL(P ) is characterized as
being identical to B(P ), and the main goal of this chapter is achieved.

Theorem 3.4.2 (Characterization of DL(P )).
For a matrix polynomial P (λ) of degree k, suppose L(λ) ∈ DL(P ) with right ansatz
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vector v and left ansatz vector w. Then v = w and L(λ) ∈ B(P ). Thus DL(P ) =
B(P ), dimDL(P ) = k, and for each v ∈ Fk there is a uniquely determined pencil in
DL(P ).

Proof. Let L(λ) ∈ B(P ) be the unique block-symmetric pencil from Theorem 3.3.1
with v as its right ansatz vector. From Theorem 3.1.6 we know that L(λ)B = L(λ)
is in L2(P ) with left ansatz vector v, and so L(λ) ∈ DL(P ) with v as both its right

and left ansatz vector. Thus the pencil L̃(λ) := L(λ)− L(λ) is in DL(P ) with right
ansatz vector 0 and left ansatz vector w − v. Lemma 3.4.1 then implies that v = w
and L̃(λ) = λ · 0 + 0. Thus L(λ) ≡ L(λ) ∈ B(P ), so DL(P ) ⊆ B(P ). In view of
Corollary 3.2.2 we can conclude that DL(P ) = B(P ). The rest of the theorem follows
immediately from the characterization of B(P ) in Theorem 3.3.1.

The equality DL(P ) = B(P ) can be thought of as saying that the pencils in DL(P )
are doubly structured: they have block-symmetry as well as the eigenvector recovery
properties that were the original motivation for their definition. The equality also
means that the basis of B(P ) developed in section 3.3.2 is also, of course, a “standard
basis” for DL(P ).

Note that because of the equality of right and left ansatz vectors v and w for any
pencil in DL(P ), we can (and will) from now on refer without ambiguity to the ansatz
vector v of L(λ), whenever L(λ) ∈ DL(P ).

3.5 Some Other Constructions of Block-symmetric

Linearizations

Several other methods for constructing block-symmetric linearizations of matrix poly-
nomials have appeared previously in the literature.

Antoniou and Vologiannidis [3] have recently found new companion-like lineariza-
tions for general matrix polynomials P by generalizing Fiedler’s results [25] on a
factorization of the companion matrix of a scalar polynomial and certain of its per-
mutations. From this finite family of 1

6
(2 + deg P )! pencils, all of which are lin-

earizations, they identify one distinguished pencil that is Hermitian whenever P is
Hermitian. But this example has structure even for general P : it is block-symmetric.
Indeed, it provides a simple example of a block-symmetric linearization for P (λ) that
is not in B(P ). In the case of a cubic polynomial P (λ) = λ3A + λ2B + λC + D, the
pencil is

L(λ) = λ




A 0 0
0 0 I
0 I C


 +




B −I 0
−I 0 0
0 0 D


 . (3.5.1)

Using the column-shifted sum it easy to see that L(λ) is not in L1(P ), and hence not
in B(P ).

Contrasting with the “permuted factors” approach of [3],[25] and the additive
construction used in this thesis, is a third “multiplicative” method for generating
block-symmetric linearizations described by Lancaster in [46], [47]. In [46] only scalar
polynomials p(λ) = akλ

k + · · · + a1λ + a0 are considered; the starting point is the
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companion matrix of p(λ),

C =




−a−1
k

1
. . .

1







ak−1 ak−2 . . . a0

1 0 . . . 0
. . . . . .

...
0 1 0


 (3.5.2)

and the associated pencil λI − C. Lancaster’s strategy is to seek a nonsingular
symmetric matrix B such that BC is symmetric, thus providing a symmetric lin-
earization B(λI − C) = λB − BC for p(λ). That such a B can always be found
follows from a standard result in matrix theory [40, Cor. 4.4.11]. Lancaster shows
further that B and BC symmetric implies BCj is symmetric for all j ≥ 1; thus
BCj−1(λI − C) = λBCj−1 − BCj is a symmetric pencil for any j ≥ 1, and for
j ≥ 2 it is a linearization of p(λ) if a0 6= 0. This strategy is realized in [46] with the
particular choice of symmetric (Hankel) matrix

B =




ak
. . . ak−1

. . . . . .
...

ak ak−1 . . . a1


 , (3.5.3)

which is nonsingular since ak 6= 0. It is observed that this particular B gives a
sequence of symmetric pencils

λBCj−1 −BCj, j = 1,∞ (3.5.4)

with an especially simple form for 1 ≤ j ≤ k, though apparently with a much more
complicated form for j > k.

It is easy to see that these symmetric pencils, constructed for scalar polynomi-
als p(λ), can be immediately extended to block-symmetric pencils for general ma-
trix polynomials P (λ) simply by formally replacing the scalar coefficients of p(λ) in
B, BC,BC2, . . . by the matrix coefficients of P (λ). This has been done in [47, Sect.
4.2] and [29]. Garvey et al. [29] go even further with these block-symmetric pencils,
using them as a foundation for defining a new class of isospectral transformations on
matrix polynomials.

Since Lancaster’s construction of pencils is so different from ours there is no a
priori reason to expect any connection between his pencils and the pencils in DL(P ).
The next result shows, rather surprisingly, that the first k pencils in the sequence
(3.5.4) generate DL(P ).

Theorem 3.5.1. Let P (λ) be any matrix polynomial of degree k. Then for m = 1: k
the pencil λBCk−m − BCk−m+1 from the sequence (3.5.4), with B and C defined by
the block matrix analogs of (3.5.2) and (3.5.3), is identical to λXm −Xm−1, the mth
standard basis pencil for DL(P ).

Proof. We have to show that Xm = BCk−m for m = 0: k, where Xm is given by
(3.3.8a). For notational simplicity we will carry out the proof for a scalar polyno-
mial; the same proof applies to a matrix polynomial with only minor changes in
notation. The m = k case, Xk(p(λ)) = Lk(p(λ)) = B, is immediate from equations
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(3.3.6), (3.3.8), and (3.5.3). The rest follow inductively (downward) from the relation
Xm−1(p(λ)) = Xm(p(λ)) · C, which we now proceed to show holds for m = 1: k.

To see that XmC = Xm−1, or equivalently that

[Lm(p(λ)) 0
0 −Uk−m(p(λ))

]
C =

[Lm−1(p(λ)) 0
0 −Uk−m+1(p(λ))

]

holds for m = 1: k, it will be convenient to rewrite the companion matrix (3.5.2) in
the form

C = NT
k − a−1

k




ak−1 ak−2 . . . a0

0 0 . . . 0
...

...
...

0 0 . . . 0


 = NT

k − a−1
k e1

[
ak−1 ak−2 . . . a0

]
,

where Nk is defined in (3.2.2). Then

Xm(p(λ))C = Xm(p(λ))NT
k − a−1

k Xm(p(λ)) e1

[
ak−1 ak−2 . . . a0

]

=

[Lm(p(λ)) 0
0 −Uk−m(p(λ))

]
NT

k − em

[
ak−1 ak−2 . . . a0

]
.

In the first term, postmultiplication by NT
k has the effect of shifting the columns to

the left by one (and losing the first column), thus giving

Xm(p(λ))C =



Lm−1(p(λ)) 0 0
ak−1 . . . ak−m+1 0 0

0 −Uk−m(p(λ)) 0


−




0 0 0
ak−1 . . . ak−m+1 ak−m . . . a1 a0

0 0 0




=



Lm−1(p(λ)) 0 0

0 −ak−m . . . − a1 −a0

0 −Uk−m(p(λ)) 0




=

[Lm−1(p(λ)) 0
0 − Uk−m+1(p(λ))

]
= Xm−1(p(λ)).

This completes the inductive step of the proof.



Chapter 4

The Genericity of Linearizations in
DL(P )

In this chapter we reconsider the symbolic “linearization condition” discussed in
Section 2.2.2. As illustrated by Example 2.2.6, the intrinsic meaning of this condition
can sometimes be rather obscure. However, we will see that for pencils in DL(P )
this condition can always be expressed in a way that makes its meaning transparent.
Indeed, one of the most striking properties of the space DL(P ) is that the linearization
condition for each DL(P )-pencil can be directly linked to its ansatz vector v, as will be
seen in the following sections. An important consequence of this link is that “almost
every” pencil in DL(P ) is a linearization for P .

4.1 Some Suggestive Examples

Let us begin by considering some concrete examples. Tables 4.1.1 and 4.1.2 display a
sampling of double ansatz pencils for general quadratic and cubic matrix polynomi-
als, together with their corresponding linearization conditions. Looking at just the
standard basis pencils in these tables, it is not so easy to discern any clear pattern
in the linearization conditions. However, the last two entries of Table 4.1.1 present
a substantial clue; for quadratic polynomials the linearization condition can always
be interpreted as excluding one particular value, λ = −β/α, as an eigenvalue of P .
More precisely, the DL(P )-pencil with ansatz vector v = [ α

β ] is a linearization for P if
and only if λ = −β/α is not an eigenvalue of P . This is a clear indication of a strong
connection between the linearization condition of a DL(P )-pencil and its ansatz vec-
tor. But is there still such a strong connection for higher degree polynomials, and if
so what is the nature of that link?

At first glance the examples of DL(P )-pencils in Table 4.1.2 seem to shed no light
on this question. The linearization conditions, especially for the last two examples,
do not appear to have any clear connection at all with their corresponding ansatz
vectors. However, let’s examine the fourth example in more detail. For L(λ) ∈ DL(P )

with ansatz vector v =
[

1
0
−1

]
, one easily finds using the procedure in Section 2.2.2

that

det

[
A + C B + D
B + D A + C

]
6= 0 (4.1.1)

48
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Table 4.1.1: Some pencils in DL(P ) for the general quadratic P (λ) = λ2A + λB + C.
Linearization condition found using procedure in Section 2.2.2.

v L(λ) ∈ DL(P ) for given v Linearization condition
[
1
0

]
λ

[
A 0
0 −C

]
+

[
B C
C 0

]
det(C) 6= 0

[
0
1

]
λ

[
0 A
A B

]
+

[−A 0
0 C

]
det(A) 6= 0

[
1
1

]
λ

[
A A
A B − C

]
+

[
B −A C

C C

]
det(A−B + C) = det[P (−1)] 6= 0

[
α
β

]
λ

[
αA βA
βA βB − αC

]
+

[
αB − βA αC

αC βC

]
det(β2A− αβB + α2C) 6= 0 ;

equivalently, det[P (−β/α)] 6= 0 .

Table 4.1.2: Some pencils in DL(P ) for the general cubic P (λ) = λ3A+λ2B+λC+D.
Linearization condition found using procedure in Section 2.2.2.

v L(λ) ∈ DL(P ) for given v Linearization condition



1
0
0


 λ




A 0 0
0 −C −D
0 −D 0


 +




B C D
C D 0
D 0 0


 detD 6= 0




0
1
0


 λ




0 A 0
A B 0
0 0 −D


 +



−A 0 0
0 C D
0 D 0


 det A · detD 6= 0




0
0
1


 λ




0 0 A
0 A B
A B C


 +




0 −A 0
−A −B 0
0 0 D


 detA 6= 0




1
0
−1


 λ




A 0 −A
0 −A− C −B −D
−A −B −D −C


 +




B A + C D
A + C B + D 0

D 0 −D


 det

[
A+C B+D
B+D A+C

] 6= 0




1
1
1


 λ




A A A
A A + B − C B −D
A B −D C −D


 +




B −A C −A D
C −A C + D −B D

D D D


 det

[
C−B A−B+D

A−B+D A−C+D

] 6= 0
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is the linearization condition for L(λ). Now it is not immediately clear what the
meaning of this condition is, whether it has any connection to the ansatz vector v,
or even if it has any intrinsic meaning at all. However, the identity

[
0 I
I I

] [
A + C B + D
B + D A + C

] [
I 0
−I I

]

=

[ −A + B − C + D A + C
0 A + B + C + D

]
=

[
P (−1) A + C

0 P (+1)

]

shows that condition (4.1.1) is equivalent to saying that neither −1 nor +1 is an
eigenvalue of the matrix polynomial P (λ). Thus in this example we can again in-
terpret the linearization condition from Section 2.2.2 as an “eigenvalue exclusion”
condition.

But why do these particular eigenvalues need to be excluded? And what role, if

any, does the ansatz vector v =
[

1
0
−1

]
play here? Observe that if we interpret the

components of v as the coefficients of a scalar polynomial then we obtain x2−1, whose
roots are exactly the eigenvalues that have to be excluded in order to guarantee that
L(λ) is a linearization for P (λ). Similarly in the quadratic case, the excluded value
λ = −β/α is the root of the scalar polynomial αx+β obtained from the components
of the ansatz vector v = [ α

β ]. One of the goals of this chapter is to show that these
are not merely coincidences, but rather instances of a general phenomenon described
by the “eigenvalue exclusion theorem”.

4.2 Determinant of DL(P )-pencils

The main technical result needed to prove the eigenvalue exclusion theorem is an
explicit formula for the determinant of a pencil L(λ) in DL(P ). To aid in the devel-
opment of this formula we first introduce some notation to be used throughout this
section. As before, P (λ) =

∑k
i=0 λiAi is an n × n matrix polynomial with nonzero

leading coefficient Ak. The pencil L(λ) ∈ DL(P ) under consideration has ansatz
vector v = [v1, v2, . . . , vk]

T , with an associated scalar polynomial defined as follows.

Definition 4.2.1 (v-polynomial).
To a vector v = [ v1, v2, . . . , vk ]T ∈ Fk associate the scalar polynomial

p(x ; v) = v1x
k−1 + v2x

k−2 + · · ·+ vk−1x + vk ,

referred to as the “ v-polynomial” of the vector v. We adopt the convention that
p(x ; v) has a root at ∞ whenever v1 = 0.

We also need to introduce the notion of the “Horner shifts” of a polynomial.

Definition 4.2.2 (Horner shifts).
For any polynomial p(x) = anxn + an−1x

n−1 + · · · + a1x + a0 and 0 ≤ ` ≤ n , the
“ degree ` Horner shift of p(x)” is p`(x) := anx

` + an−1x
`−1 + · · ·+ an−`+1x + an−` .
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Remark 4.2.3. The polynomials in Definition 4.2.2 satisfy the recurrence relation

p0(x) = an,

p`+1(x) = xp`(x) + an−`−1 for 0 ≤ ` ≤ n− 1,

pn(x) = p(x) ,

and are precisely the polynomials appearing in Horner’s method for evaluating the
polynomial p(x).

We have seen in Theorem 3.4.2 that L(λ) ∈ DL(P ) is uniquely determined by
the vector v and the polynomial P , so it is not surprising that one can also specify
the columns of L(λ) in terms of this data. This is done in the next lemma, where a
block-column-wise description of L(λ) is given. In this description we make extensive
use of the standard k× k nilpotent Jordan block N from (1.1.4) in the matrix N ⊗ I,
employed here as a block-shift operator.

Lemma 4.2.4 (Block-column structure of pencils in DL(P )).
Suppose that L(λ) = λX + Y is in DL(P ) with ansatz vector v. Partition X and Y
into block-columns

X =
[

X1 X2 . . . Xk

]
and Y =

[
Y1 . . . Yk−1 Yk

]
,

where X` , Y` ∈ Fnk×n, ` = 1, . . . , k. Then with Y0 := 0, the block-columns Y` satisfy
the recurrence

Y` = (N ⊗ I)(Y`−1 − v ⊗ Ak−`+1) + v`




Ak−1...
A0


 1 ≤ ` ≤ k − 1, (4.2.1)

Yk = v ⊗ A0. (4.2.2)

The block-columns of X are then determined by the relation

X` = −Y`−1 + v ⊗ Ak−`+1 for 1 ≤ ` ≤ k , (4.2.3)

and the pencil L(λ) has the block-column-wise description

L(λ) =


Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ A0 − λYk−1

+ λv ⊗ Ak + λv ⊗ Ak−1 + λv ⊗ A2 + λv ⊗ A1


 . (4.2.4)

The topmost (n× n) blocks of the block-columns Y` are given by

(eT
1 ⊗ I) Y` = v1Ak−` − v`+1Ak for 1 ≤ ` ≤ k − 1 . (4.2.5)

Proof. Since L(λ) ∈ L1(P ), we know from Lemma 2.1.4 that

X ¢→Y = v ⊗ [
Ak Ak−1 . . . A0

]
. (4.2.6)

From the definition of ¢→ this implies that X1 = v ⊗ Ak , Yk = v ⊗ A0 , and

X` + Y`−1 = v ⊗ Ak−`+1 for 2 ≤ ` ≤ k , (4.2.7)
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Combining this with the convention Y0 := 0, we then have (4.2.2) and (4.2.3), from
which (4.2.4) immediately follows.

Since L(λ) ∈ L2(P ), we know from Lemma 2.1.11 that

X ¢↓ Y = vT ⊗



Ak...
A0


 . (4.2.8)

To extract from (4.2.8) a relation compatible with (4.2.3), we use the block-shift
operator N ⊗ I. Note that pre-multiplication of a block-column X` by N ⊗ I has the
effect of shifting the blocks of X` up by one and losing the topmost block. Now if we
slice off the topmost block-row of (4.2.8), then from the definition of ¢↓ (expressed
column-wise) we see that

(N ⊗ I)X` + Y` = v`




Ak−1...
A0


 for 1 ≤ ` ≤ k . (4.2.9)

Solving (4.2.9) for Y` and substituting in (4.2.3) for X` yields (4.2.1).
Finally, to establish (4.2.5) first rewrite (4.2.7) in the form

Y` = (v ⊗ Ak−` ) − X` +1 for 1 ≤ ` ≤ k − 1 .

Then skim off the topmost block by pre-multiplying by eT
1 ⊗ I:

(eT
1 ⊗ I) Y` = (eT

1 v ⊗ Ak−` )− (eT
1 ⊗ I)X` +1 = v1Ak−` − (eT

1 ⊗ I)X` +1 .

But (4.2.8) implies that the first row of X must be vT ⊗ Ak. Thus (eT
1 ⊗ I)X` +1 =

v` +1Ak , and hence (eT
1 ⊗ I) Y` = v1Ak−` − v`+1Ak .

Using (4.2.1) we can now develop a concise formula describing the action of the
block-row ΛT (x)⊗I on the block-column Y` , where x is a scalar variable taking values
in C and ΛT (x) :=

[
xk−1 xk−2 . . . x 1

]
. This formula will be used repeatedly

and plays a central role in the proof of Theorem 4.2.6. (Note that ΛT (x)v is the same
as the scalar v-polynomial p(x ; v).)

Lemma 4.2.5. Suppose that L(λ) ∈ DL(P ) with ansatz vector v, and p(x ; v) is the
v-polynomial of v. Let Y` denote the `th block column of Y in L(λ) = λX +Y , where
1 ≤ ` ≤ k − 1. Then

(
ΛT (x)⊗ I

)
Y` = p`−1(x ; v)P (x)− x p(x ; v)P`−1(x), (4.2.10)

where p`−1(x ; v) and P`−1(λ) are the degree `− 1 Horner shifts of p(x ; v) and P (λ),
respectively.

Proof. The proof will proceed by induction on ` . First note that for the k × k
nilpotent Jordan block N , it is easy to check that ΛT (x)N =

[
0 xk−1 · · · x

]
=

xΛT (x)− xkeT
1 .
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` = 1 : Using (4.2.1) we have

(
ΛT (x)⊗ I

)
Y1 =

(
ΛT (x)⊗ I

)

v1




Ak−1
...

A0


− (N ⊗ I)(v ⊗ Ak)


 .

Simplifying this gives

(
ΛT (x)⊗ I

)
Y1 = v1

(
P (x)− xkAk

)
−

(
ΛT (x)N ⊗ I

)
(v ⊗ Ak)

= v1P (x)− v1x
kAk −

((
xΛT (x)− xkeT

1

)
v ⊗ Ak

)

= p0(x ; v)P (x)− v1x
kAk −

(
xΛT (x)v

)
Ak +

(
xkeT

1 v
)
Ak

= p0(x ; v)P (x)− v1x
kAk − x p(x ; v)Ak + v1x

kAk

= p0(x ; v)P (x)− x p(x ; v)P0(x) ,

which establishes (4.2.10) for ` = 1. The induction hypothesis is now

(
ΛT (x)⊗ I

)
Y`−1 = p`−2(x ; v)P (x)− x p(x ; v)P`−2(x) . (4.2.11)

` − 1 ⇒ ` : Starting again with (4.2.1), we have

(
ΛT (x)⊗ I

)
Y` =

(
ΛT (x)⊗ I

)

(N ⊗ I)(Y`−1 − v ⊗ Ak−`+1) + v`




Ak−1
...

A0







=
(
ΛT (x)N ⊗ I

)(
Y`−1 − v ⊗ Ak−`+1

)
+ v`

(
ΛT (x)⊗ I

)



Ak−1
...

A0




=
((

xΛT (x)− xkeT
1

)⊗ I
)(

Y`−1 − v ⊗ Ak−`+1

)
+ v`

(
P (x)− xkAk

)

= x
(
ΛT (x)⊗ I

)
Y`−1 − xk

(
eT
1 ⊗ I

)
Y`−1 −

(
xΛT (x)v

)
Ak−`+1

+ v1x
kAk−`+1 + v` P (x)− v` xkAk .

Note that
(
eT
1 ⊗ I

)
Y`−1 is the topmost block in Y`−1 , and is equal to v1Ak−`+1− v`Ak

by (4.2.5). Finally, invoking the induction hypothesis (4.2.11) gives

(
ΛT (x)⊗ I

)
Y` = x p`−2(x ; v)P (x)− x2 p(x ; v)P`−2(x)− v1x

kAk−`+1 + v` xkAk

− x p(x ; v)Ak−`+1 + v1x
kAk−`+1 + v` P (x)− v` xkAk

=
(
x p`−2(x ; v) + v`

)
P (x)− x p(x ; v)

(
xP`−2(x) + Ak−`+1

)

= p`−1(x ; v)P (x)− x p(x ; v)P`−1(x) ,

which completes the proof.
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Theorem 4.2.6 (Determinant formula for pencils in DL(P )).
Suppose that L(λ) is in DL(P ) with nonzero ansatz vector v = [ v1, v2, . . . , vk ]T .
Assume that v has m leading zeroes with 0 ≤ m ≤ k − 1, so that v1 = v2 = · · · =
vm = 0, vm+1 6= 0 is the first nonzero coefficient of p(x ; v), and p(x ; v) has k−m−1
finite roots in C, counted with multiplicities, denoted here by r1, r2, . . . , rk−m−1. Then
we have

det L(λ) =





(−1)n·b k
2c(v1)

kn det
(
P (r1)P (r2) · · ·P (rk−1)

)
det P (λ) if m = 0 ,

(−1)s(vm+1)
kn(det Ak)

m det
(
P (r1) · · ·P (rk−m−1)

)
det P (λ) if m > 0 ,

(4.2.12)

where s = n
(
m +

⌊
m
2

⌋
+

⌊
k−m

2

⌋)
.

Proof. The proof proceeds in three parts.

Part 1 : We first consider the case when m = 0 (i.e., v1 6= 0) and p(x ; v) has k − 1
distinct finite roots. The strategy of the proof is to reduce L(λ) by a sequence of
equivalence transformations to a point where the determinant can just be read off.

We begin the reduction process by right-multiplying L(λ) by the block-Toeplitz
matrix T (λ). Recall that T (λ) and G(λ) denote the unimodular matrix polynomials
defined in (1.1.6), and are related to each other via the factorization in (1.1.7). Using
(4.2.4) for the description of L(λ), an argument very similar to the one used in the
proof of Theorem 2.2.1 yields the block-column-wise description

L(λ)G(λ) =


Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ P (λ)

+ λv ⊗ Ak +λ v ⊗ Ak−1 +λ v ⊗ A2


 ,

and hence

L(λ)T (λ) =


Y1 Y2 · · · Yk−1 v ⊗ P (λ)

+ λv ⊗ P0(λ) + λv ⊗ P1(λ) + λv ⊗ Pk−2(λ)


 .

(4.2.13)
Next we left-multiply by a constant (nonsingular) “Vandermonde-like” matrix M ,

built block-row-wise from ΛT (x) := [ xk−1 xk−2 . . . x 1] evaluated at each of the roots
of p(x ; v),

M :=




eT
1

ΛT (r1)
ΛT (r2)

...
ΛT (rk−1)



⊗ I =




1 0 · · · 0 0
rk−1
1 rk−2

1 · · · r1 1
rk−1
2 rk−2

2 · · · r2 1
...

... · · · ...
...

rk−1
k−1 rk−2

k−1 · · · rk−1 1



⊗ I . (4.2.14)

Using Lemma 4.2.5 and the fact that ΛT (rj)v = p(rj ; v), we obtain that

(
ΛT (rj)⊗ I

)(
Y` + λv ⊗ P`−1(λ)

)

= p`−1(rj ; v)P (rj)− rj p(rj ; v)P`−1(rj) + λ p(rj ; v)P`−1(λ) .
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Since r1, . . . , rk−1 are the roots of p(x ; v), the product ML(λ)T (λ) simplifies to




∗ ∗ · · · ∗ v1P (λ)

p0(r1 ; v)P (r1) p1(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
p0(r2 ; v)P (r2) p1(r2 ; v)P (r2) · · · pk−2(r2 ; v)P (r2) 0

...
...

. . .
...

...
p0(rk−1 ; v)P (rk−1) p1(rk−1 ; v)P (rk−1) · · · pk−2(rk−1 ; v)P (rk−1) 0




.

This matrix now factors into



I

P (r1)
. . .

P (rk−1)




︸ ︷︷ ︸
=: W




∗ · · · ∗ v1P (λ)

p0(r1 ; v)I · · · pk−2(r1 ; v)I 0
...

. . .
...

...
p0(rk−1 ; v)I · · · pk−2(rk−1 ; v)I 0


 ,

and after reversing the order of the block-columns using R⊗ I we have

ML(λ)T (λ)(R⊗ I) = W




v1P (λ) ∗
0
... V ⊗ I
0


 , (4.2.15)

where

V =




pk−2(r1 ; v) · · · p1(r1 ; v) p0(r1 ; v)
...

...
...

...
pk−2(rk−1 ; v) · · · p1(rk−1 ; v) p0(rk−1 ; v)




=




(v1r
k−2
1 + · · ·+ vk−2r1 + vk−1) · · · (v1r1 + v2) v1

...
...

...
...

(v1r
k−2
k−1 + · · ·+ vk−2rk−1 + vk−1) · · · (v1rk−1 + v2) v1


 .

All that remains is to observe that V can be reduced by (det = +1) column operations
to

v1 ·



rk−2
1 rk−3

1 · · · r1 1
...

...
...

...
...

rk−2
k−1 rk−3

k−1 · · · rk−1 1


 , (4.2.16)

so det(V ⊗ I) = v
(k−1)n
1 det M . Taking determinants on both sides of (4.2.15) now

gives

det M · det L(λ) · det T (λ) · det(R⊗ I)

= det
(
P (r1)P (r2) · · ·P (rk−1)

)
· det

(
v1P (λ)

) · det(V ⊗ I) .

Since

det(R⊗ I) = det(Rk ⊗ In) = (det Rk)
n(det In)k = (−1)n·b k

2c (4.2.17)
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and det T (λ) = +1, this simplifies to the desired result

det L(λ) = (−1)n·b k
2c(v1)

kn det
(
P (r1)P (r2) · · ·P (rk−1)

)
det P (λ) . (4.2.18)

This completes the argument for the case when m = 0 and the k− 1 roots of p(x ; v)
are all distinct.

Part 2 : We now describe how to modify this argument to handle m > 0, i.e., the first
nonzero coefficient of p(x ; v) is vm+1. We will continue to assume that the k−m− 1
finite roots of p(x ; v) are all distinct.

We start out the same way as before, postmultiplying L(λ) by T (λ) to get (4.2.13).
But then, instead of M in (4.2.14), we use all available finite roots of p(x ; v) to define
the following modified version of M :

M̂ :=




eT
1
...

eT
m+1

ΛT (r1)
...

ΛT (rk−m−1)



⊗ In =




Im+1 0

rk−1
1 rk−2

1 · · · r1 1
...

...
...

...
...

rk−1
k−m−1 rk−2

k−m−1 · · · rk−m−1 1



⊗ In . (4.2.19)

Now simplify the product M̂L(λ)T (λ) using Lemma 4.2.5 and ΛT (r`)v = p(r` ; v) = 0
as before, as well as the fact that v1 = v2 = · · · = vm = 0, which implies that
p0(x ; v), p1(x ; v), . . . , pm−1(x ; v) are all zero polynomials. Then we obtain

M̂L(λ)T (λ) =

=




0

∗ ...
0

∗ · · · ∗ vm+1P (λ)

p0(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
...

...
...

...
p0(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0




=




0

B ∗ ...
0

∗ ∗ · · · ∗ vm+1P (λ)

pm(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0

0
...

...
...

...
pm(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0




,

mn (k−m−1)n n

where the mn ×mn block B can also be seen to have some further structure. First
note that because of the structure of M̂ , the block B in M̂L(λ)T (λ) is exactly the
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same as the corresponding block in L(λ)T (λ) in (4.2.13), which is just the first mn
rows of


 Y1 Y2 · · · Ym

+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pm−1(λ)


 .

But because v1 = v2 = . . . = vm = 0, the terms λv ⊗ Pi(λ) make no contribution to
these first mn rows. So B is the same as the first mn rows of

[
Y1 Y2 · · · Ym

]
.

Using the recurrence (4.2.1) from Lemma 4.2.4 with 1 ≤ ` ≤ m, we can now show
that B is actually block anti-triangular. When ` = 1 we have Y1 = −Nv ⊗ Ak.
Since the first m entries of Nv are [v2, v3, . . . , vm+1]

T = [0, 0, . . . , vm+1]
T , we see

that the first block-column of B is
[

0, . . . , 0, −vm+1A
T
k

]T
. With ` = 2 we have

Y2 = (N ⊗ I)Y1 −Nv ⊗ Ak−1, whose first mn rows are




0
...
0

−vm+1Ak

∗



−




0
...
0
0

−vm+1Ak−1




=




0
...
0

−vm+1Ak

∗




.

By induction, we then see that the first mn rows of Y` for 1 ≤ ` ≤ m look like

[
0, · · · , 0, −vm+1A

T
k , ∗, · · · , ∗]T

,

with m− ` leading blocks of zeroes. Thus B has the block anti-triangular form

B = −vm+1 ·




0 · · · 0 Ak
... . . . . . . ∗
0 Ak . . .

...
Ak ∗ · · · ∗


 ,

and so M̂L(λ)T (λ) is equal to




0 −vm+1Ak 0

. . . ∗ ...
−vm+1Ak ∗ 0

∗ ∗ · · · ∗ vm+1P (λ)

pm(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0

0
...

...
...

...
pm(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0




.
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Performing some block-column permutations gives us

M̂L(λ)T (λ)
(
(Rm ⊕Rk−m)⊗ In

)
=




−vm+1Ak 0 0
. . .

... ∗
∗ −vm+1Ak 0

∗ vm+1P (λ) ∗ · · · ∗
0 pk−2(r1 ; v)P (r1) · · · pm(r1 ; v)P (r1)

0
...

...
...

...
0 pk−2(rk−m−1 ; v)P (rk−m−1) · · · pm(rk−m−1 ; v)P (rk−m−1)




,

(4.2.20)
which after factoring becomes




(−vm+1Im)⊗ In 0 0

0 vm+1In 0

0 0 Ŵ







Ak 0
. . . 0 ∗

∗ Ak

0 P (λ) ∗

0 0 V̂ ⊗ In




, (4.2.21)

where Ŵ = diag
(
P (r1), . . . , P (rk−m−1)

)
and

V̂ =




pk−2(r1 ; v) · · · pm(r1 ; v)
...

...
...

pk−2(rk−m−1 ; v) · · · pm(rk−m−1 ; v)




=




(vm+1r
k−m−2
1 + · · ·+ vk−1) · · · (vm+1r1 + vm+2) vm+1

...
...

...
...

(vm+1r
k−m−2
k−m−1 + · · ·+ vk−1) · · · (vm+1rk−m−1 + vm+2) vm+1


 .

Since vm+1 6= 0, this (k−m−1)×(k−m−1) matrix V̂ can be reduced by (det = +1)
column operations in a manner analogous to the reduction of V in (4.2.16), so we see
that

det(V̂ ⊗ In) = (vm+1)
(k−m−1)n det M̂ . (4.2.22)

Now taking determinants on both sides of (4.2.20) using the factorization (4.2.21)
gives

det M̂ · det L(λ) · det T (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In)

= det
(
P (r1)P (r2) · · ·P (rk−m−1)

)
·det(−vm+1Ak)

m ·det
(
vm+1P (λ)

)
·det(V̂ ⊗In) .

Cancelling det M̂ on both sides using (4.2.22), and using det T (λ) = +1 together
with the fact that det(R⊗ I) is its own inverse, we get

det L(λ) = det
(
P (r1)P (r2) · · ·P (rk−m−1)

)
· (−1)mn · (vm+1)

kn · (det Ak)
m

· det P (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In) .
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Finally, substituting det(Rm ⊗ In) = (−1)n·bm
2 c and det(Rk−m ⊗ In) = (−1)n·b k−m

2 c
from (4.2.17) yields the desired formula (4.2.12). Note that this is consistent with
formula (4.2.18) derived for the m = 0 case, as long as we interpret the term (det Ak)

m

to be equal to +1 whenever m = 0, regardless of whether det Ak is zero or nonzero.

Part 3 : Now that we know that (4.2.12) holds for any v ∈ Fk such that the corres-
ponding p(x ; v) has distinct finite roots, we can leverage this result to the general
case by a continuity argument. For every fixed m and fixed polynomial P (λ), the
formula on the right-hand side of (4.2.12) is clearly a continuous function of the
leading coefficient vm+1 and the roots r1, r2, . . . , rk−m−1 of p(x ; v), and is defined for
all lists in the set D =

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 6= 0

}
, regardless of whether

the numbers r1, r2, . . . , rk−m−1 are distinct or not.

The left-hand side of (4.2.12) can also be viewed as a function defined and con-
tinuous for all lists in D. To see this, first observe that the map

(vm+1, r1, r2, . . . , rk−m−1) 7→ (vm+1, vm+2, . . . , vk)

taking the leading coefficient and roots of the polynomial p(x ; v) to the coefficients
of the same polynomial p(x ; v) is defined and continuous on D, as well as being
surjective. Next note that because of Theorem 3.4.2 and the isomorphism in (3.3.1),
the unique pencil L(λ) ∈ DL(P ) corresponding to v = (0, 0, . . . , 0, vm+1, . . . , vk)

T

can be expressed as a linear combination

L(λ) = vm+1Lm+1(λ) + · · ·+ vkLk(λ)

of the fixed “standard basis pencils” Li(λ) corresponding to v = ei. Thus det L(λ) is a
continuous function of (vm+1, vm+2, . . . , vk), and hence also of (vm+1, r1, r2, . . . , rk−m−1).

In summary, the two sides of (4.2.12) are continuous functions defined on the
same domain D, and have been shown to be equal on a dense subset

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 6= 0 and r1, r2, . . . , rk−m−1 are distinct

}

of D. Therefore by continuity the two sides of (4.2.12) must be equal on all of D.
Since this argument holds for each fixed m with 0 ≤ m ≤ k − 1, the desired result is
established for all nonzero v ∈ Fk.

4.3 The Eigenvalue Exclusion Theorem

We now have all the ingredients needed to prove the two main results of this chap-
ter. Keep in mind our convention that the “roots of p(x ; v)” includes a root at ∞
whenever v1 = 0.

Theorem 4.3.1 (Eigenvalue Exclusion Theorem).
Suppose that P (λ) is a regular matrix polynomial and L(λ) is in DL(P ) with nonzero
ansatz vector v. Then L(λ) is a (strong) linearization for P (λ) if and only if no
root of the v-polynomial p(x ; v) is an eigenvalue of P (λ). (Note that this statement
includes ∞ as one of the possible roots of p(x ; v) or possible eigenvalues of P (λ). )
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Proof. By Theorem 2.2.3, L(λ) is a (strong) linearization for P (λ) if and only if L(λ)
is regular. But from the determinant formula (4.2.12) it follows that L(λ) is regular
if and only if no root of p(x ; v) is an eigenvalue of P (λ).

Using Theorem 4.3.1 we can now show that almost every pencil in DL(P ) is a
linearization for P . Although the same property was proved in Theorem 2.2.7 for
pencils in L1(P ), the result for DL(P ) is not a consequence of Theorem 2.2.7, since
DL(P ) is itself a closed, nowhere dense subset of measure zero in L1(P ). Neither can
the proof of Theorem 2.2.7 be directly generalized in any simple way; hence the need
for a different argument in the following result.

Theorem 4.3.2 (Linearizations are Generic1 in DL(P )).
For any regular matrix polynomial P (λ), pencils in DL(P ) are linearizations of P (λ)
for almost all v ∈ Fk. (Here “almost all” means for all but a closed, nowhere dense
set of measure zero in Fk. )

Proof. Recall that the resultant res(f, g) of two polynomials f(x) and g(x) is a poly-
nomial in the coefficients of f and g with the property that res(f, g) = 0 if and
only if f(x) and g(x) have a common(finite) root [78, p.248], [84]. Now consider

r = res
(
p(x ; v), det P (x)

)
, which, because P (λ) is fixed, can be viewed as a poly-

nomial r(v1, v2, . . . , vk) in the components of v ∈ Fk. The zero set Z(r) =
{
v ∈ Fk :

r(v1, v2, . . . , vk) = 0
}

, then, is exactly the set of v ∈ Fk for which some finite root
of p(x ; v) is an eigenvalue of P (λ), together with the point v = 0. To see that Z(r)
is always a proper subset of Fk, it suffices to find some v ∈ Rk such that r(v) 6= 0,
i.e. such that p(x ; v) has no (finite) root that is an eigenvalue of P . Here is a way
to find many such v: pick v = e1 − αek with sufficiently large α > 0 so that all roots
of the corresponding v-polynomial p(x ; v) = xk−1−α are bigger in modulus than all
the finite eigenvalues of P (λ).

Now recall our convention that the v-polynomial p(x ; v) has ∞ as a root exactly
for v ∈ Fk lying in the hyperplane v1 = 0. Then by Theorem 4.3.1 the set of vectors
v ∈ Fk for which the corresponding pencil L(λ) ∈ DL(P ) is not a linearization2 of
P (λ) is either the proper algebraic set Z(r) or the union of two proper algebraic
sets, Z(r) and the hyperplane v1 = 0. But the union of any finite number of proper
algebraic sets is always a closed, nowhere dense set of measure zero in Fk.

How far can the eigenvalue exclusion theorem be extended from DL(P )-pencils to
other pencils in L1(P )? Let us say that a pencil L ∈ L1(P ) with right ansatz vector
v has the eigenvalue exclusion property if the statement “no root of the v-polynomial
p(x ; v) is an eigenvalue of P (λ)” is equivalent to the linearization condition for L.
That there are pencils in L1(P ) with the eigenvalue exclusion property that are not
in DL(P ) is shown by the pencil L1(λ) in Example 2.2.5. The following variation of
Example 2.2.6, though, is easily shown not to have the eigenvalue exclusion property.

Example 4.3.3. For the general cubic polynomial P (λ) = λ3A + λ2B + λC + D

1Because of Theorem 3.4.2 this property also, of course, holds for B(P ).
2Note that v = 0 corresponds to the zero pencil L(λ) in DL(P ), which is never a linearization.
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consider the pencil

L(λ) = λX + Y = λ




A 0 2C
−2A −B − C A− 4C

0 A 0


 +




B −C D
C −B 2C − A −2D
−A 0 0




that is in L1(P ) but not in DL(P ). Since X ¢→Y =
[
1 −2 0

]T ⊗ [
A B C D

]
,

the right ansatz vector is v =
[
1 −2 0

]T
with v-polynomial p(x ; v) = x2 − 2x and

roots 0 and 2. On the other hand, applying the procedure described in Section 2.2.2
gives

Z =

[
B + C −A
−A 0

]
,

and hence the linearization condition det Z = det(−A2) 6= 0, equivalently det A 6=
0. Thus L(λ) is a linearization for P (λ) if and only if ∞ is not an eigenvalue of
P (λ). In this example, then, the roots of the v-polynomial do not correctly predict the
linearization condition for L.

The first companion form of a polynomial P is another example where the eigen-
value exclusion property is easily seen not to hold. Characterizing the set of pencils
in L1(P ) for which the eigenvalue exclusion property does hold is an open problem.



Chapter 5

Symmetric and Hermitian
Linearizations

We now return to one of the problems that originally motivated the investigation
in this thesis, that of systematically finding large sets of symmetric linearizations
for symmetric polynomials, P (λ) = P (λ)T . Our strategy is first to characterize the
subspace

S(P ) :=
{

λX + Y ∈ L1(P ) : XT = X, Y T = Y
}

(5.0.1)

of all symmetric pencils in L1(P ) when P is symmetric, and then later in Section 5.3
show that almost all of these symmetric pencils are indeed linearizations for P . An
analogous development for Hermitian P is carried out in Section 5.2.

5.1 Symmetric Pencils in L1(P ) for Symmetric P

We begin with a result for symmetric polynomials reminiscent of Theorem 3.1.6, but
using transpose rather than block transpose.

Lemma 5.1.1. Suppose P (λ) is a symmetric matrix polynomial and L(λ) ∈ L1(P )
with right ansatz vector v. Then LT (λ) ∈ L2(P ) with left ansatz vector w = v.
Similarly, L(λ) ∈ L2(P ) with left ansatz vector v implies that LT (λ) ∈ L1(P ) with
right ansatz vector v.

Proof. Suppose L(λ) ∈ L1(P ) with right ansatz vector v. Then

(
L(λ)(Λ⊗ I)

)T

=
(
v ⊗ P (λ)

)T

=⇒ (ΛT ⊗ I)LT (λ) = vT ⊗ P (λ).

Thus LT (λ) ∈ L2(P ) with left ansatz vector v. The proof of the second statement is
analogous.

The space S(P ) is characterized in the next result by relating it to the previously
developed space DL(P ).

Theorem 5.1.2 (Characterization of S(P )).
For any symmetric polynomial P (λ), S(P ) = DL(P ).
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Proof. Suppose L(λ) ∈ S(P ) ⊆ L1(P ) with right ansatz vector v. Then by Lemma 5.1.1
we know that LT (λ) = L(λ) is in L2(P ) with left ansatz vector v, and so L(λ) ∈
DL(P ). Thus S(P ) ⊆ DL(P ).

By Lemma 5.1.1, L(λ) ∈ DL(P ) with right/left ansatz vector v implies that
LT (λ) ∈ DL(P ) with left/right ansatz vector v. But by Theorem 3.4.2 pencils in
DL(P ) are uniquely determined by their ansatz vector, so L(λ) ≡ LT (λ), and hence
DL(P ) ⊆ S(P ). Therefore DL(P ) = S(P ).

Once again one may refer to Tables 3.3.1 and 3.3.2 for examples of what are in
effect triply-structured pencils whenever P is symmetric. Recall, however, that there
are symmetric linearizations for P that are not in S(P ): L in (3.5.1) is not in S(P ),
but is a symmetric linearization for any symmetric cubic P .

5.2 Hermitian Pencils in L1(P ) for Hermitian P

For a Hermitian matrix polynomial P (λ) of degree k, that is, P (λ)∗ = P (λ), let

H(P ) :=
{

λX + Y ∈ L1(P ) : X∗ = X, Y ∗ = Y
}

(5.2.1)

denote the set of all Hermitian pencils in L1(P ). A priori the right ansatz vector
v of a pencil in H(P ) might be any vector in Ck, since P is a complex polynomial.
However, the next result shows that any such v must in fact be real.

Lemma 5.2.1. Suppose P (λ) is a Hermitian polynomial and L(λ) ∈ H(P ) with right
ansatz vector v. Then v ∈ Rk and L(λ) ∈ DL(P ), so H(P ) ( DL(P ).

Proof. Since L(λ) ∈ L1(P ), we have L(λ)(Λ ⊗ I) = v ⊗ P (λ). Then, since P and L
are Hermitian,

(
L(λ)(Λ⊗ I)

)∗
=

(
v ⊗ P (λ)

)∗
=⇒ (Λ

T ⊗ I)L(λ) = vT ⊗ P (λ).

This last equation holds for all λ, so we may replace λ by λ to get (ΛT ⊗ I) ·L(λ) =
vT ⊗P (λ), so that L(λ) ∈ L2(P ) with left ansatz vector w = v. Thus L(λ) ∈ DL(P ).
But by Theorem 3.4.2 the right and left ansatz vectors of any DL(P )-pencil must be
equal. So v = v, which means v ∈ Rk. Since DL(P ) includes pencils corresponding
to nonreal v, H(P ) ( DL(P ).

Recall the map DL(P )
M−→ VP from (3.3.1), which we know from Theorem 3.3.1

and Theorem 3.4.2 to be an isomorphism. Lemma 5.2.1 implies that M can be
restricted to the subspace H(P ), giving a 1-1 map into the “real” part of VP , i.e.
into the subspace RP :=

{
v ⊗ P (λ) : v ∈ Rk

}
( VP . The characterization of H(P )

is then completed in the next result by showing that H(P )
M−→ RP is actually an

isomorphism1.

Theorem 5.2.2 (Characterization of H(P )).
For any Hermitian polynomial P (λ), H(P ) is the subset of all pencils in DL(P ) with a
real ansatz vector. In other words, for each vector v ∈ Rk there is a unique Hermitian
pencil H(λ) ∈ H(P ).

1Note that H(P ) is only a real subspace of DL(P ), so this is an isomorphism of real vector spaces.
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Proof. We need to show that the map H(P )
M−→ RP is an isomorphism, and from

the remarks preceding the theorem all that remains is to show that the map M is
onto. By arguments analogous to the ones used in Lemma 5.1.1 and Theorem 5.1.2,
it is straightforward to show that for Hermitian P , L(λ) ∈ DL(P ) with right/left
ansatz vector v implies that L∗(λ) ∈ DL(P ) with left/right ansatz vector v. Now if
for an arbitrary v ∈ Rk we let H(λ) be the unique pencil in DL(P ) with right/left
ansatz vector v, then H∗(λ) is also in DL(P ) with exactly the same ansatz vector
v. The uniqueness of DL(P )-pencils then implies that we must have H(λ) ≡ H∗(λ),
i.e., H(λ) ∈ H(P ), thus showing that the map M is onto.

5.3 Genericity of Linearizations in S(P ) and H(P )

The remaining basic issue regarding S(P ) and H(P ) is the question of which pencils
in these spaces are actually linearizations for P , when P is symmetric or Hermitian,
respectively. The theory developed thus far provides us with several ways to address
this question. First of all, the Strong Linearization Theorem (Thm. 2.2.3) tells us
that for regular P , a pencil L in S(P ) or H(P ) is a linearization precisely when L itself
is regular. Secondly, for any given pencil in S(P ) or H(P ) the procedure described in
Section 2.2.2 allows one to derive an individualized symbolic “linearization condition”
which determines whether the given pencil is a linearization or not. Finally, since
any pencil in S(P ) or H(P ) is also in DL(P ), the eigenvalue exclusion theorem from
Chapter 4 applies, and gives yet a third criterion for deciding if such a pencil is a
linearization. We recall that result here for the convenience of the reader.

Theorem 4.3.1 (Eigenvalue Exclusion Theorem).
Suppose that P (λ) is a regular matrix polynomial and L(λ) ∈ DL(P ) with nonzero
ansatz vector v. Then L(λ) is a linearization for P (λ) if and only if no root of the
v-polynomial p(x ; v) is an eigenvalue of P (λ).

As a consequence of Theorem 4.3.1 we also showed in Chapter 4 that almost every
pencil in DL(P ) is a linearization, where “almost every” means all except for a closed,
nowhere dense set of measure zero. Because S(P ) = DL(P ) when P is symmetric
(Thm. 5.1.2), the same result holds for S(P ). However, when P is Hermitian the
space H(P ) is a closed, nowhere dense subset of measure zero2 in DL(P ), so we
cannot immediately deduce an “almost every” result for H(P ). Some further analysis
is therefore required. It turns out that only small modifications to the argument for
Theorem 4.3.2 are needed to prove the following result.

Theorem 5.3.1 (Linearizations are Generic in H(P )).
Let P (λ) be a regular Hermitian matrix polynomial. For almost every v ∈ Rk the
corresponding pencil in H(P ) is a linearization.

Proof. Consider again the resultant r = res
(
p(x ; v), det P (x)

)
, which, because P is

fixed, can be viewed as a polynomial r(v1, v2, . . . , vk) in the components of v ∈ Rk.
Since P is Hermitian, i.e. P (x)∗ = P (x), we have for g(x) := det P (x) that

g(x) = det P (x) = det
(
P (x)∗

)
= det P (x) = g(x) = g(x) .

2More precisely, the ansatz vector set Rk of H(P ) is a closed, nowhere dense subset of measure
zero in the ansatz vector set Ck of DL(P ).



5.3. GENERICITY OF LINEARIZATIONS IN S(P ) AND H(P ) 65

Thus all the coefficients of the polynomial det P (x) are real, and hence the resultant
r is a real polynomial in the real variables v1, v2, . . . , vk. The real zero set Z(r) ={

v ∈ Rk : r(v1, v2, . . . , vk) = 0
} ⊆ Rk is exactly the set of all v ∈ Rk for which some

finite root of p(x ; v) is an eigenvalue of P (λ), together with v = 0. By the argument
given in Theorem 4.3.2 we know that Z(r) is a proper algebraic subset of Rk.

Now recall our convention that the v-polynomial p(x ; v) has ∞ as a root exactly
for v ∈ Rk lying in the hyperplane v1 = 0. Then by Theorem 4.3.1 the set of
vectors v ∈ Rk for which the corresponding pencil L(λ) ∈ H(P ) ⊂ DL(P ) is not a
linearization of P (λ) is either the proper (real) algebraic set Z(r), or the union of
two proper (real) algebraic sets, Z(r) and the hyperplane v1 = 0. But the union of
any finite number of proper (real) algebraic sets is always a closed, nowhere dense set
of measure zero in Rk.



Chapter 6

Palindromic and Alternating
Polynomials

The previous chapter considered two types of structured matrix polynomial, symmet-
ric and Hermitian, that are well known in applications to structural mechanics. There
it was shown that L1(P ), or more specifically DL(P ), is a rich source of structure-
preserving linearizations for such polynomials.

Now we consider several other kinds of polynomial structure, which we broadly
refer to as palindromic and alternating. These are rather less familiar than symmetric
and Hermitian structure, but nevertheless important in a wide variety of applications.
After giving precise definitions and some examples, we describe the spectral symme-
tries associated with these polynomial structures, and show how these structures
are related to each other via a matrix polynomial analog of the well-known Cayley
transformation of matrices. In the course of this development we will see a number
of ways in which palindromic and alternating polynomials can reasonably be viewed
as generalizations (or at least analogs) of symplectic and Hamiltonian matrices. Fi-
nally, we conclude the chapter with brief descriptions of several applications where
palindromic or alternating polynomials occur.

6.1 Basic Structures: Definitions and Notation

One of the questions that originally motivated the investigation contained in this
thesis is an eigenvalue problem arising in the study of rail traffic noise caused by high
speed trains. This problem has the form

(
λ2A + λB + AT

)
x = 0 , (6.1.1)

where A,B are complex square matrices with B complex symmetric and A singular.
Observe that the matrix polynomial in (6.1.1) has the property that reversing the
order of the coefficient matrices, followed by taking their transpose, leads back to the
original matrix polynomial. By analogy with linguistic palindromes (see section 6.5)
we have chosen to use the name T-palindromic for such a polynomial. Further details
about this application may be found in Example 6.4.1 and the references [37], [38],
and [42].
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A different type of structured eigenvalue problem, arising in gyroscopic systems
and in the study of elastic materials, has the form

(λ2M + λG + K)x = 0 , (6.1.2)

where M and K are real symmetric while G is real skew-symmetric. The matrix
polynomial in (6.1.2) is somewhat reminiscent of an even function: replacing λ by −λ
followed by taking the transpose returns us back to the original matrix polynomial.
Hence we denote such matrix polynomials by the term T -even.

Variations of T -palindromic and T -even structure are also possible; for example,
transpose T can be replaced by conjugate transpose ∗, or even left out altogether. It
turns out that these two apparently very different kinds of structure are actually quite
closely related, and it is for this reason that we study and develop their properties
together, along with their variants defined below. Further details of applications
involving these structures can be found in Section 6.4 and the references cited therein,
as well as in [83].

We begin by defining two operations on matrix polynomials, ? -adjoint and rever-
sal. For conciseness, the symbol ? is used as an abbreviation for transpose T in the
real case and either T or conjugate transpose ∗ in the complex case.

Definition 6.1.1 (Adjoint and Reversal of Matrix Polynomials).
Let Q(λ) =

∑k
i=0 λiBi, where B0, . . . , Bk ∈ Fm×n, be a matrix polynomial of degree

k, that is, Bk 6= 0. Then

Q?(λ) :=
k∑

i=0

λiB?
i and revQ(λ) := λkQ(1/λ) =

k∑
i=0

λiBk−i (6.1.3)

defines the ? -adjoint Q?(λ) and the reversal revQ(λ) of Q(λ), respectively.

If deg(Q(λ)) denotes the degree of the matrix polynomial Q(λ), then, in general,
deg(revQ(λ)) ≤ deg(Q(λ)) and rev

(
Q1(λ) ·Q2(λ)

)
= revQ1(λ) · revQ2(λ), whenever

the product Q1(λ) · Q2(λ) is defined. Using the operations in (6.1.3), the various
structured matrix polynomials to be considered are now defined in Table 6.1.1.

Table 6.1.1: Definitions of basic structures

palindromic revP (λ) = P (λ) anti-palindromic revP (λ) = −P (λ)
? -palindromic revP?(λ) = P (λ) ? -anti-palindromic revP?(λ) = −P (λ)

even P (−λ) = P (λ) odd P (−λ) = −P (λ)
? -even P?(−λ) = P (λ) ? -odd P?(−λ) = −P (λ)

For a scalar polynomial p(x), being T -palindromic is the same as being palin-
dromic (i.e., revp(x) = p(x)), while ∗-palindromic is equivalent to being conjugate-
palindromic (i.e., revp(x) = p(x)). Analogous simplifications occur for the T -even,
∗-even, and all the anti-variants in the scalar polynomial case.

Note that the strict alternation of matrix coefficients between symmetric and
skew-symmetric (or Hermitian and skew-Hermitian) in ? -even/odd polynomials has
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also led to the use of the name alternating polynomial [65]. However, we will only use
“alternating” as a collective term to denote any one of the six even or odd structures
listed in Table 6.1.1. Similarly the word “palindromic” will typically be used as
a generic term for any of the six structures in Table 6.1.1 that contain the word
palindromic.

Two special matrices that play an important role in our investigation are the k×k
reverse identity Rk in the context of palindromic structures, and the k × k diagonal
matrix Σk of alternating signs in the context of even/odd structures:

R = Rk :=




0 1
...

1 0




k×k

and Σ = Σk :=




(−1)k−1 0
. . .

0 (−1)0




k×k

. (6.1.4)

The subscript k will be dropped whenever it is clear from the context.

Remark 6.1.2. In Definition 6.1.1 the adjoint of an n × n matrix polynomial
could have been defined with respect to the adjoint ? of a more general scalar prod-
uct (see [59]), rather than restricting ? to just transpose or conjugate transpose.
For example, a bilinear scalar product is defined by 〈x, y〉 := xT My for some non-
singular matrix M , and adjoint ? with respect to this scalar product is given by
A? = M−1AT M . (Similarly a sesquilinear scalar product 〈x, y〉 := x∗My has ad-
joint given by A? = M−1A∗M .) Then the definition of the corresponding matrix
polynomial adjoint P?(λ) would be formally identical to Definition 6.1.1, and the
structures in Table 6.1.1 would make sense as written with ? denoting the adjoint
of a general scalar product. A well-known example of this more general notion is
skew-Hamiltonian/Hamiltonian pencils [8], [64], which are ? -odd with respect to the
symplectic form defined by M = J =

[
0 I
−I 0

]
.

However, when the underlying scalar product is orthosymmetric [59] (concretely,
if M satisfies MT = εM for ε = ±1 in the bilinear case, or M∗ = εM , |ε| = 1, ε ∈ C
in the sesquilinear case), then not much is gained by this apparent extra generality1.
In the bilinear case we have

P (λ) is ? -palindromic ⇔ revP?(λ) = rev
(
M−1P T (λ)M

)
= P (λ)

⇔ rev(MP (λ))T = rev
(
P T (λ)MT

)
= εMP (λ) ,

so that ? -palindromicity of P (λ) is equivalent to the T -(anti)-palindromicity of
MP (λ). Similar arguments show that ? -evenness or ? -oddness of P (λ) is equiv-
alent to the T -evenness or T -oddness of MP (λ). Analogous results also hold for
orthosymmetric sesquilinear forms, showing that in this case ? -structure reduces to
∗-structure. Thus for any of the standard scalar products with adjoint ? , the ? -
structures in Table 6.1.1 can all be easily transformed into either the T or ∗ case.
Note also that this reduction shows skew-Hamiltonian/Hamiltonian pencils to be
equivalent to T -even or ∗ -even pencils.

1Note that orthosymmetric scalar products include all the standard examples, which are either
symmetric or skew-symmetric bilinear forms or Hermitian sesquilinear forms.
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6.2 Spectral Symmetry

An important feature of the structured matrix polynomials in Table 6.1.1 is the spe-
cial symmetry properties of their spectra, described in the following result. These
eigenvalue pairings comprise the first of several ways in which alternating and palin-
dromic matrix polynomials may reasonably be viewed as analogous to, and even as
generalizations of Hamiltonian and symplectic matrices. Note that these eigenvalue
pairings also extend to the more general ? -structures described in Remark 6.1.2.

Theorem 6.2.1 (Spectral Symmetry of Structured Matrix Polynomials).
Let P (λ) =

∑k
i=0 λiAi , Ak 6= 0 be a regular matrix polynomial that has any one of

the palindromic or alternating structures listed in Table 6.1.1. Then the spectrum of
P (λ) has the pairing depicted in Table 6.2.1. Moreover, the algebraic, geometric, and
partial multiplicities of the two eigenvalues in each such pair are equal.
(Here λ = 0 is included as a possible eigenvalue, with 1/λ or 1/λ to be interpreted as
the eigenvalue ∞.)

Table 6.2.1: Spectral symmetries

Structure of P (λ) eigenvalue pairing

(anti-)palindromic, T -(anti-)palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/ λ )

even, odd, T -even, T -odd (λ,−λ)

∗-even, ∗-odd (λ,−λ )

Proof. We first recall some well-known facts [28], [30], [31] about the companion
forms C1(λ) and C2(λ) of a regular matrix polynomial P (λ):

• P (λ) and C1(λ) have the same eigenvalues (including ∞) with the same alge-
braic, geometric, and partial multiplicities.

• C1(λ) and C2(λ) are always strictly equivalent , i.e., there exist nonsingular
constant matrices E and F such that C1(λ) = E · C2(λ) · F .

• Strictly equivalent pencils have the same eigenvalues (including ∞), with the
same algebraic, geometric, and partial multiplicities.

With these facts in hand, we first consider the case when P (λ) is ? -palindromic or
? -anti-palindromic, so that revP?(λ) = χP P (λ) for χP = ±1, equivalently χP Ai =
A?

k−i for i = 0 : k. Our strategy is to show that C1(λ) is strictly equivalent to
revC?

1 (λ), from which the desired eigenvalue pairing and equality of multiplicities
then follows. Using the nonsingular matrix

T :=




χP I 0
I

. . .

0 I


 ·




I Ak−1 · · · A1

0 0 −I
... ...

0 −I 0


 ,
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we first show that C1(λ) is strictly equivalent to revC?
2 (λ).

T · C1(λ) · (Rk ⊗ In) = T ·


λ




0 Ak

I
...

I 0


 +




A0 A1 · · · Ak−1

0 0 −I... ...

0 −I 0







= λ




χP A1 · · · χP Ak−1 χP Ak

−I 0 0
. . .

...
0 −I 0


 +




χP A0 0
I

. . .
0 I




= λ




Ak−1 −I 0
...

. . .
A1 0 −I
A0 0 · · · 0




?

+




Ak 0
I

. . .
0 I




?

= revC?
2 (λ) .

But revC?
2 (λ) is always strictly equivalent to revC?

1 (λ), since C1(λ) and C2(λ) are.
This completes the proof for this case.

For the case of “purely” palindromic or anti-palindromic matrix polynomials, i.e.,
polynomials P (λ) satisfying revP (λ) = χP P (λ), an analogous computation shows
that

T · C1(λ) · (Rk ⊗ In) = revC1(λ) .

Thus C1(λ) is strictly equivalent to revC1(λ), which again implies the desired eigen-
value pairing and equality of multiplicities.

Next assume that P (λ) is ? -even or ? -odd, so P?(−λ) = εP P (λ) for εP = ±1.
We show that C1(λ) is strictly equivalent to C?

1 (−λ), from which the desired pairing
of eigenvalues and equality of multiplicities follows. The following calculation shows
that C1(λ) is strictly equivalent to C?

2 (−λ):
(
diag(εP ,−Σk−1)⊗ In

) · C1(λ) · (Σk ⊗ In)

= λ




εP (−1)k−1Ak 0
−I

. . .

0 −I


 +




εP (−1)k−1Ak−1 · · · εP (−1)1A1 εP A0

−I 0 0
. . .

...
0 −I 0




= −λ




Ak 0
I

. . .

0 I




?

+




Ak−1 −I 0
...

. . .

A1 0 −I
A0 0 · · · 0




?

= C?
2 (−λ) .

The strict equivalence of C?
2 (−λ) and C?

1 (−λ) now follows from that of C2(λ) and
C1(λ), and the proof for this case is complete.

For “purely” even or odd polynomials P (λ), that is P (−λ) = εP P (λ), an analo-
gous computation

(
diag(εP ,−Σk−1)⊗ In

) · C1(λ) · (Σk ⊗ In) = C1(−λ)
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shows that C1(λ) is strictly equivalent to C1(−λ), which implies the desired eigenvalue
pairing and equality of multiplicities.

If the coefficient matrices of P are real, then the eigenvalues of a ? -even or ? -odd
matrix polynomial occur in quadruples (λ, λ,−λ,−λ). This property has sometimes
been referred to as “Hamiltonian spectral symmetry”, since the eigenvalues of real
Hamiltonian matrices have such symmetry [61], [65]. Note however that this is ac-
tually a feature common to matrices in Lie algebras associated with any real scalar
product, and is not confined to Hamiltonian matrices [59]. Similarly, the eigenvalues
of real ? -palindromic and anti-? -palindromic matrix polynomials occur not just in
pairs but in quadruples (λ, λ, 1/λ, 1/λ), a property sometimes referred to as “sym-
plectic spectral symmetry”, since real symplectic matrices exhibit this behavior. But
once again, this type of eigenvalue symmetry is an instance of a more general phe-
nomenon associated with matrices in the Lie group of any real scalar product, such as
the real pseudo-orthogonal (Lorentz) groups. See [24], [50], [61] for detailed coverage
of Hamiltonian and symplectic matrices, and [32], [59] for properties of matrices in
the Lie algebra or Lie group of more general scalar products.

Remark 6.2.2. The ability to directly convert a structured matrix into an equivalent
structured pencil is a second aspect of the analogy between Hamiltonian/symplectic
matrices and alternating/palindromic polynomials. To any matrix A one naturally
associates the pencil λI − A, and so for Hamiltonian H consider the pencil λI −H.
Then equivalent to λI −H is the T -even pencil J(λI −H) = λJ − JH. This simple
conversion provides a very direct sense in which alternating polynomials generalize
Hamiltonian matrices. Indeed, one can convert a matrix from any Lie algebra asso-
ciated with an orthosymmetric scalar product into either an even or odd pencil by
a similar procedure, thus showing that alternating polynomials generalize an even
broader range of well-known structured matrices.

The situation for symplectic matrices is much less straightforward. The conversion
of pencils λI − S with a symplectic S to some type of palindromic pencil certainly
cannot be uniformly achieved with a fixed equivalence like the one used above for
Hamiltonian matrices. However, some recent work of Schröder [75] shows that almost
all symplectic matrices S have a factorization of the form S = Z−1ZT for some
nonsingular Z, and hence almost all pencils λI−S with a symplectic S are equivalent
to a T -anti-palindromic pencil λZ − ZT . The only symplectic S that do not admit
such a factorization are those having an odd number of even-sized Jordan blocks for
the eigenvalue +1.

What about converting λI − S into a T -palindromic pencil λW + W T ? As an
immediate corollary of the results in [75] one sees that the only obstruction to doing
this is the Jordan structure of S at the eigenvalue−1; a pencil λI−S with a symplectic
S is equivalent to a T -palindromic pencil if and only if S has an even number of even-
sized Jordan blocks for the eigenvalue −1.

Several natural questions, though, remain open. If, instead of looking at only
pencils, one considers “representations” of symplectic matrices by palindromic poly-
nomials of degree k ≥ 2, can every symplectic matrix now be brought under the
palindromic umbrella? In a different direction, one might ask whether Schröder’s
results relating symplectic matrices to palindromic pencils extend to structured ma-
trices from other Lie groups associated with scalar products.
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6.3 Cayley Transformations

It is well known that the Cayley transformation of matrices [50], [69, p. 103–105] and
its generalization to pencils [50], [62] relates Hamiltonian to symplectic structure for
both matrices and pencils. By extending the classical definition of this transformation
to matrix polynomials, we now develop analogous relationships between palindromic
and alternating polynomials. These relationships constitute yet a third aspect of
the analogy between Hamiltonian/symplectic matrices and alternating/palindromic
polynomials.

Our choice of definition is motivated by the following observation: the only Möbius
transformations of the complex plane that map reciprocal pairs (µ, 1/µ) to plus/minus
pairs (λ,−λ) are α

(
µ−1
µ+1

)
and β

(
1+µ
1−µ

)
, where α, β ∈ C are nonzero constants. When

α = β = 1, these transformations also map conjugate reciprocal pairs (µ, 1/µ) to
conjugate plus/minus pairs (λ,−λ). Putting this together with Theorem 6.2.1, we
see that the Möbius transformations µ−1

µ+1
and 1+µ

1−µ
translate the spectral symmetries of

palindromic polynomials to those of alternating matrix polynomials. Consequently, it
is reasonable to anticipate that Cayley transformations modelled on these particular
Möbius transformations might have an analogous effect on structure at the level of
matrix polynomials. These observations therefore lead us to adopt the following
definition as the natural extension (in this context) of the Cayley transformation to
matrix polynomials.

Definition 6.3.1 (Cayley Transformations of Matrix Polynomials).
Let P (λ) =

∑k
i=0 λiAi be a matrix polynomial of degree k. Then the matrix polyno-

mials

C−1(P )(µ) := (µ + 1)kP

(
µ− 1

µ + 1

)
and C+1(P )(µ) := (1− µ)kP

(
1 + µ

1− µ

)
(6.3.1)

are the Cayley transformations of P (λ) with pole at −1 or +1, respectively.

When viewed as maps on the space of n× n matrix polynomials of degree k ≥ 1,
the Cayley transformations in (6.3.1) can be shown by a direct calculation to be
inverses of each other, up to a scaling factor.

Proposition 6.3.2. For any n × n matrix polynomial P of degree k ≥ 1 we have
C+1(C−1(P )) = C−1(C+1(P )) = 2k · P .

The next lemma gives some straightforward observations about how the adjoint
and reversal operations from Definition 6.1.1 interact with the Cayley transformations
C−1 and C+1. These will be helpful in showing how structure in a matrix polynomial
leads to structure in its Cayley transformations.

Lemma 6.3.3. Let P be a matrix polynomial of degree k ≥ 1. Then

(C−1(P )
)?(µ) = C−1(P

?)(µ),
(C+1(P )

)?(µ) = C+1(P
?)(µ), (6.3.2)

rev
(C−1(P )

)?(µ) = (µ + 1)kP?
(
−µ− 1

µ + 1

)
, µ 6= −1, (6.3.3a)

rev
(C+1(P )

)?(µ) = (−1)k(1− µ)kP?
(
−1 + µ

1− µ

)
, µ 6= 1. (6.3.3b)
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Proof. The proof of (6.3.2) is straightforward. We only prove (6.3.3b); the proof
of (6.3.3a) is similar. Since C+1(P ) and hence C+1(P )? are matrix polynomials of
degree k,

rev
(C+1(P )

)?(µ) = µk
(C+1(P )

)?
(

1

µ

)
= µkC+1(P

?)

(
1

µ

)
by (6.3.2), (6.1.3)

= µk(1− 1/µ)kP?
(

1 + 1/µ

1− 1/µ

)
by (6.3.1)

= (−1)k(1− µ)kP?
(
−1 + µ

1− µ

)
. 2

We now gather together in Table 6.3.1 all the details of the relationships between
palindromic/alternating structure in polynomials and in their Cayley transforms.
Note that these relationships sometimes depend on the parity of the degree of the
given polynomial.

Theorem 6.3.4 (Structure Correspondence via Cayley).
Let P (λ) be a matrix polynomial of degree k ≥ 1. Then the correspondence between
structure in P and in its Cayley transforms C−1(P ) and C+1(P ) is as stated in Ta-
ble 6.3.1. (Note that each structure correspondence in this table is an if and only if
statement.)

Table 6.3.1: Cayley transformations of structured matrix polynomials

C−1(P )(µ) C+1(P )(µ)

P (λ) k even k odd k even k odd

palindromic even odd even
? -palindromic ? -even ? -odd ? -even

anti-palindromic odd even odd
? -anti-palindromic ? -odd ? -even ? -odd

even palindromic palindromic anti-palindromic
? -even ? -palindromic ? -palindromic ? -anti-palindromic

odd anti-palindromic anti-palindromic palindromic
? -odd ? -anti-palindromic ? -anti-palindromic ? -palindromic

Proof. Since the proofs of these structure correspondences are all similar, only one
of them is given here. We show that P (λ) is ? -even if and only if C+1(P )(µ) is ? -
palindromic when k is even and ? -anti-palindromic when k is odd. Now P (λ) being
? -even is equivalent, by definition, to P?(−λ) = P (λ) for all λ. Setting λ = 1+µ

1−µ
and

multiplying by (1− µ)k yields

P (λ) is ? -even ⇐⇒ (1− µ)kP?
(
−1 + µ

1− µ

)
= (1− µ)kP

(
1 + µ

1− µ

)
for all µ 6= 1

⇐⇒ (−1)krev(C+1(P ))?(µ) = C+1(P )(µ) by Lemma 6.3.3,

from which the desired result follows.
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Observe that the results in Table 6.3.1 are consistent with C−1(P ) and C+1(P )
being essentially inverses of each other, as shown in Proposition 6.3.2.

6.4 Applications

To illustrate the practical importance of palindromic and alternating matrix polyno-
mials, we conclude this chapter with a sampling of applications that lead to polyno-
mial eigenvalue problems with one of these structures. Many of these problems arise
in the analysis and numerical solution of higher order systems of ordinary and partial
differential equations, as in the first two examples.

Example 6.4.1. (Quadratic complex T -palindromic matrix polynomials)
A project of the company SFE GmbH in Berlin investigates rail traffic noise caused
by high speed trains [37], [38]. The vibration of an infinite rail track is simulated and
analyzed to obtain information on the development of noise between wheel and rail.
In the model, the rail is assumed to be infinite and is tied to the ground on sleepers,
where neighboring sleepers are spaced s = 0.6 m apart (including the width of one
of the sleepers). This segment of the infinite track is called a sleeper bay. The part
of the rail corresponding to one sleeper bay is then discretized using classical finite
element methods for the model of excited vibration (Figure 6.4.1).

Figure 6.4.1: FE discretization of the rail in one sleeper bay.

The discretization leads to an infinite dimensional second order system of the
form Mẍ + Dẋ + Sx = F , with infinite block-tridiagonal real symmetric coefficient
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matrices M,D, S, where

M =




. . . . . . 0 . . . 0

. . . Mj−1,0 Mj,1 0
...

0 MT
j,1 Mj,0 Mj+1,1 0

...
. . . MT

j+1,1 Mj+1,0
. . .

0 . . . 0
. . . . . .




, x =




...
xj−1

xj

xj+1
...




, F =




...
Fj−1

Fj

Fj+1
...




,

and where D, S have the same block structure as M with blocks Dj,0, Dj,1 and
Sj,0, Sj,1, respectively. Here, Mj,0 is symmetric positive definite and Dj,0, Sj,0 are
symmetric positive semidefinite for all j.

There are several ways to approach the solution of the problem, which presents
a mixture between a differential equation (time derivatives of x) and a difference
equation (space differences in j).

Since one is interested in studying the behavior of the system under excitation,
one makes the ansatz Fj = F̂je

iωt, xj = x̂je
iωt, where ω is the excitation frequency.

This leads to a second order difference equation with variable coefficients for the x̂j

given by
AT

j−1,jx̂j−1 + Ajjx̂j + Aj,j+1x̂j+1 = F̂j,

with the coefficient matrices

Aj,j+1 = −ω2Mj,1 + iωDj,1 + Kj,1, Ajj = −ω2Mj,0 + iωDj,0 + Kj,0.

Observing that the system matrices vary periodically due to the identical form of the
rail track in each sleeper bay, we may combine the (say `) parts belonging to the rail
in one sleeper bay into one vector

yj =




x̂j

x̂j+1
...

x̂j+`


 ,

and thus obtain a constant coefficient second order difference equation

AT
1 yj−1 + A0yj + A1yj+1 = Gj

with coefficient matrices

A0 =




Aj,j Aj,j+1 0

AT
j,j+1 Aj+1,j+1

. . .
. . . . . . Aj+`−1,j+l

0 AT
j+`−1,j+` Aj+`,j+`


 , A1 =




0 0 . . . 0
...

. . . . . .
...

0 . . . 0 0
Aj+`,j+`+1 0 . . . 0


 ,

that depend on the frequency ω. For this system we then make the ansatz yj+1 = κyj,
which leads to the complex eigenvalue problem

1

κ
(AT

1 + κA0 + κ2A1)y = 0.
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Clearly, the underlying matrix polynomial AT
1 +κA0+κ2A1 is T -palindromic, because

A0 is complex symmetric, i.e., A0 = AT
0 . It should be noted that in this application

A1 is highly rank-deficient.

Example 6.4.2. (Quadratic real and complex T -palindromic polynomials)
In [89] the mathematical modelling and numerical simulation of the behavior of pe-
riodic surface acoustic wave (SAW) filters is discussed. SAW-filters are piezoelectric
devices used in telecommunications, e.g., TV-sets and cell phones, for frequency fil-
tering; other kinds of SAW-devices find application in radar and sensor technology
as well as in the field of non-destructive evaluation. In modelling these devices,
Floquet-Bloch theory is used in [89] to replace the underlying periodic structure of
the problem by a single reference cell together with quasi-periodic boundary condi-
tions. This Bloch-ansatz reduces the problem to calculating the so-called “dispersion
diagram”, i.e., the functional relation between the excitation frequency ω and the
(complex) propagation constant γ. A finite element discretization then leads to a
parameter-dependent Galerkin system, which upon further reduction (and invoca-
tion of the quasi-periodic boundary conditions) becomes a T -palindromic quadratic
eigenvalue problem

(γ2A + γB + AT )v = 0, with BT = B.

Note that A and B both depend on the parameter ω. If absorbing boundary condi-
tions (necessary for volume wave radiation) are included in the model, then A and B
are complex, otherwise real.

Example 6.4.3. (Quadratic ∗-palindromic matrix polynomials)
In [36], bisection and level set methods are presented to compute the Crawford num-
ber

γ(A,B) := min
z∈Cn

‖z‖2=1

√
(z∗Az)2 + (z∗Bz)2

for two Hermitian matrices A,B ∈ Cn×n. It is shown in [36, Theorem 2.2] that
γ(A,B) measures the distance of a Hermitian pair (A,B) to the nearest non-definite
pair in the 2-norm. From [36, formula (2.8)]

γ(A,B) = max

(
max

0≤θ≤2π
λmin(A cos θ + B sin θ), 0

)
,

the problem of computing the Crawford number can be reduced to the computation
of

max {λmin(M(z)) : |z| = 1} ,

where M(z) = (z−1C + zC∗)/2 and C = A + iB. It is easy to check that M(z) is
Hermitian for any z on the unit circle. Since for a given ξ ∈ R, the equivalence

det
(
M(z)− ξI

)
= 0 ⇐⇒ det

(
C − 2ξzI + z2C∗) = 0

holds, the authors of [36] discuss the following strategy as a base for a bisection
algorithm. Select a value ξ ∈ R and compute the 2n eigenvalues zj of the ∗-
palindromic matrix polynomial P (z) = C − 2ξzI + z2C∗. For each zj on the unit
circle compute the smallest eigenvalue λmin(M(zj)) of M(zj). If λmin(M(zj)) = ξ then
γ(A,B) ≥ λmin(M(zj)); otherwise we have γ(A, B) < λmin(M(zj)). Thus γ(A,B) can
be approximated via a bisection method.
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Example 6.4.4. (Quadratic T -even matrix polynomials)
The study of corner singularities in anisotropic elastic materials [4], [5], [54], [64]
leads to quadratic eigenvalue problems of the form

P (λ)v = (λ2M + λG + K)v = 0,

with M = MT , G = −GT , K = KT in Rn×n. The coefficient matrices are large
and sparse, having been produced by a finite element discretization. Here, M is
a positive definite mass matrix and −K is a stiffness matrix. Since the coefficient
matrices alternate between real symmetric and skew-symmetric matrices we see that
P T (−λ) = P (λ), and thus the matrix polynomial is T -even.

Gyroscopic systems [47], [83] also lead to quadratic T -even matrix polynomials.

Example 6.4.5. (Higher degree ∗-even matrix polynomials)
The linear quadratic optimal control problem for higher order systems of ordinary
differential equations leads to the two-point boundary value problem for 2(k − 1)th
order ordinary differential equations of the form

k−1∑
j=1

[
(−1)j−1Qj M∗

2j

M2j 0

] [
x(2j)

µ(2j)

]
+

k−1∑
j=1

[
0 −M∗

2j−1

M2j−1 0

] [
x(2j−1)

µ(2j−1)

]
+

[ −Q0 M∗
0

M0 −BW−1B∗

] [
x
µ

]
= 0 ,

where W and Qj are Hermitian for j = 1, . . . , k − 1, see [4], [5], [61], [65]. The
substitution

[
x
µ

]
= eλtv then yields the eigenvalue problem P (λ)v = 0 with the

underlying ∗-even matrix polynomial of degree 2(k − 1) given by

k−1∑
j=1

(
λ2j

[
(−1)j−1Qj M∗

2j

M2j 0

]
+ λ2j−1

[
0 −M∗

2j−1

M2j−1 0

])
+

[ −Q0 M∗
0

M0 −BW−1B∗

]
.

Example 6.4.6. (Higher degree ∗-palindromic matrix polynomials)
Consider the discrete time optimal control problem to minimize

∞∑
j=0

[
xj

uj

]∗
H

[
xj

uj

]
, H =

[
Q Y
Y ∗ R

]
(6.4.1)

subject to the discrete time control

k∑
i=0

Mixj+k−i = Buj, (6.4.2)

with initial conditions x0, x1, . . . , xk−1 given. Here the matrices are of size Q,Mi ∈
Fn×n for i = 0, . . . , k, R ∈ Fm×m, and Y, B ∈ Fn×m, and satisfy Q∗ = Q, R∗ = R.
(We discuss only the even degree case k = 2` ; the odd degree case is similar but
notationally more involved.)
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In the classical application from linear quadratic optimal control, the matrix H
in (6.4.1) is symmetric or Hermitian positive semidefinite, with R being positive
definite. In applications from discrete time H∞ control, however, both matrices may
be indefinite and singular.

The standard way to attack this problem is to turn it into a first order system and
then apply well-known techniques for such systems (see, e.g., [61]), leading to a two-
point boundary value problem whose solution can be found by solving a generalized
eigenvalue problem for a (2kn + m)× (2kn + m) pencil of the form

L(λ) = λ




0 E 0
A∗ 0 0
B∗ 0 0


−




0 A B
E∗ G Y
0 Y∗ R


 . (6.4.3)

For a large class of optimal control problems there is sufficient special structure within
the blocks of L(λ) that it can be reduced to a symplectic pencil, and sometimes even
further all the way to a standard eigenvalue problem for a symplectic matrix [61].
However, for many applications such reductions are not possible.

On the other hand, in all cases it is always possible to undo the conversion to
first order that produced (6.4.3), and to do it in such a way as to obtain a degree k
polynomial eigenvalue problem for the (2n + m)× (2n + m) matrix polynomial

Ps(λ) = λ2`




0 M0 0
M∗

2` 0 0
0 0 0


+λ2`−1




0 M1 0
M∗

2`−1 Q 0
0 Y ∗ 0


+λ2`−2




0 M2 0
M∗

2`−2 0 0
0 0 0




+ · · ·+ λ2




0 M2`−2 0
M∗

2 0 0
0 0 0


 + λ




0 M2`−1 0
M∗

1 0 0
−B∗ 0 0


 +




0 M2` −B
M∗

0 0 Y
0 0 R


 .

The polynomial Ps(λ) is not palindromic, but by using a non-equivalence transfor-
mation in a manner analogous to a technique used in [88], Ps(λ) can be very simply
transformed into a palindromic polynomial. Indeed, multiplying Ps(λ) on the left by
diag(λ`−1In , In , λ`Im) and on the right by diag(In , λ1−`In , Im) leads to the degree
k = 2` ∗-palindromic matrix polynomial

Pp(λ) = λ2`




0 M0 0
M∗

2` 0 0
0 Y ∗ 0


+λ2`−1




0 M1 0
M∗

2`−1 0 0
0 0 0


+· · ·+λ`+2




0 M`−2 0
M∗

`+2 0 0
0 0 0




+ λ`+1




0 M`−1 0
M∗

`+1 0 0
−B∗ 0 0


 + λ`




0 M` 0
M∗

` Q 0
0 0 R


 + λ`−1




0 M`+1 −B
M∗

`−1 0 0
0 0 0




+ λ`−2




0 M`+2 0
M∗

`−2 0 0
0 0 0


 + · · ·+ λ




0 M2`−1 0
M∗

1 0 0
0 0 0


 +




0 M2` 0
M∗

0 0 Y
0 0 0


 .

Since det Pp(λ) = λ`m det Ps(λ), it follows that Ps(λ) and Pp(λ) have the same finite
eigenvalues (counted with multiplicities) except for `m additional zero eigenvalues of
Pp(λ).
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There is an alternative way of formulating the discrete time optimal control prob-
lem as a ∗-palindromic polynomial. Picking up the story with the pencil L(λ) in
(6.4.3), first make the change of variable λ = −µ2 to get the quadratic polynomial

Q(µ) := −L(−µ2) = µ2




0 E 0
A∗ 0 0
B∗ 0 0


 +




0 A B
E∗ G Y
0 Y∗ R


 . (6.4.4)

The polynomial Q(µ) is still not ∗-palindromic, but a non-equivalence transformation
like the one used above to convert Ps(λ) into Pp(λ) will make it into one. Specifically,
premultiplyQ(µ) by diag(Ikn , µIkn , µIm) and postmultiply by diag

(
(µ)−1Ikn , Ikn , Im

)
to get the polynomial

Qp(µ) := µ2




0 E 0
A∗ 0 0
B∗ 0 0


 + µ




0 0 0
0 G Y
0 Y∗ R


 +




0 A B
E∗ 0 0
0 0 0


 . (6.4.5)

Since the blocks G and R are Hermitian, the middle term of Qp(µ) is Hermitian,
and so Qp(µ) is ∗-palindromic. Since detQp(µ) = µm detQ(µ), it follows that Qp(µ)
and Q(µ) have the same finite eigenvalues (counted with multiplicities) except for m
additional zero eigenvalues of Qp(µ).

Remark 6.4.7. Example 6.4.6 illustrates yet another sense in which it is reasonable
to view palindromic and alternating polynomials as generalizations of symplectic and
Hamiltonian matrices. It is not just the sharing of mathematical properties like
spectral symmetries and parallel relations via Cayley transformation that gives this
analogy some substance. It is also by the extension of the range of applicability
to a wider class of practical problems that palindromic polynomials can be seen to
generalize symplectic structure.

Remark 6.4.8. The alert reader may have noticed the absence of “purely” palin-
dromic or “purely” even/odd polynomials, that is to say ones not involving the adjoint
? in their definition, among the applications described in this section. As of this writ-
ing we are not aware of any application that leads to any of these “pure” structures.
For this reason (and others to be discussed in the next chapter), these four types of
structured polynomial will not be considered very much in the further development of
this topic . The focus instead will be on the eight ? -structures defined in Table 6.1.1.

Remark 6.4.9. Finally, it should be noted that palindromic structure has a (po-
tentially) very important computational advantage over symplectic structure. Palin-
dromicity is a linear structure, and so is (or at least should be) numerically easier to
maintain in the face of rounding errors than a nonlinear structure like symplecticity
(either for matrices or pencils). (Note that the defining conditions for symplectic
matrices and for symplectic pencils put quadratic constraints on the matrix entries.)
Thus the process of replacing a symplectic matrix or pencil by a palindromic polyno-
mial can already in some sense be viewed as a kind of “linearizing” of the problem.
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6.5 A Palindrome Sampler

The palindrome is a form of wordplay that appears in many languages and has an
ancient history. The earliest palindromes have been attributed to Sotades of Maroneia
in Thrace during the third century B.C.; thus palindromes have sometimes been
referred to as “Sotadics” or “Sotadic verses” [19]. Just for fun, here’s a selection of
palindromes in various languages, with pointers to palindromes in other media and
other forms. For further information (and larger collections of palindromes than you
could ever want) see the website www.nyx.net/˜jkalb/palindromes/ with its many
useful links, as well as [9], [13], [15], [19], [20], [21], [53], and [66].

The earliest recorded palindrome in English dates from 1614 — “Lewd did I live &
evil I did dwel” — and is attributed to John Taylor, the self-proclaimed “Water Poet”
of London. Here are some more palindromes in English, several with a mathematical
flavor:

Mom
Rotator

I prefer pi.
Satire: Veritas.
Rise to vote, sir.

So many dynamos!
Never odd or even.

Niagara, O roar again!
Won’t lovers revolt now?
Able was I ere I saw Elba.

A man, a plan, a canal – Panama.
Satan, oscillate my metallic sonatas.
I, man, am regal — a German am I.
Go hang a salami! I’m a lasagna hog!
Sums are not set as a test on Erasmus.

Anne, I vote more cars race Rome-to-Vienna.
Barclay ordered an omelette, lemonade, red royal crab.

Are we not drawn onward, we few, drawn onward to new era?

Doc, note, I dissent. A fast never prevents a fatness. I diet on cod.
— Peter Hilton, 1947 [39] [53, p. 287]

T. Eliot, top bard, notes putrid tang emanating, is sad. I’d assign it a
name: “gnat dirt”. Upset on drab pot toilet.

— Alastair Reid, 1959

Although English is certainly replete with palindromes, there are many exam-
ples in other languages as well. Indeed, Finnish has sometimes been termed the
“language of palindromes”, perhaps because it contains a relatively large number of
single-word palindromes. The Finnish word for soap salesman, “saippuakauppias”,
has been claimed by some as the longest single-word palindrome in everyday use in
any language, although the Guinness Book of World Records (1998) recognizes the
somewhat longer “saippuakivikauppias” (dealer in lye) as the longest palindromic
word. On the other hand, the Dutch palindrome “Edelstaalplaatslede” (steel tray in
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an oven) is just as long, “Koortsmeetsysteemstrook” is longer, and yet even longer
examples exist in Finnish itself. So the title of longest single-word palindrome would
still seem to be up for grabs. Here now is a palindrome sampler from twelve different
languages:

Nisumaa oli isäsi ilo aamusin.
Isä, älä myy myymälääsi.

Reit nie tot ein Tier.
Erika feuert nur untreue Fakire.

νιψoν ανoµηµατα µη µoναν oψιν
En af dem der tit red med fane.
“Mooie zeden in Ede”, zei Oom.

I topi non avevano nipoti.
e’ li’ Bari, mirabile.

Ai lati d’Italia.
Llad dafad dall.

A mala nada na lama.
Elu par cette crapule.

Engage le jeu que je le gagne.
Dábale arroz a la zorra el abad.

Roma tibi subito motibus ibit amor.
In girum imus nocte, et consumimur igni.

Ni talar bra latin.

Other types of palindromes are also of interest. Contrasting with the traditional
“letter-unit” palindromes above are the so-called “word-unit” palindromes such as

All for one and one for all.
Fair is foul, and foul is fair.

So patient a doctor to doctor a patient so.
Stout and bitter porter drinks porter, bitter and stout.

Girl, bathing on Bikini, eyeing boy,
finds

boy eyeing bikini on bathing girl.
Bob: did Anna peep? Anna: did Bob?

and phonetic palindromes such as “Ominous cinema”. Some have even gone so far
as to construct palindromic poems and even palindromic novels, in both letter-unit
and word-unit forms, although these tend to lose cogency as the length increases.
Notable among these efforts is the work of Georges Perec [7] and the literary group
Oulipo (Ouvroir de Littérature Potentielle) [67].

Perhaps the most dramatic development in the field of palindromology is the
recent discovery [71], [77], [87] that the human male Y chromosome contains an
approximately 3-million letter palindrome in its DNA sequence, making this probably
the longest known naturally-occurring palindrome.

Visually symmetric realizations of words and phrases can be especially appealing
to those who delight in palindromes. For a cornucopia of calligraphic analogs of palin-
dromes and T -palindromes see the books of Scott Kim [44] and John Langdon [52].



Chapter 7

Structured Linearizations

Having now established the basic properties of palindromic and alternating polyno-
mials, and indicated their applicability to a variety of practical problems, the main
goal of this chapter is to show how to find structured linearizations for these classes of
structured polynomial. Our strategy is to search for these structured linearizations
in the vector spaces L1(P ) and L2(P ), pencil spaces that were originally designed
to provide large arenas fertile enough to contain linearizations that reflect additional
structure in P , but small enough that pencils L(λ) ∈ Lj(P ) still share salient features
of the companion forms Cj(λ).

In this endeavor we will restrict ourselves to the ? -variants of these structures.
There are two reasons for this, one mathematical and one practical. The practical
reason is that “pure” palindromic, anti-palindromic, even, and odd matrix polyno-
mials just don’t seem to show up in any applications. The mathematical reason is
more cogent; in general, these “pure” structures cannot be linearized in a structure
preserving way.

Consider, for example, a regular n × n palindromic polynomial P (λ) of degree
k ≥ 2. By [31, Theorem 1.7] a pencil L(λ) can only be a linearization for an n × n
matrix polynomial if the geometric multiplicity of each eigenvalue of L(λ) is less
than or equal to n. On the other hand, any palindromic linearization must be of
the form L(λ) = λZ + Z for some matrix Z; for such a pencil the eigenvalue −1 has
geometric multiplicity kn, thus ruling out any palindromic linearization. What about
T -palindromic linearizations for P (λ)? In the quadratic case P (λ) = λ2A + λB + A,
and a calculation similar to the one in Example 7.1.1 shows that A and B must both
be symmetric or both skew-symmetric (so that P is T -(anti)-palindromic as well as
palindromic) in order for any L(λ) ∈ L1(P ) of the form λZ+ZT to exist. Thus general
palindromic matrix polynomials do not admit T -palindromic linearizations in L1(P ).
Analogous arguments exclude structured linearizations for general anti-palindromic,
even, and odd polynomials.

Recall from Theorem 2.2.7 that simply being an element of L1(P ) is already
almost enough to guarantee being a linearization of P . Hence we begin our search for
structured linearizations by first trying to demonstrate the existence of structured
pencils in L1(P ). In later sections we will see what (if any) extra conditions are
needed to guarantee that these structured pencils are indeed linearizations for P .

82
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7.1 A Simple Example

In Chapter 5 we found that structured pencils in L1(P ) for symmetric and Hermitian
polynomials P were all contained in the space DL(P ) := L1(P ) ∩ L2(P ). Given that
pencils from DL(P ) are always block-symmetric [Thm. 3.4.2], this is perhaps not so
surprising. However, this same block-symmetry of DL(P )-pencils makes it too much
to expect that pencils reflecting ? -palindromic or ? -alternating structure can also be
found in DL(P ). So instead we regard all of L1(P ) as the search space, and begin our
investigation with a simple example of low degree, worked out from first principles.

Example 7.1.1. Consider the T -palindromic matrix polynomial P (λ) = λ2A+λB+
AT , where A,B ∈ Fn×n, BT = B and A 6= 0. Our goal is to construct a pencil L(λ)
in L1(P ) with the same (T -palindromic) structure as P ; to avoid trivialities we also
insist that L(λ) should have a nonzero right ansatz vector v = [v1, v2]

T ∈ F2. This
means that L(λ) must be of the form

L(λ) = λZ + ZT =: λ

[
D E
F G

]
+

[
DT F T

ET GT

]
for some D, E, F, G ∈ Fn×n.

Since L(λ) ∈ L1(P ), the equivalence in Lemma 2.1.4 implies that we can rewrite this
using the column shifted sum ¢→ as

Z ¢→ZT =

[
D E + DT F T

F G + ET GT

]
=

[
v1A v1B v1A

T

v2A v2B v2A
T

]
.

Equating corresponding blocks in the first and last columns, we obtain D = v1A,
F = v2A = v1A, and G = v2A. This forces v1 = v2, since A 6= 0 by assumption.
From either block of the middle column we see that E = v1(B−AT ); with this choice
for E all the equations are consistent, thus yielding

L(λ) = λZ + ZT = v1

(
λ

[
A B − AT

A A

]
+

[
AT AT

B − A AT

])
. (7.1.1)

This gives us a T -palindromic pencil in L1(P ) with right ansatz vector v = v1[ 1, 1 ]T .

Example 7.1.1 illustrates three important properties that turn out to hold more
generally. First, the choice of right ansatz vector v for which the corresponding
L(λ) ∈ L1(P ) is T -palindromic is restricted to ones that are themselves palindromic.
On the other hand, once a palindromic right ansatz vector v is chosen, the pencil
L(λ) ∈ L1(P ) is uniquely determined by insisting that it be T -palindromic. Finally,
although L(λ) is itself not in DL(P ), it is easily converted into a DL(P )-pencil simply
by interchanging the first and second block rows of L(λ), or equivalently, by premul-
tiplying by R2⊗ I where R2 is the 2× 2 reverse identity as in (6.1.4). This yields the
pencil

(R2 ⊗ I)L(λ) = v1

(
λ

[
A A
A B − AT

]
+

[
B − A AT

AT AT

])
,

which is readily confirmed to be in DL(P ) with ansatz vector v = v1[ 1, 1 ]T by using
column and row shifted sums.

We now state a theorem that generalizes these observations about Example 7.1.1.
Here R = Rk as in (6.1.4) with k = deg P .
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Theorem 7.1.2. Let P (λ) be a T -palindromic matrix polynomial and L(λ) ∈ L1(P )
with right ansatz vector v. Then the pencil L(λ) is T -palindromic if and only if
Rv = v and (R⊗ I)L(λ) ∈ DL(P ) with ansatz vector Rv. Moreover, for any v ∈ Fk

satisfying Rv = v there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz vector
v and T -palindromic structure.

The proof of this theorem is deferred to the next section, where it is subsumed under
an even more general result [Thm. 7.2.1] that encompasses all eight combinations of
? -(anti)-palindromic polynomial P with ? -(anti)-palindromic pencil in L1(P ).

7.2 Existence of Structured Pencils in L1(P )

For a ? -palindromic or ? -alternating polynomial P it is natural to try to find a
linearization with the same structure as P . In this section we begin that search by
characterizing the pencils in L1(P ) with the same structure as P . From the point
of view of numerical analysis, however, one of the most important reasons for using
a structure-preserving method is to preserve spectral symmetries. But we see in
Table 6.2.1 that for each structure under consideration there is also an “anti” version
of that structure with the same spectral symmetry. Thus it makes sense to try to
linearize a structured polynomial with an “anti-structured” pencil as well as with a
structured one; so in this section we also characterize the pencils in L1(P ) having the
anti-structure of P .

We begin with the ? -palindromic structures, showing that, just as in Theo-
rem 7.1.2, there is only a restricted class of admissible right ansatz vectors v that
can support a structured or anti-structured pencil in L1(P ). In each case the restric-
tions on the vector v can be concisely described using the reverse identity R = Rk

as defined in (6.1.4). For the ? -alternating structures there are analogous results
where the restrictions on the admissible right ansatz vectors v are described using
the diagonal alternating-signs matrix Σ = Σk as in (6.1.4).

Theorem 7.2.1 (Existence/Uniqueness of Structured Pencils, Part 1).
Suppose the matrix polynomial P (λ) is ? -palindromic or ? -anti-palindromic. Then
for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i ) and (ii ) in Ta-
ble 7.2.1 are equivalent. Moreover, for any v ∈ Fk satisfying one of the admissibility
conditions for v in (ii ), there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz
vector v and the corresponding structure in (i ).

Proof. We consider all eight cases simultaneously. Let P (λ) be ? -palindromic or
? -anti-palindromic, so that revP?(λ) = χP P (λ) for χP = ±1.

“(i) ⇒ (ii)”: Condition (i) means that L(λ) satisfies revL?(λ) = χL L(λ) for
χL = ±1, and since L(λ) ∈ L1(P ),

L(λ)(Λ⊗ I) = v ⊗ P (λ). (7.2.1)

Taking the reversal of both sides of (7.2.1), and noting that RΛ = revΛ, we have

revL(λ)(R⊗ I)(Λ⊗ I) = revL(λ)
(
(revΛ)⊗ I

)
= v ⊗ revP (λ) .
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Table 7.2.1: Admissible ansatz vectors for structured pencils (palindromic structures)

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (R⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Rv and

T -palindromic
T -palindromic Rv = v

T -anti-palindromic Rv = −v

T -anti-palindromic
T -palindromic Rv = −v

T -anti-palindromic Rv = v

∗-palindromic
∗-palindromic Rv = v

∗-anti-palindromic Rv = −v

∗-anti-palindromic
∗-palindromic Rv = −v

∗-anti-palindromic Rv = v

Now applying the adjoint ? to both sides, we obtain

(Λ? ⊗ I)(R⊗ I) revL?(λ?) = v? ⊗ revP?(λ?) ,

or equivalently,

(Λ?)⊗ I)(R⊗ I)L(λ?) = (χP χL v?)⊗ P (λ?) , (7.2.2)

since L(λ) and P (λ) are either ? -palindromic or ? -anti-palindromic. Then using the
fact that (7.2.2) is an identity, we replace λ? by λ to obtain

(ΛT ⊗ I)(R⊗ I)L(λ) = (χP χL v?)⊗ P (λ) , (7.2.3)

thus showing the pencil (R⊗I)L(λ) to be an element of L2(P ) with left ansatz vector
w = χP χL (v?)T. On the other hand, multiplying (7.2.1) on the left by R⊗ I yields

(R⊗ I)L(λ)(Λ⊗ I) = (Rv)⊗ P (λ) , (7.2.4)

so (R ⊗ I)L(λ) is also in L1(P ) with right ansatz vector Rv. Thus (R ⊗ I)L(λ) is
in DL(P ) = L1(P ) ∩ L2(P ), and from Theorem 3.4.2 the equality of right and left
ansatz vectors implies that

Rv = χP χL (v?)T =

{
χP χL v when ? = T ,

χP χL v when ? = ∗ .

All eight variants of condition (ii) now follow.

“(ii) ⇒ (i)”: Since (R⊗ I)L(λ) is in DL(P ) with ansatz vector Rv, we have

(R⊗ I)L(λ)(Λ⊗ I) = (Rv)⊗ P (λ) , (7.2.5)(
(ΛT R)⊗ I

)
L(λ) = (ΛT ⊗ I)(R⊗ I)L(λ) = (Rv)T ⊗ P (λ) . (7.2.6)
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Applying the adjoint ? to both ends of (7.2.6) gives

L?(λ?)
(
(R(ΛT )?)⊗ I

)
= R(vT )? ⊗ P?(λ?) ,

or equivalently
L?(λ)

(
(RΛ)⊗ I

)
= R(vT )? ⊗ P?(λ) . (7.2.7)

Note that all cases of condition (ii) may be expressed in the form R(vT )? = εχP v,
where ε = ±1. Then taking the reversal of both sides in (7.2.7) and using RΛ = revΛ
we obtain

revL?(λ)(Λ⊗ I) = (εχP v)⊗ revP?(λ) = (εv)⊗ P (λ) ,

and after multiplying by ε(R⊗ I),

ε(R⊗ I)revL?(λ)(Λ⊗ I) = (Rv)⊗ P (λ). (7.2.8)

Thus we see that the pencil ε(R ⊗ I)revL?(λ) is in L1(P ) with right ansatz vector
Rv. Now starting over again from identity (7.2.5) and taking the adjoint ? of both
sides, we obtain by analogous reasoning that

(R⊗ I)L(λ)(Λ⊗ I) = (Rv)⊗ P (λ)

⇐⇒ (ΛT ⊗ I)L?(λ)(R⊗ I) = (v?R)⊗ P?(λ) =
(
v? ⊗ P?(λ)

)
(R⊗ I)

⇐⇒ (ΛT ⊗ I)L?(λ) = v? ⊗ P?(λ)

⇐⇒ (revΛT ⊗ I) revL?(λ) = v? ⊗ revP?(λ)

⇐⇒ (ΛT R⊗ I) revL?(λ) = (εχP Rv)T ⊗ revP?(λ) = (εRv)T ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)
(
ε(R⊗ I)revL?(λ)

)
= (Rv)T ⊗ P (λ). (7.2.9)

Thus the pencil ε(R⊗ I)revL?(λ) is also in L2(P ) with left ansatz vector Rv. Taken
together, (7.2.8) and (7.2.9) show that ε(R ⊗ I) revL?(λ) is in DL(P ) with ansatz
vector Rv. But (R ⊗ I)L(λ) is also in DL(P ) with exactly the same ansatz vector,
so the uniqueness property of Theorem 3.4.2 for DL(P )-pencils implies that

ε(R⊗ I) revL?(λ) ≡ (R⊗ I)L(λ) ,

or equivalently ε revL?(λ) = L(λ). Hence L(λ) is ? -palindromic or ? -anti-palindromic,
depending on the parameter ε, which implies all the variants of condition (i) in Ta-
ble 7.2.1.

Finally, the existence and uniqueness of a structured pencil L(λ) corresponding to
any admissible right ansatz vector v follows directly from the existence and uniqueness
in Theorem 3.4.2 of the DL(P )-pencil (R⊗ I)L(λ) for the ansatz vector Rv.

We next present the analog of Theorem 7.2.1 for ? -even and ? -odd polynomials.
Here the matrix Σ = Σk is the diagonal matrix of alternating signs as defined in
(6.1.4).

Theorem 7.2.2 (Existence/Uniqueness of Structured Pencils, Part 2).
Suppose the matrix polynomial P (λ) is ? -even or ? -odd. Then for pencils L(λ) ∈
L1(P ) with right ansatz vector v, conditions (i ) and (ii ) in Table 7.2.2 are equivalent.
Moreover, for any v ∈ Fk satisfying one of the admissibility conditions for v in
(ii ), there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz vector v and the
corresponding structure in (i ).
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Table 7.2.2: Admissible ansatz vectors for structured pencils (alternating structures)

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (Σ ⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Σv and

T -even
T -even Σv = v

T -odd Σv = −v

T -odd
T -even Σv = −v

T -odd Σv = v

∗-even
∗-even Σv = v

∗-odd Σv = −v

∗-odd
∗-even Σv = −v

∗-odd Σv = v

Proof. The proof proceeds in a completely analogous fashion to the proof of Theo-
rem 7.2.1, with only two differences. The first is that in steps of the proof where we
took the reversal of two sides of an equation in Theorem 7.2.1, instead we now simply
replace λ by −λ. Observe that replacing λ by −λ in Λ has the same effect as premul-
tiplying it by Σ, that is ΣΛ = Λ(−λ) = [(−λ)k−1, . . . ,−λ, 1]T . The other difference
is that multiplications by R⊗ I are replaced with multiplications by Σ ⊗ I.

The connections established in Theorems 7.2.1 and 7.2.2 between ? -structured
pencils and DL(P )-pencils have two important consequences. The first is an effi-
cient procedure, to be discussed in section 7.3.1, for explicitly constructing these
? -structured pencils from the DL(P ) standard basis developed in section 3.3.2. The
second is a way to tell which of these structured pencils are actually linearizations
for P (see section 7.4 for details).

7.3 Construction of Structured Pencils

Having established the conditions under which ? -structured pencils exist, we now
describe two methods for constructing them. The first method is based on the con-
nection between these structured pencils and DL(P )-pencils, while the second goes
back to first principles to build structured pencils via the systematic interweaving of
shifted sums and the invocation of ? -structure.

7.3.1 Construction Using the Standard Basis for DL(P )

As we have seen in Theorems 7.2.1 and 7.2.2, ? -structured pencils in L1(P ) are
strongly related to elements of the space DL(P ). In particular, if L(λ) ∈ L1(P ) is ? -

structured with right ansatz vector v, then either L̃(λ) = (R⊗I)L(λ) or L̃(λ) = (Σ⊗
I)L(λ) is in DL(P ) with ansatz vector w = Rv or w = Σv, respectively, depending
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on whether palindromic or alternating structure is present. This observation leads to
the following procedure for the construction of structured pencils:

(1) Choose a right ansatz vector v ∈ Fk that is admissible for the desired type of
? -structure, i.e., one satisfying the appropriate condition in Table 7.2.1 or 7.2.2.

(2) Let w be Rv or Σv, respectively, and construct the unique pencil L̃(λ) ∈ DL(P )
with ansatz vector w.

(3) Premultiply L̃(λ) with R ⊗ I or Σ ⊗ I, respectively, to recover the desired
? -structured pencil L(λ) ∈ L1(P ) with right ansatz vector v. (Recall that
R2 = Σ2 = I.)

All that remains is to observe that step (2) may be carried out concretely and ex-
plicitly using the standard basis for DL(P ) described in section 3.3.2. Recall from
Theorem 3.3.2 that the pencil λXm −Xm−1, where Xm is defined in (3.3.6), (3.3.7),
and (3.3.8), is the mth standard basis pencil for DL(P ) corresponding to the ansatz
vector em. Then the DL(P )-pencil with ansatz vector w is just the linear combination

L̃(λ) =
k∑

j=1

wj

(
λXj −Xj−1

)
= λ

k∑
j=1

wjXj −
k∑

j=1

wjXj−1 . (7.3.1)

It should be emphasized here that any structured pencil L(λ) ∈ L1(P ) obtained by
this procedure is only a potential linearization, because only regular pencils in L1(P )
are linearizations for P (λ). (See the Strong Linearization Theorem, Thm. 2.2.3) We
will return to the issue of determining which of these structured pencils are actually
linearizations in section 7.4.

7.3.2 Structured Pencils via Shifted Sums

We now discuss an alternative approach, based directly on the use of shifted sums,
for the construction of ? -structured pencils in L1(P ). Indeed, it is worth noting that
this was the original method for building these structured pencils. We begin with
an illustration of this approach using an example of low degree.

Suppose we start with a T -palindromic polynomial P (λ) = λ3A+λ2B+λBT +AT ,
and our aim is to construct a T -palindromic pencil L(λ) ∈ L1(P ). By Theorem 7.2.1
the corresponding right ansatz vector v must satisfy Rv = v, so let us choose
v = [1,−1, 1]T . Then with L(λ) := λZ + ZT , the shifted sum Z ¢→ZT must by
Lemma 2.1.4 be

Z ¢→ZT = v ⊗ [ A B BT AT ] =




A B BT AT

−A −B −BT −AT

A B BT AT


 . (7.3.2)

By the definition of the shifted sum, the first block column of Z and the last block
column of ZT are now uniquely determined. Hence

λZ + ZT = λ




A ∗ ∗
−A ∗ ∗

A ∗ ∗


 +



∗ ∗ AT

∗ ∗ −AT

∗ ∗ AT


 , (7.3.3)
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where ∗ represents n×n blocks yet to be determined. We now continue by alternately
using the fact that L(λ) is T -palindromic and that L(λ) is in L1(P ). Thus, observing
that the second matrix in (7.3.3) is just the transpose of the first one, we obtain

λZ + ZT = λ




A ∗ ∗
−A ∗ ∗

A −A A


 +




AT −AT AT

∗ ∗ −AT

∗ ∗ AT


 .

Then invoke (7.3.2) again, which forces

λZ + ZT = λ




A B − AT BT + AT

−A ∗ ∗
A −A A


 +




AT −AT AT

∗ ∗ −AT

B + A BT − A AT


 .

The two matrices of the pencil are still transposes of one another, so this now implies

λZ + ZT = λ




A B − AT BT + AT

−A ∗ B − AT

A −A A


 +




AT −AT AT

BT − A ∗ −AT

B + A BT − A AT


 .

Using (7.3.2) once more, we finally obtain

λZ+ZT = λ




A B − AT BT + AT

−A A−BT −B B − AT

A −A A


+




AT −AT AT

BT − A AT −B −BT −AT

B + A BT − A AT


 ,

thus completing the construction.

More generally, suppose P (λ) =
∑k

j=1 λjAj is a ? -palindromic or ? -anti-palindromic

matrix polynomial and we want L(λ) ∈ L1(P ) to have the form λZ+εZ? with ε = ±1.
Then we can construct such a pencil in block-column/block-row-wise fashion follow-
ing the order displayed in (7.3.4). Here, each panel (that is, each portion of a block
column or block row) labelled with an odd number is determined by using informa-
tion from the shifted sum property Z ¢→(εZ?) = v⊗[

Ak · · · A0

]
, and each panel

labelled with an even number is determined by requiring that L(λ) is, depending on
ε, either ? -palindromic or ? -anti-palindromic, respectively.

λ




1

2

3

45

6

7

8. . .




+




1

3

2

4 5

7

6

8 . . .




(7.3.4)

The construction of ? -even or ? -odd pencils for ? -even or ? -odd matrix polynomials
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is carried out along similar lines, following the pattern in (7.3.5).

λ




1

3

2

45

7

6

8. . .




+




1

2

3

4 5

6

7

8 . . .




(7.3.5)

Again, each panel labelled with an odd number is constructed using information from
the fact that the desired pencil is to be in L1(P ), while each panel labelled with an
even number is constructed to maintain the ? -even or ? -odd structure of the pencil.

Because of the existence/uniqueness theorems for ? -structured pencils proved in
section 7.2, it follows that these procedures will work in general, provided that an
admissible right ansatz vector v for the given combination of structure in P and L,
i.e. one that satisfies the appropriate restriction described in Table 7.2.1 or 7.2.2, is
chosen to start the process off with.

A complete list of structured pencils for structured polynomials of degree two is
given in Table 7.7.1. Note that we do not include either ∗-odd or ∗-anti-palindromic
matrix polynomials in this list, because multiplication by i ∈ C immediately trans-
forms them into ∗-even and ∗-palindromic matrix polynomials, respectively. Some
selected structured pencils for ? -palindromic and ? -even matrix polynomials of de-
gree three are given in Tables 7.7.2 and 7.7.3.

7.4 Which Structured Pencils are Linearizations?

Now that we know when structured pencils in L1(P ) exist and how to construct
them, the one fundamental issue that remains is to determine which ones (if any)
are actually linearizations for P . Because of the intimate connections established
in section 7.2 between these structured pencils and DL(P )-pencils, the linearization
question is easy to settle by using the eigenvalue exclusion theorem from Chapter 4.
We recall that theorem again for the convenience of the reader.

Theorem 4.3.1 (Eigenvalue Exclusion Theorem).
Suppose that P (λ) is a regular matrix polynomial and L(λ) is in DL(P ) with nonzero
ansatz vector v. Then L(λ) is a (strong) linearization for P (λ) if and only if no
root of the v-polynomial p(x ; v) is an eigenvalue of P (λ). (Note that this statement
includes ∞ as one of the possible roots of p(x ; v) or possible eigenvalues of P (λ). )

From this result we can now quickly deduce the following theorem.

Theorem 7.4.1 (Structured Linearization Theorem).
Suppose the regular matrix polynomial P (λ) and the nonzero pencil L(λ) ∈ L1(P )
have one of the sixteen combinations of ? -structure considered in Tables 7.2.1 and
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7.2.2. Let v be the nonzero right ansatz vector of L(λ), and let

w =

{
Rv if P is ? -palindromic or ? -anti-palindromic ,

Σv if P is ? -even or ? -odd .

Then L(λ) is a (strong) linearization for P (λ) if and only if no root of the v-
polynomial p(x ; w) is an eigenvalue of P (λ).

Proof. For all eight ? -palindromic structure combinations, it was shown in Theo-
rem 7.2.1 that (R⊗I)L(λ) is in DL(P ) with ansatz vector Rv. Similarly for the eight
? -alternating structure combinations it was shown in Theorem 7.2.2 that (Σ⊗I)L(λ)
is in DL(P ) with ansatz vector Σv. Since clearly L(λ) is a linearization for P (λ) if
and only if (R⊗I)L(λ) or (Σ⊗I)L(λ) is, the desired result follows immediately from
the eigenvalue exclusion theorem.

Note that the tables of structured pencils at the end of this chapter also include the
corresponding linearization conditions obtained from Theorem 7.4.1. We illustrate
with an example from Table 7.7.1.

Example 7.4.2. Suppose the T -palindromic polynomial P (λ) = λ2A + λB + AT

from Example 7.1.1 is regular. Theorem 7.1.2 restricts the admissible right ansatz
vectors v ∈ F2 of a T -palindromic pencil L(λ) ∈ L1(P ) to those that satisfy Rv = v,
or equivalently, v = (v1, v1)

T . We see from Theorem 7.4.1 that such an L(λ) will be
a strong linearization for P (λ) if and only if none of the roots of the v-polynomial
p(x ; Rv) = v1x + v1 are eigenvalues of P (λ), that is, if and only if −1 is not an

eigenvalue of P (λ). On the other hand, a T -anti-palindromic pencil L̃(λ) ∈ L1(P )
will be a linearization for P if and only if λ = 1 is not an eigenvalue of P (λ). This is

because every admissible right ansatz vector for L̃(λ) is constrained by Theorem 7.2.1
to be of the form ṽ = [ v1,−v1 ]T , forcing p(x ; Rṽ) = −v1x + v1, with only +1 as a
root.

Although Theorem 7.4.1 settles the issue about which structured pencils are lin-
earizations, there is one further aspect of structure in this story. Theorems 7.2.1
and 7.2.2 put restrictions on the admissible right ansatz vectors of structured pen-
cils, which means that these vectors are themselves structured, and consequently so
are the scalar v-polynomials associated with them. What is interesting is that the
structure of the right ansatz vector and v-polynomial parallels the structure of the
matrix polynomial P (λ) and linearizing pencil L(λ) ∈ L1(P ).

Suppose, as in Example 7.4.2, that P (λ) is T -palindromic and we want a T -
palindromic linearization L(λ) ∈ L1(P ). Then by Theorem 7.2.1 any admissible right
ansatz vector satisfies Rv = v, and so has components that read the same forwards
or backwards. Thus v is itself palindromic, and the corresponding v-polynomial
p(x ; Rv) is T -palindromic (and also palindromic, since it is a scalar polynomial).

Theorems 7.2.1 and 7.2.2 imply that analogous parallels in structure hold for other
combinations of ? -structures in P and L and the relevant v-polynomial p(x ; Rv) or
p(x ; Σv); for convenience these are listed together in Table 7.4.1.
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Table 7.4.1: Parallelism of Structures

P (λ) L(λ) ∈ L1(P ) v-polynomial P (λ) L(λ) ∈ L1(P ) v-poly.

? -palin.
? -palin. ? -palin.

? -even
? -even ? -even

? -anti-palin. ? -anti-palin. ? -odd ? -odd

? -anti-palin.
? -palin. ? -anti-palin.

? -odd
? -even ? -odd

? -anti-palin. ? -palin. ? -odd ? -even

7.5 When Pairings Degenerate

The parallel of structures between matrix polynomial, L1(P )-pencil, and v-polynomial
(see Table 7.4.1) is aesthetically very pleasing: structure in a v-polynomial forces a
pairing of its roots as in Theorem 6.2.1 which is always of the same qualitative type as
the eigenvalue pairing present in the original structured matrix polynomial. However,
it turns out that this root pairing can sometimes be an obstruction to the existence
of any structured linearization in L1(P ) at all.

Using an argument based mainly on the very simple form of admissible right
ansatz vectors when k = 2, we saw in Example 7.4.2 that a quadratic T -palindromic
matrix polynomial having both +1 and −1 as eigenvalues cannot have a structured
linearization in L1(P ): the presence of −1 in the spectrum precludes the existence of
a T -palindromic linearization, while the eigenvalue +1 excludes T -anti-palindromic
linearizations. We now show that this difficulty is actually a consequence of root
pairing, and therefore can also occur for higher degree polynomials.

Whenever P (λ) has even degree, all right ansatz vectors of L1(P )-pencils have
even length, and hence the corresponding v-polynomials all have an odd number of
roots (counting multiplicities and including ∞). Root pairing then forces at least one
root of every v-polynomial to lie in a subset of C where this pairing “degenerates”. For
∗-palindromic and ∗-alternating polynomials the pairings are (λ, 1/ λ ) and (λ,−λ ),
so the degeneration sets are the unit circle and the imaginary axis (including ∞),
respectively. By contrast the pairings for T -palindromic and T -alternating polyno-
mials are (λ, 1/ λ) and (λ,−λ), so in these cases the degeneration sets are the finite
sets {−1, +1} and {0,∞}, respectively. Thus for any T -(anti)-palindromic matrix
polynomial P (λ) of even degree, every v-polynomial of a T -(anti)-palindromic pencil
in L1(P ) has at least one root belonging to {−1, +1}. It follows from the Structured
Linearization Theorem that any such P (λ) having both +1 and −1 as eigenvalues can
have neither a T -palindromic nor a T -anti-palindromic linearization in L1(P ). For
T -alternating matrix polynomials P (λ) of even degree, every relevant v-polynomial
has a root belonging to {0,∞}; thus if the spectrum of P (λ) includes both 0 and ∞,
then P cannot have a T -even or T -odd linearization in L1(P ).

In situations like the ones above where no structured linearization for P (λ) exists
in L1(P ), it is natural to ask whether P (λ) has a structured linearization that is not
in L1(P ), or perhaps has no structured linearizations at all. The next examples show
that either alternative may occur.

Example 7.5.1. Consider the 1× 1 T -palindromic polynomial P (λ) = λ2 + 2λ + 1.
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The only eigenvalue of P (λ) is −1, so by the observation in Example 7.4.2 we see that
P (λ) cannot have any T -palindromic linearization in L1(P ). But does P (λ) have a
T -palindromic linearization L(λ) which is not in L1(P )? Consider the general 2× 2
T -palindromic pencil

L(λ) = λZ + ZT = λ

[
w x
y z

]
+

[
w y
x z

]
, (7.5.1)

and suppose it is a linearization for P . Since the sole eigenvalue of P (i.e. λ = −1)
has geometric multiplicity one, the same must be true for L, that is, rank L(−1) must
be one. But

L(−1) =

[
0 y − x

x− y 0

]

does not have rank one for any values of w, x, y, z. Thus P (λ) does not have any
T -palindromic linearization at all, either inside or outside of L1(P ). However, P (λ)

does have a T -anti-palindromic linearization L̃(λ) in L1(P ), because it does not have
the eigenvalue +1. Choosing ṽ = (1,−1)T as right ansatz vector and following the
procedure in section 7.3 yields the structured linearization

L̃(λ) = λZ̃ − Z̃T = λ

[
1 3
−1 1

]
−

[
1 −1
3 1

]
∈ L1(P ).

Example 7.5.2. Consider the T -palindromic matrix polynomial

P (λ) = λ2

[
0 1
−1 0

]
+

[
0 −1
1 0

]
= λ2A + AT .

Since det P (λ) = (λ2 − 1)2, this polynomial P (λ) has +1 and −1 as eigenvalues,
each with algebraic multiplicity two. Thus P (λ) has neither a T -palindromic nor
a T -anti-palindromic linearization in L1(P ). However, it is possible to construct a
T -palindromic linearization for P (λ) that is not in L1(P ). By a strict equivalence

with the first companion linearization C1(λ) = λ
[

A 0
0 I

]
+

[
0 AT

−I 0

]
we obtain another

linearization



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 · C1(λ) ·




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


 = λ




0 0 −1 0
0 0 0 1
0 1 0 0
−1 0 0 0


 +




0 0 0 −1
0 0 1 0
−1 0 0 0
0 1 0 0




that is clearly T -palindromic. Using shifted sums it can easily be verified that this
linearization is in neither L1(P ) nor L2(P ). (Of course from the argument in Exam-
ple 7.4.2 we already know that it could not possibly be in L1(P ).)

Example 7.5.3. Consider the T -anti-palindromic matrix polynomial P (λ) = λ2 − 1
with eigenvalues ±1. Again, the presence of these eigenvalues precludes the existence
of either a T -palindromic or T -anti-palindromic linearization in L1(P ). But even
more is true. It turns out that P (λ) does not have any T -palindromic or T -anti-
palindromic linearization at all. Indeed, suppose that Lε(λ) = λZ + εZT was a
linearization for P (λ) with ε = ±1; that is, Lε(λ) is either T -palindromic or T -anti-
palindromic. Since P (λ) does not have the eigenvalue ∞, neither does L(λ), and so
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Z must be invertible. Thus Lε(λ) is strictly equivalent to the pencil λI + εZ−1ZT ,
which gives us yet another linearization for P . But then the matrix εZ−1ZT would,
like P (λ), have the simple eigenvalues +1 and −1, and hence det(εZ−1ZT ) = −1.
However, since Z is 2× 2 we have

det(εZ−1ZT ) = ε2 1

det Z
det Z = +1 ,

a contradiction. Thus P (λ) has neither a T -palindromic linearization nor a T -anti-
palindromic linearization.

These examples clearly show how the presence of eigenvalues +1 and−1 may cause
trouble in the context of finding structured linearizations for T -palindromic or T -anti-
palindromic matrix polynomials. One possibility for circumventing these difficulties
is to first deflate the eigenvalues +1 and −1 in some kind of structure-preserving
manner, using a procedure that works directly on the original matrix polynomial
P (λ). Since the resulting matrix polynomial P̂ (λ) will not have these troublesome

eigenvalues, a structured linearization from L1(P̂ ) can then be constructed. Such
structure-preserving deflation strategies are currently under investigation.

The situation is quite different for ∗-(anti)-palindromic and ∗-alternating matrix
polynomials, because now the set where pairing degenerates is not just {+1,−1}
or {0,∞}, but the entire unit circle in C, or the imaginary axis (including ∞),
respectively. The contrast between having a continuum versus a finite set where root
pairing degenerates makes a crucial difference in our ability to guarantee the existence
of structured linearizations in L1(P ). Indeed, suppose P (λ) is a regular ∗-palindromic
matrix polynomial of degree k, and we seek a ∗-palindromic linearization in L1(P ).
Then the v-polynomial p(x ; Rv) corresponding to an admissible right ansatz vector v
is again ∗-palindromic with k−1 roots occurring in pairs (λ, 1/λ ), by Theorem 6.2.1.
Thus if k is even, at least one root of p(x ; Rv) must lie on the unit circle. But since
the spectrum of P (λ) is a finite set, it is always possible to choose v so that all the
roots of p(x ; Rv) avoid the spectrum of P (λ). Here is an illustration for the case
k = 2.

Example 7.5.4. Consider a regular matrix polynomial P (λ) = λ2A + λB + A∗

with B∗ = B, that is, P (λ) is ∗-palindromic. We aim to show that P always has
a structured linearization in L1(P ); the main problem is to decide how to choose
a suitable right ansatz vector. Since P has only finitely many eigenvalues, there is
some ζ ∈ C of unit modulus such that ζ is not an eigenvalue of P (λ); let α ∈ C
be such that ζ = −α/α. From Theorem 7.2.1 we know that the right ansatz vector
of any ∗-palindromic pencil in L1(P ) must satisfy Rv = v. Thus v = [ α, α ]T is an
admissible right ansatz vector, and the associated v-polynomial p(x ; Rv) = αx + α
has only the root ζ. Therefore by Theorem 7.4.1 the pencil

L(λ) = λ

[
αA αB − αA∗

αA αA

]
+

[
αA∗ αA∗

αB − αA αA∗

]
∈ L1(P )

with right ansatz vector v is a ∗-palindromic linearization for P (λ).

It should be noted that all the observations made in this section for ?-(anti)-
palindromic polynomials have parallels for the case of ?-alternating structures. See
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Tables 7.7.1, 7.7.2, and 7.7.3 for a list of structured pencils from L1(P ) for ?-(anti)-
palindromic and ?-alternating matrix polynomials of degree k = 2, 3, together with
their corresponding “eigenvalue avoidance” linearization conditions.

7.6 Good Vibrations from Good Linearizations

As an illustration of the importance of structure preservation in practical problems
we reconsider Example 6.4.1, and briefly indicate how the techniques developed in
this thesis have had a significant impact on computations in this application.

Recall that the eigenvalue problem in this example comes from the vibration
analysis of rail tracks under excitation from high speed trains, and has the form

(
κA(ω) + B(ω) +

1

κ
A(ω)T

)
x = 0 (7.6.1)

where A,B are large, sparse, parameter-dependent, complex square matrices with B
complex symmetric and A highly singular. For details of the derivation of this model
see [37] and [38]. The parameter ω is the excitation frequency and the eigenvalue
problem has to be solved over a wide frequency range of ω = 0-5, 000 Hz. Clearly, for
any fixed value of ω, multiplying (7.6.1) by κ leads to the T -palindromic eigenvalue
problem introduced in (6.1.1). In addition to the presence of a large number of
zero and infinite eigenvalues caused by the rank deficiency of A, the finite nonzero
eigenvalues cover a wide range of magnitudes that increases as the finite element
discretization is made finer. The eigenvalues of a typical example of this problem
range from 10−15–1015, thereby making this a very challenging numerical problem.

Attempts at solving this problem with the QZ-algorithm without respecting its
structure resulted in computed eigenvalues with no correct digits even in quadruple
precision arithmetic. Furthermore, the symmetry of the spectrum with respect to the
unit circle was highly perturbed [37].

As an alternative, in [37], [38] a T -palindromic linearization for (7.6.1) was used.
Based on this linearization the infinite and zero eigenvalues of the resulting T -
palindromic pencil could be deflated in a structure-preserving way. The resulting
smaller T -palindromic problem was then solved via different methods, resulting in
eigenvalues with good accuracy in double precision arithmetic, i.e., within the range
of the discretization error of the underlying finite element discretization. Thus physi-
cally useful eigenvalues were determined without any change in either the mathemat-
ical model or the discretization scheme. The only change made was in the numerical
linear algebra, to methods based on the new structured linearization techniques in
this thesis.

Thus we see that the computation of “good vibrations” (i.e., accurate eigenvalues
and eigenvectors) requires the use of “good linearizations” (i.e., linearizations that
reflect the structure of the original polynomial).

7.7 Structured Subspaces of L1(P )

Although they have not been given their own name or notation, or had their prop-
erties explored in any detail, this chapter should not end without at least briefly
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mentioning the various structured subspaces of the pencil space L1(P ) and of the
corresponding ansatz vector space Fk that are “implicitly” defined by the results in
section 7.2. These subspaces can be viewed as the analogs for palindromic and alter-
nating polynomials of the structured subspaces S(P ) and H(P ) for symmetric and
Hermitian polynomials P that were discussed in chapter 5.

Suppose, for example, that P (λ) is T -palindromic of degree k. Then Theo-
rem 7.2.1 shows that in L1(P ) the sets of all T -palindromic and T -anti-palindromic
pencils form two nontrivial structured subspaces, of dimension dk/2e and bk/2c, re-
spectively; their corresponding admissible right ansatz vector sets also constitute
structured subspaces of Fk with the same dimensions dk/2e and bk/2c. Furthermore
these two ansatz vector subspaces are simply related to each other; they are orthogo-
nal complements in Fk. Similar results can also be shown to hold for the other seven
types of structured matrix polynomial considered in Theorems 7.2.1 and 7.2.2.
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Table 7.7.1: Structured linearizations for P (λ) = λ2A + λB + C. Except for the
parameters r ∈ R and z ∈ C, the linearizations are unique up to a (suitable) scalar
factor. The last column lists the roots of the v-polynomial p(x ; w) corresponding to
w = Rv (for palindromic structures) or w = Σv (for alternating structures); for L to
be a linearization these eigenvalues must be excluded from P .

Structure Structure v L(λ) with right ansatz vector v Root of
of P (λ) of L(λ) p(x ; w)

T -palin-
dromic

T -palin-
dromic

[
1
1

]
λ

[
A B − C
A A

]
+

[
C C

B −A C

]
−1

B = BT

C = AT

T -anti-
palin-
dromic

[
1
−1

]
λ

[
A B + C
−A A

]
+

[ −C C
−B −A −C

]
1

T -anti-
palin-

dromic.

T -palin-
dromic

[
1
−1

]
λ

[
A B + C
−A A

]
+

[ −C C
−B −A −C

]
1

B = −BT

C = −AT

T -anti-
palin-
dromic

[
1
1

]
λ

[
A B − C
A A

]
+

[
C C

B −A C

]
−1

∗-palin-
dromic

∗-palin-
dromic

[
z
z̄

]
λ

[
zA zB − z̄C
z̄A zA

]
+

[
z̄C zC

z̄B − zA z̄C

]
−z/z̄

B = B∗

C = A∗
∗-anti-
palin-
dromic

[
z
−z̄

]
λ

[
zA zB + z̄C
−z̄A zA

]
+

[ −z̄C zC
−z̄B − zA −z̄C

]
z/z̄

T -even T -even
[

0
1

]
λ

[
0 −A
A B

]
+

[
A 0
0 C

]
∞

A = AT

B = −BT

C = CT
T -odd

[
1
0

]
λ

[
A 0
0 C

]
+

[
B C
−C 0

]
0

T -odd T -even
[

1
0

]
λ

[
A 0
0 C

]
+

[
B C
−C 0

]
0

A = −AT

B = BT

C = −CT
T -odd

[
0
1

]
λ

[
0 −A
A B

]
+

[
A 0
0 C

]
∞

∗-even ∗-even
[

i
r

]
λ

[
iA −rA
rA rB + iC

]
+

[
rA + iB iC
−iC rC

]
−ir

A = A∗

B = −B∗

C = C∗
∗-odd

[
r
i

]
λ

[
rA −iA
iA iB + rC

]
+

[
iA + rB rC
−rC iC

]
i

r
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Table 7.7.2: ? -palindromic linearizations for the ?-palindromic matrix polynomial
P (λ) = λ3A + λ2B + λB? + A?. The last column lists the roots of the v-polynomial
corresponding to Rv. All ? -palindromic linearizations in L1(P ) for this matrix poly-
nomial are linear combinations of the first two linearizations in the case ? = T , and
real linear combinations of the first three linearizations in the case ? = ∗. A specific
example is given by the fourth linearization.

v L(λ) with right ansatz vector v Roots of
p(x ; Rv)




0
1
0


 λ




0 0 −A?

A B 0
0 A 0


 +




0 A? 0
0 B? A?

−A 0 0


 0,∞




1
0
1


 λ




A B −A? B?

0 A−B? B −A?

A 0 A


 +




A? 0 A?

B? −A A? −B 0
B B? −A A?


 i,−i




i
0
−i


 λ




iA iB + iA∗ iB∗

0 iA + iB∗ iB + iA∗

−iA 0 iA


 +




−iA∗ 0 iA∗

−iB∗ − iA −iA∗ − iB 0
−iB −iB∗ − iA −iA∗


 1,−1




1
1
1


 λ




A B −A? B? −A?

A B + A−B? B −A?

A A A


 +




A? A? A?

B? −A B? + A? −B A?

B −A B? −A A?


 −1± i

√
3

2

Table 7.7.3: ? -even linearizations for the ? -even matrix polynomial P (λ) = λ3A +
λ2B +λC +D, where A = −A?, B = B?, C = −C?, D = D?. The last column lists
the roots of the v-polynomial corresponding to Σv. All ? -even linearizations in L1(P )
for this matrix polynomial are linear combinations of the first two linearizations in
the case ? = T , and real linear combinations of the first three linearizations in the
case ? = ∗. A specific example is given by the fourth linearization.

v L(λ) with right ansatz vector v Roots of
p(x ;Σv)




0
0
1


 λ




0 0 A
0 −A −B
A B C


 +




0 −A 0
A B 0
0 0 D


 ∞




1
0
0


 λ




A 0 0
0 C D
0 −D 0


 +




B C D
−C −D 0
D 0 0


 0




0
i
0


 λ




0 −iA 0
iA iB 0
0 0 iD


 +




iA 0 0
0 iC iD
0 −iD 0


 0,∞




1
0
4


 λ




A 0 4A
0 C − 4A D − 4B

4A 4B −D 4C


 +




B C − 4A D
4A− C 4B −D 0

D 0 4D


 2i,−2i



Chapter 8

Conditioning of Eigenvalues of
Linearizations

In this thesis we have developed two pencil spaces L1(P ) and L2(P ) associated to
any matrix polynomial P , and shown that they provide large sources of linearizations
for P . The large size of these spaces has enabled us to find subspaces like B(P )
and DL(P ) of pencils with special properties, and to find linearizations that reflect
additional structures of P . But the very size of these spaces poses another problem:
among all these choices of linearization, how do you pick which one to compute with?
Is there a “best” linearization among the infinitely many possible pencils in these
spaces?

In this final chapter we begin to address these questions by considering the sensi-
tivity of eigenvalues of linearizations, with the aim of providing at least some guidance
on how to make this choice. The focus is on pencils in DL(P ) because of their key
role in finding structured linearizations, and because the special properties of these
pencils make for a relatively clean analysis. We also give a separate treatment of two
particular linearizations that are not in DL(P ), the two companion linearizations C1

and C2 (see Definition 1.1.5), because of their frequent use in current computational
practice. The results of this analysis gives some insight into potential instability of the
companion linearizations. Finally, some numerical experiments in Section 8.7 illus-
trate the ability of our analysis to predict well the accuracy of eigenvalues computed
via different linearizations.

8.1 Eigenvalue Conditioning of Matrix Polynomi-

als

Let λ be a simple, finite, nonzero eigenvalue of P (λ) =
∑k

i=0 λiAi with corresponding
right eigenvector x and left eigenvector y. A normwise condition number of λ can be
defined by

κP (λ) = lim
ε→0

sup
{ |∆λ|

ε|λ| :
(
P (λ + ∆λ) + ∆P (λ + ∆λ)

)
(x + ∆x) = 0,

‖∆Ai‖2 ≤ εωi, i = 0: k
}

, (8.1.1)

99
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where ∆P (λ) =
∑k

i=0 λi∆Ai. The ωi are nonnegative weights that allow flexibility
in how the perturbations are measured; in particular, ∆Ai can be forced to zero by
setting ωi = 0. An explicit formula for this condition number is given in the following
result.

Theorem 8.1.1 (Tisseur [80, Thm. 5]). The normwise condition number κP (λ)
is given by

κP (λ) =

(∑k
i=0 |λ|i ωi

)‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| . (8.1.2)

The condition number κP (λ) has the unfortunate disadvantage that it is not
defined for zero or infinite eigenvalues. In order to give a unified treatment for all λ,
we rewrite the polynomial in the homogeneous form

P (α, β) =
k∑

i=0

αiβk−iAi = βkP (λ)

and consider eigenvalues as pairs (α, β) 6= (0, 0) that are solutions of the scalar equa-
tion det P (α, β) = 0; here λ ≡ α/β. More precisely, since P (α, β) is homogeneous
in α and β, we define an eigenvalue as any line through the origin in C2 \{0} of
solutions of det P (α, β) = 0. Let T(α,β)P1 denote the tangent space at (α, β) to P1,
the projective space of lines through the origin in C2\{0}. Dedieu and Tisseur [18]
define a condition operator K(α, β) : (Cn×n)k+1 → T(α,β)P1 for the eigenvalue (α, β)
as the differential of the map from the (k + 1)-tuple (A0, . . . , Ak) to (α, β) in pro-
jective space. The significance of this condition operator is shown by the following
result, which is an extension of a result of Dedieu [17, Thm. 6.1]. Here and below,
we sometimes write a representative of an eigenvalue (α, β) as a nonzero row vector
[ α, β ] ∈ C1×2.

Theorem 8.1.2. Let (α, β) be a simple eigenvalue of P (α, β) with representative
[ α, β ] normalized so that ‖[ α, β ]‖2 = 1. For sufficiently small (k + 1)-tuples

∆A ≡ (∆A0, . . . , ∆Ak),

the perturbed polynomial P̃ (α, β) =
∑k

i=0 αiβk−i(Ai + ∆Ai) has a simple eigenvalue

(α̃, β̃) for which, with the normalization [ α, β ][ α̃, β̃ ]∗ = 1,

[ α̃, β̃ ] = [ α, β ] + K(α, β)∆A + o(‖∆A‖).
A “homogeneous condition number ” κ̂P (α, β) can now be defined as a norm of

the condition operator:

κ̂P (α, β) = max
‖∆A‖≤1

‖K(α, β)∆A‖2

‖ [ α, β ] ‖2

,

where the norm on ∆A is arbitrary. Note that this condition number is well-defined,
since the right-hand side is independent of the choice of representative of the eigen-
value (α, β). Let θ

(
(µ, ν), (µ̃, ν̃)

)
be the angle between the two lines (µ, ν) and (µ̃, ν̃).

Then for θ small enough,

|θ((µ, ν), (µ̃, ν̃)
)| ≤

∣∣tan
(
θ
(
(µ, ν), (µ̃, ν̃)

))∣∣ =

∥∥∥∥[ µ̃, ν̃ ]
‖[ µ, ν ]‖2

[ µ̃, ν̃ ][ µ, ν ]∗
− [ µ, ν ]

‖[ µ, ν ]‖2

∥∥∥∥
2

.
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Inserting the particular representatives [ α, β ] and [ α̃, β̃ ] of the original and perturbed
eigenvalues, normalized as in Theorem 8.1.2, gives

∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ ‖ [ α, β ]− [ α̃, β̃ ] ‖2 = ‖K(α, β)∆A‖2 + o(‖∆A‖).

Hence, the angle between the original and perturbed eigenvalues satisfies

∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ κ̂P (α, β)‖∆A‖+ o(‖∆A‖). (8.1.3)

By taking the sine of both sides we obtain a perturbation bound in terms of sin |θ|,
which is the chordal distance between (α, β) and (α̃, β̃) as used by Stewart and Sun
[79, Chap. 6]. Of course, sin |θ| ≤ |θ| and asymptotically these two measures of
distance are equal.

We will take for the norm on (Cn×n)k+1 the ω-weighted Frobenius norm

‖A‖ = ‖(A0, . . . , Ak)‖ = ‖[ ω−1
0 A0, . . . , ω

−1
k Ak ]‖F , (8.1.4)

where the ωi are nonnegative weights that are analogous to those in (8.1.1). Define
the operatorsDα ≡ ∂

∂α
andDβ ≡ ∂

∂β
. Then the following theorem is a trivial extension

of a result of Dedieu and Tisseur [18, Thm. 4.2] that treats the unweighted Frobenius
norm.

Theorem 8.1.3. The normwise condition number κ̂P (α, β) of a simple eigenvalue
(α, β) is given by

κ̂P (α, β) =

(
k∑

i=0

|α|2i|β|2(k−i)ω2
i

)1/2

‖y‖2 ‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x
∣∣ . (8.1.5)

As a check, we note that the expression (8.1.5) is independent of the choice of
representative of (α, β) and of the scaling of x and y. Note also that for a simple
eigenvalue the denominator terms y∗P ′(λ)x in (8.1.2) and y∗(β̄Dα− ᾱDβ)P |(α,β)x in
(8.1.5) are both nonzero, as shown in [2, Thm. 3.2] for the former and [18, Thm. 3.3
(iii)] for the latter.

To summarize, the condition numbers κP (λ) and κ̂P (α, β) give two different mea-
sures of the sensitivity of a simple eigenvalue. The advantage of κP (λ) is that it is
an immediate generalization of the well-known Wilkinson condition number for the
standard eigenproblem [86, p. 69] and it measures the relative change in an eigen-
value, which is a concept readily understood by users of numerical methods. In favor
of κ̂P (α, β) is that it elegantly treats all eigenvalues, including those at zero and
infinity; moreover, it provides the bound (8.1.3) for the angular error, which is an
alternative to the relative error bound that κP (λ) provides. Both condition numbers
are therefore of interest, and hence will both be treated throughout the rest of this
chapter.

We note that in MATLAB 7.0 (R14) the function polyeig that solves the polyno-
mial eigenvalue problem returns the condition number κ̂P (α, β) as an optional output
argument.
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8.2 Eigenvalue Conditioning of DL(P )-Linearizations

We now focus on the condition numbers κL(λ) and κ̂L(α, β) of a simple eigenvalue of a
linearization L(λ) = λX +Y from DL(P ). Our aim is to obtain expressions for these
condition numbers that have two properties: they should separate the dependence on
P from that of the ansatz vector v defining L, and they should have minimal explicit
dependence on X and Y . In the next section we will then consider how to minimize
these expressions over all v. Note the distinction between the condition numbers κL

and κ̂L of the pencil and κP and κ̂P of the original polynomial. Note also that a
simple eigenvalue of L is necessarily a simple eigenvalue of P , and vice versa, in view
of Definition 1.1.4.

We first carry out the analysis for κ̂L(α, β). Let x and y denote right and left
eigenvectors of P , and z and w denote right and left eigenvectors of L, all correspond-
ing to the eigenvalue (α, β). Recalling that λ = α/β, define

L(α, β) := αX + βY = βL(λ) (8.2.1)

and Λα,β := [αk−1, αk−2β, . . . , βk−1]T = βk−1Λ .

In view of the relations in Theorems 2.1.8, 2.1.13, and 2.2.4 between eigenvectors of
P and those of L we can take

w = Λα,β ⊗ y, z = Λα,β ⊗ x. (8.2.2)

(These expressions are valid for both finite and infinite eigenvalues.) The condition
number κ̂L(α, β) can now be evaluated by applying Theorem 8.1.3 to L:

κ̂L(α, β) =
√
|α|2ω2

X + |β|2ω2
Y

‖w‖2 ‖z‖2∣∣w∗(β̄DαL− ᾱDβL)|(α,β)z
∣∣ , (8.2.3)

where an obvious notation has been used for the weights in (8.1.4).
In the homogeneous notation (8.2.1) the condition in Definition (2.1.1) that char-

acterizes a member of L1(P ) can be rewritten as

L(α, β)(Λα,β ⊗ In) = v ⊗ P (α, β) , (8.2.4)

where for the moment α and β denote variables. Differentiating with respect to α
gives

DαL(α, β)(Λα,β ⊗ In) + L(α, β)(DαΛα,β ⊗ In) = v ⊗DαP (α, β). (8.2.5)

Now evaluate this equation at an eigenvaluefootnoteStrictly speaking, here and later
we are evaluating at a representative of an eigenvalue. All the condition number
formulae are independent of the choice of representative. (α, β). Multiplying on the
left by w∗ and on the right by 1⊗ x, and using (8.2.2), we obtain

w∗(DαL)|(α,β)z = ΛT
α,βv ⊗ y∗(DαP )|(α,β)x

= ΛT
α,βv · y∗(DαP )|(α,β)x. (8.2.6)

Exactly the same argument leads to

w∗(DβL)|(α,β)z = ΛT
α,βv · y∗(DβP )|(α,β)x. (8.2.7)
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Hence, from (8.2.6) and (8.2.7),

w∗(β̄DαL− ᾱDβL)|(α,β)z = ΛT
α,βv · y∗(β̄DαP − ᾱDβP )|(α,β)x.

The first factor on the right can be viewed as the homogeneous version

p(α, β ; v) := ΛT
α,βv = vT Λα,β =

k∑
i=1

viα
k−iβi−1 = βkp(λ ; v) (8.2.8)

of the scalar v-polynomial p(λ ; v) = ΛT v introduced in Definition 4.2.1.
Noting, from (8.2.2), that ‖w‖2 = ‖Λα,β‖2 ‖y‖2 and ‖z‖2 = ‖Λα,β‖2 ‖x‖2, we

obtain an alternative form of (8.2.3) that clearly separates the dependence of κ̂L on
P from its dependence on the ansatz vector v. From now on the extended notation
κ̂L(α, β ; v) will be used to emphasize this dependence of κ̂L on the vector v ∈ Ck

that defines the linearization in DL(P ).

Theorem 8.2.1. Let (α, β) be a simple eigenvalue of P with right and left eigenvec-
tors x and y, respectively. Then for any pencil L(α, β) = αX + βY ∈ DL(P ) that is
a linearization of P ,

κ̂L(α, β ; v) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β ; v)| · ‖Λα,β‖2
2 ‖y‖2 ‖x‖2∣∣ y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ , (8.2.9)

where v is the ansatz vector of L(α, β) as in (8.2.4).

Now we give a similar analysis for the condition number κL(λ) of a simple, finite,
nonzero eigenvalue λ. In view of (8.1.2), our aim is to obtain an expression for
|w∗L′(λ)z|. Since L ∈ L1(P ),

L(λ)(Λ⊗ In) = v ⊗ P (λ). (8.2.10)

Differentiating the identity (8.2.10) with respect to λ gives

L′(λ)(Λ⊗ In) + L(λ)(Λ′ ⊗ In) = v ⊗ P ′(λ). (8.2.11)

Evaluating at an eigenvalue λ, premultiplying by w∗ = ΛT ⊗ y∗, postmultiplying by
1⊗ x, and using (8.2.2) gives

w∗L′(λ)z = ΛT v ⊗ y∗P ′(λ)x = p(λ ; v) · y∗P ′(λ)x ,

and thus the following analog of Theorem 8.2.1.

Theorem 8.2.2. Let λ be a simple, finite, nonzero eigenvalue of P with right and
left eigenvectors x and y, respectively. Then for any pencil L(λ) = λX + Y ∈ DL(P )
that is a linearization of P ,

κL(λ ; v) =
(|λ|ωX + ωY )

|p(λ ; v)| · ‖Λ‖
2
2 ‖y‖2 ‖x‖2

|λ| |y∗P ′(λ)x| , (8.2.12)

where v is the ansatz vector of L(λ) as in (8.2.10).

The expression (8.2.9) shows that κ̂L(α, β) is finite if and only if (α, β) is not a
zero of p(α, β ; v), and (8.2.12) gives essentially the same information for λ 6= 0,∞.
This result dovetails nicely with the Eigenvalue Exclusion Theorem from section 4.3,
which shows that L(λ) is a linearization for P (λ) if and only if no eigenvalue of P
(including ∞) is a root of p(λ ; v).



104 CHAPTER 8. CONDITIONING OF EIGENVALUES OF LINEARIZATIONS

8.3 Minimizing κ̂L(α, β) and κL(λ)

Recall that pencils in DL(P ) are uniquely defined by their ansatz vectors v. Our aim
in this section is to minimize the condition numbers κL(λ; v) and κ̂L(α, β ; v) over all
v ∈ Ck, thereby identifying a best conditioned linearization in DL(P ) for a particular
eigenvalue.

A technical subtlety here is that the minimum of κL(λ; v) or κ̂L(α, β ; v) over v
could potentially occur at an ansatz vector v for which L(λ) is not a linearization;
note that the formulas (8.2.9) and (8.2.12) depend only on a particular eigenvalue,
whereas Theorem 4.3.1 says that the property of being a linearization involves all
the eigenvalues. In this case formulas (8.2.9) and (8.2.12) are not valid. However,
such “bad” v form a closed, nowhere dense set of measure zero [Thm. 4.3.2], so an
arbitrarily small perturbation to v can make L a linearization.

Expressions (8.2.9) and (8.2.12) have similar forms, with dependence on v confined
to the p(·) terms in the denominator and the ω terms in the numerator. For most of
this section we work with the condition number (8.2.9) for the pencil in homogeneous
form, returning to κL(λ) at the end of the section.

For the weights we will take the natural choice

ωX = ‖X‖2, ωY = ‖Y ‖2. (8.3.1)

Since by Theorems 3.3.2 and 3.4.2 the entries of X and Y are linear combinations of
the entries of v, this choice of weights makes the condition numbers independent of
the scaling of v.

We consider first the v-dependence of ‖X‖2 and ‖Y ‖2.

Lemma 8.3.1. For L(λ) = λX + Y ∈ DL(P ) defined by v ∈ Ck we have

‖v‖2 ‖Ak‖2 ≤ ‖X‖2 ≤ k r1/2 max
i
‖Ai‖2 ‖v‖2, (8.3.2)

‖v‖2 ‖A0‖2 ≤ ‖Y ‖2 ≤ k r1/2 max
i
‖Ai‖2 ‖v‖2, (8.3.3)

where r is the number of nonzero entries in v.

Proof. Partition X and Y as block k × k matrices with n × n blocks. From The-
orem 2.1.5 we know that the first block column of X is v ⊗ Ak and the last block
column of Y is v⊗A0. The lower bounds are therefore immediate. From the form of
the standard basis for DL(P ) in Theorem 3.3.2 it can be seen that each block Xpq of
X can be expressed as a sum of the form

Xpq =
k∑

i=1

siviA`i
, (8.3.4)

where si ∈ {−1, 0, 1} and the indices `i are distinct. Hence

‖Xpq‖2 ≤ max
i
‖Ai‖2

k∑
i=1

|vi| = max
i
‖Ai‖2 ‖v‖1 ≤ r1/2 max

i
‖Ai‖2 ‖v‖2 .

The upper bound on ‖X‖2 follows on using

‖X‖2 ≤ k max
p,q

‖Xpq‖2 , (8.3.5)
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which holds for any block k×k matrix. An identical argument gives the upper bound
for ‖Y ‖2.

Hence, provided the ‖Ai‖2 values vary little in magnitude with i, the numerator
of (8.2.9) varies little in magnitude with v if ‖v‖2 is fixed. Under this proviso, we will
approximately minimize the condition number κ̂L(α, β) if we maximize the p(α, β ; v)
term. We therefore restrict our attention to the denominator of the expression (8.2.9)
for κ̂L and maximize |p(α, β ; v)| = |ΛT

α,βv| subject to ‖v‖2 = 1, for a given eigenvalue
(α, β). By the Cauchy–Schwarz inequality the maximizing v and the corresponding
value of the polynomial are

v∗ =
Λα,β

‖Λα,β‖2

, |p(α, β ; v∗)| = ‖Λα,β‖2. (8.3.6)

Two special cases that play an important role in the rest of this paper are worth
noting:

(α, β) = (1, 0), λ = ∞ ⇒ v∗ = e1,
(α, β) = (0, 1), λ = 0 ⇒ v∗ = ek.

The next theorem compares the condition numbers for v = e1 and v = ek with
the optimal condition numberamong all linearizations in DL(P ). Define

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Ak‖2)
≥ 1. (8.3.7)

When we write infv κ̂L(α, β ; v) the infimum is understood to be taken over v for
which L is a linearization.

Theorem 8.3.2. Let (α, β) be a simple eigenvalue of P and consider pencils L ∈
DL(P ). Take the weights (8.3.1) for κ̂L. Then

κ̂L(α, β ; e1) ≤ ρk3/2 inf
v

κ̂L(α, β ; v) if A0 is nonsingular and |α| ≥ |β| , (8.3.8)

κ̂L(α, β ; ek) ≤ ρk3/2 inf
v

κ̂L(α, β ; v) if Ak is nonsingular and |α| ≤ |β| . (8.3.9)

Proof. Note first that the nonsingularity conditions on A0 and Ak ensure that 0
and ∞, respectively, are not eigenvalues of P , and hence that v = e1 and v = ek,
respectively, yield linearizations.

Since κ̂L(α, β ; v) is invariant under scaling of v, we can set ‖v‖2 = 1. In view of the
bounds in Lemma 8.3.1, the v-dependent term

√
|α|2ω2

X + |β|2ω2
Y in the numerator

of (8.2.9) is bounded below by min(‖A0‖2, ‖Ak‖2)
√
|α|2 + |β|2 for any such v, and

bounded above by k maxi ‖Ai‖2

√
|α|2 + |β|2 when v = ej for some j. Hence to prove

(8.3.8) it suffices to show that

max
‖v‖2=1

|p(α, β ; v)| ≤
√

k |p(α, β ; e1)| for |α| ≥ |β|. (8.3.10)

This inequality is trivial for β = 0, so we can assume β 6= 0 and divide through by
βk−1 to rewrite the desired inequality as

max
‖v‖2=1

|p(λ ; v)| ≤
√

k |p(λ ; e1)| for |λ| ≥ 1.
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But this inequality follows from

|p(λ ; v)| = |ΛT v| ≤ ‖Λ‖2 ≤
√

k |λk−1| =
√

k |p(λ ; e1)|.

The proof of (8.3.9) is entirely analogous.

Theorem 8.3.2 says that for matrix polynomials with coefficient matrices of roughly
equal norm (so ρ is of order 1), one of the two pencils with v = e1 and v = ek will
always give a near optimal condition number κ̂L for a given eigenvalue, in the sense
that κ̂L differs from the minimal value by a factor of at most ρk3/2. Moreover, which
pencil is nearly optimal depends only on whether the given eigenvalue is greater than
or less than 1 in modulus. Note, however, that taking the wrong choice of v = e1 or
v = ek can be disastrous:

κ̂L(0, β ; e1) = ∞ , κ̂L(α, 0; ek) = ∞ (8.3.11)

(and in these situations the pencils are not even linearizations); see the final example
in Section 8.7.

For the quadratic polynomial Q(λ) = λ2A + λB + C, the pencils corresponding
to v = e1 and v = ek(= e2) are, respectively (from Table 3.3.1),

L1(λ) = λ

[
A 0
0 −C

]
+

[
B C
C 0

]
, L2(λ) = λ

[
0 A
A B

]
+

[−A 0
0 C

]
. (8.3.12)

These pencils were analyzed by Tisseur [80], along with a companion form lineariza-
tion (which belongs to L1(Q) but not DL(Q)). She showed that if ‖A‖2 = ‖B‖2 =
‖C‖2 = 1 then κL1

(λ) ≤ κL2
(λ) for |λ| ≥ √

2 and κL1
(λ) ≥ κL2

(λ) for |λ| ≤ 2−1/2.
The analysis in Theorem 8.3.2 implies that analogous inequalities hold for arbitrary
degrees k and arbitrary ρ. In fact, working directly from Lemma 8.3.1 we can show
that

κ̂L(α, β ; e1) ≤ κ̂L(α, β ; ek) if |α| ≥ (ρk)
1

k−1 |β|,
κ̂L(α, β ; ek) ≤ κ̂L(α, β ; e1) if |β| ≥ (ρk)

1
k−1 |α|,

with entirely analogous inequalities holding for κL(λ).
Now we compare the optimal κ̂L(α, β ; v) with κ̂P (α, β), the condition number of

the eigenvalue for the original polynomial.

Theorem 8.3.3. Let (α, β) be a simple eigenvalue of P . Then

1

ρ
≤ infv κ̂L(α, β ; v)

κ̂P (α, β)
≤ k2ρ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κ̂P and as in (8.3.1) for κ̂L, and ρ is
defined in (8.3.7).

Proof. From Theorem 8.1.3,

κ̂P (α, β) =

(∑k
i=0 |α|2i|β|2(k−i) ‖Ai‖2

2

)1/2

‖y‖2 ‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x
∣∣ .
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On the other hand, for v = v∗ in (8.3.6) we have, from Theorem 8.2.1,

κ̂L(α, β ; v∗) =

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2 ‖y‖2 ‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ . (8.3.13)

If L is not a linearization for v = v∗ then we need to interpret v∗ as an arbitrarily
small perturbation of v∗ for which L is a linearization. Using (8.3.2) and (8.3.3) and∑k

i=0 |α|2i|β|2(k−i) ‖Ai‖2
2 ≥ (|α|2k + |β|2k) min(‖A0‖2, ‖Ak‖2)

2, it is easy to see that

κ̂L(α, β ; v∗)
κ̂P (α, β)

≤ ρk3/2f(α, β),

where

f(α, β) =

√
|α|2 + |β|2

(∑k
i=1 |α|2(i−1)|β|2(k−i)

)1/2

√
|α|2k + |β|2k

.

From (8.8.1) in Proposition 8.8.1 we have f(α, β) ≤
√

k. The upper bound follows
since infv κ̂L(α, β ; v) ≤ κ̂L(α, β ; v∗). For the lower bound we have, for any v with
‖v‖2 = 1,

κ̂L(α, β ; v)

κ̂P (α, β)
=

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2

2(∑k
i=0 |α|2i|β|2(k−i)‖Ai‖2

2

)1/2

|p(α, β ; v)|

≥
√
|α|2 + |β|2 min(‖A0‖2, ‖Ak‖2)‖Λα,β‖2(∑k

i=0 |α|2i|β|2(k−i)
)1/2

maxi ‖Ai‖2

≥ 1

ρ

√
|α|2 + |β|2

(∑k
i=1 |α|2(i−1)|β|2(k−i)

)1/2

(∑k
i=0 |α|2i|β|2(k−i)

)1/2
=:

1

ρ
g(α, β),

since |p(α, β ; v)| ≤ ‖Λα,β‖2 by the Cauchy–Schwarz inequality. From (8.8.2), g(α, β) ≥
1, and the lower bound follows.

Finally we state the analogs of Theorem 8.3.2 and 8.3.3 for κL(λ). Keep in mind
that ρ is the quantity defined in (8.3.7).

Theorem 8.3.4. Let λ be a simple, finite, nonzero eigenvalue of P and consider
pencils L ∈ DL(P ). Take the weights (8.3.1) for κL. Then

κL(λ ; e1) ≤ ρk3/2 inf
v

κL(λ ; v) if A0 is nonsingular and |λ| ≥ 1 , (8.3.14)

κL(λ ; ek) ≤ ρk3/2 inf
v

κL(λ ; v) if Ak is nonsingular and |λ| ≤ 1 . (8.3.15)

Proof. The proof is entirely analogous to that of Theorem 8.3.2.

Theorem 8.3.5. Let λ be a simple, finite, nonzero eigenvalue of P . Then
(

2
√

k

k + 1

)
1

ρ
≤ infv κL(λ ; v)

κP (λ)
≤ k2ρ ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κP and as in (8.3.1) for L.
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Proof. The proof is very similar to that of Theorem 8.3.3, but with slightly different
f and g having the form of f3 and f4 in Proposition 8.8.1.

Theorems 8.3.3 and 8.3.5 show that for polynomials whose coefficient matrices
do not vary too much in norm, the best conditioned linearization in DL(P ) for a
particular eigenvalue is about as well conditioned as P itself for that eigenvalue, to
within a small constant factor. This is a rather surprising result, given that the
condition numbers κ̂L(α, β) and κL(λ) permit arbitrary perturbations in the DL(P )-
pencils L(λ) = λX + Y that do not respect the zero and repeated block structure of
X and Y (for two particular instances of this block structure with k = 2 see (8.3.12)).
Under the same assumptions on the ‖Ai‖2, by combining Theorems 8.3.2 and 8.3.3
or Theorems 8.3.4 and 8.3.5 we can conclude that, for any given eigenvalue, one of
the two pencils with v = e1 and v = ek will be about as well conditioned as P itself
for that eigenvalue.

8.3.1 Several Eigenvalues

Suppose now that several eigenvalues (α1, β1), . . . , (αr, βr) are of interest and that
neither |αi| ≥ |βi| for all i nor |αi| ≤ |βi| for all i. A reasonable way to define a
single pencil that is best for all these eigenvalues is by maximizing the 2-norm of the
r-vector of the reciprocals of the eigenvalue condition numbers for the pencil. This
vector can be written, using Theorem 8.2.1, as

diag
(
(|αi|2ω2

X + |βi|2ω2
Y )1/2 ‖Λαi,βi

‖2
2‖yi‖2‖xi‖2

)−1

× diag(|y∗i (β̄iDαP − ᾱiDβP )|(αi,βi)xi|)




ΛT
α1,β1

...
ΛT

αr,βr


 v =: Bv.

Assume that ρ = O(1), so that ωX and ωY in (8.3.1) are roughly constant in ‖v‖2.
Then we can set ωX = ωY = 1 and define the optimal v as the right singular vector
corresponding to the largest singular value of B. This approach requires knowledge
of the eigenvectors xi and yi as well as the λi. If the eigenvectors are not known then
we can simplify B further to

diag
(
(|αi|2 + |βi|2)1/2 ‖Λαi,βi

‖2
2

)−1




ΛT
α1,β1

...
ΛT

αr,βr


 .

So far we have implicitly assumed that we have a good estimate of the eigenvalues
of interest. Suppose, instead, that we know only a region S of the complex plane
in which the eigenvalues of interest lie. In this case a natural approach is to try to
minimize the v-dependent part of the eigenvalue condition number over S. Continuing
to assume ρ = O(1), and working now with κL(λ; v), the problem becomes to find
the v that achieves the maximum in the problem

max
‖v‖2=1

min
λ∈S

|p(λ; v)|.

This uniform (or Chebyshev) complex approximation problem can be expressed as a
semi-infinite programming problem and solved by numerical methods for such prob-
lems [70, Sec. 2.3].
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8.4 Quadratic Polynomials

We now concentrate our attention on quadratic polynomials Q(λ) = λ2A + λB + C,
since these are in practice the most important polynomials of degree 2 or higher. For
brevity write

a = ‖A‖2, b = ‖B‖2, c = ‖C‖2. (8.4.1)

The quantity ρ in Theorems 8.3.2–8.3.5 is now

ρ =
max(a, b, c)

min(a, c)
.

Clearly, ρ is of order 1 if

b <∼ max(a, c) and a ≈ c.

If these conditions are not satisfied then we can consider scaling Q to try to improve
ρ. Write λ = µγ, γ ∈ R and

Q(λ) = λ2A + λB + C = µ2(γ2A) + µ(γB) + C =: µ2Ã + µB̃ + C̃ =: Q̃(µ) . (8.4.2)

The γ that minimizes max(‖Ã‖2/‖B̃‖2, ‖C̃‖2/‖B̃‖2) = max(γa/b, c/(γb)) is easily
seen to be

γ =
√

c/a, (8.4.3)

and it yields

‖Ã‖2 = c, ‖B̃‖2 = b
√

c/a, ‖C̃‖2 = c.

Hence, for the scaled problem,

ρ = max(1, b/
√

ac).

This scaling is intended to improve the conditioning of the linearizations, but what
does it do to the conditioning of the quadratic itself? It is easy to see that κP (λ) is
invariant under this scaling when ωi = ‖Ai‖2, but that κ̂P (α, β) is scale-dependent.
We note that the scaling (8.4.2) and (8.4.3) is used by Fan, Lin, and Van Dooren
[23]; see Section 8.6.

With these observations Theorems 8.3.4 and 8.3.5 can be combined and specialized
as follows.

Theorem 8.4.1. Let λ denote a simple eigenvalue of Q(λ) = λ2A+λB +C or of the

scaled quadratic Q̃ defined by (8.4.2) and (8.4.3). Take the weights (8.3.1) for κL(λ).
With the notation (8.4.1), assume that either

• b <∼ max(a, c) and a ≈ c, in which case let P = Q and L ∈ DL(Q), or

• b <∼
√

ac, in which case let P = Q̃ and L ∈ DL(Q̃).

Then if C is nonsingular and |λ| ≥ 1, the linearization with v = e1 has κL(λ; e1) ≈
κP (λ), while if A is nonsingular and |λ| ≤ 1, the linearization with v = e2 has
κL(λ; e2) ≈ κP (λ).
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If we think of Q as representing a mechanical system with damping, then the
near-optimality of the v = e1 and v = e2 linearizations holds for Q that are not too
heavily damped. One class of Q for which b <∼

√
ac automatically holds is the elliptic

Q [36], [48]: those for which A is Hermitian positive definite, B and C are Hermitian,
and (x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn.

An analog of Theorem 8.4.1 for κ̂L(α, β) can be obtained from Theorems 8.3.2
and 8.3.3.

8.5 Linearizing the Reversal of P

Consider the quadratic Q(λ) = λ2A+λB+C and its “reversal” revQ(λ) = λ2C+λB+
A. Since the eigenvalues of revQ are just the reciprocals of those of Q, it is natural
to wonder whether this relationship can be exploited to improve the conditioning of
an eigenvalue computation. Tisseur [80, Lem. 10] shows that if λ is a simple, finite,
nonzero eigenvalue of Q and µ = 1/λ the corresponding simple eigenvalue of revQ
then, with the weights (8.3.1), κL̃1

(µ) = κL2
(λ) and κL̃2

(µ) = κL1
(λ), where L1 and

L2 are the pencils corresponding to v = e1 and v = e2 given in (8.3.12) and L̃1

and L̃2 are the corresponding pencils for revQ. In essence this result says that one
cannot improve the condition of an eigenvalue of a linearization by regarding it as the
reciprocal of an eigenvalue of the reversed quadratic. In this section we generalize
this result in three respects: to any vector v (not just v = e1 or e2), to arbitrary
degree polynomials, and to zero and infinite eigenvalues.

For P of degree k, define

revP (λ) = λkP (1/λ) ;

as its name suggests, revP is just the polynomial obtained by reversing the order of
the coefficient matrices of P . Let L(λ) = λX + Y be the unique pencil in DL(P )

with ansatz vector v and L̃(λ) = λX̃ + Ỹ the unique pencil in DL(revP ) with ansatz
vector Rv, where

R =

[
1

. . .

1

]
∈ Rk×k.

Lemma 8.5.1. L is a linearization for P if and only if L̃ is a linearization for revP .

Proof. The roots of the v-polynomial p(x ; Rv) are the reciprocals of the roots of
p(x ; v), while the eigenvalues of revP are the reciprocals of the eigenvalues of P .
The result now follows from the Eigenvalue Exclusion Theorem 4.3.1.

We now work with the condition number κ̂L(α, β), since reciprocal pairs (including
0 and ∞) are so conveniently represented in homogeneous form by (α, β) and (β, α).
First observe that (α, β) is an eigenvalue of P with right and left eigenvectors x and
y if and only if (β, α) is an eigenvalue of revP with right and left eigenvectors x and
y. Also note that in homogeneous variables revP (α, β) = P (β, α).

Lemma 8.5.2. If the weights ωX and ωY for L and weights ωX̃ and ωỸ for L̃ satisfy
the “crossover” equalities ωX = ωỸ and ωY = ωX̃ , then κ̂L(α, β) = κ̂

L̃
(β, α).
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Proof. We have, from (8.2.9),

κ̂L(α, β) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β ; v)| · ‖Λα,β‖2
2 ‖y‖2 ‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ ,

κ
L̃
(β, α) =

√
|β|2ω2

X̃
+ |α|2ω2

Ỹ

|p(β, α; Rv)| · ‖Λβ,α‖2
2 ‖y‖2 ‖x‖2∣∣y∗(ᾱDαrevP − β̄DβrevP )|(β,α)x

∣∣ .

We show that each of the four terms in the first expression equals the corresponding
term in the second expression. The assumptions on the weights clearly imply equality
of the square root terms. Next, Λβ,α = RΛα,β, so Λβ,α and Λα,β have the same 2-norm,
while p(α, β ; v) ≡ p(β, α; Rv). Finally,

(ᾱDαrevP − β̄DβrevP )|(β,α) = ᾱ(DαrevP )|(β,α) − β̄(DβrevP )|(β,α)

= ᾱ(DβP )|(α,β) − β̄(DαP )|(α,β)

= −(β̄DαP − ᾱDβP )|(α,β),

which implies the equality of the final two denominator terms.

Do the crossover conditions ωX = ωỸ and ωY = ωX̃ hold for the natural choice
of weights ωX ≡ ‖X‖2, ωY ≡ ‖Y ‖2? The next lemma shows that they do, by

establishing an even stronger relationship between L and L̃.

Lemma 8.5.3. We have

L̃(λ) = (R⊗ In)revL(λ)(R⊗ In), (8.5.1)

and so X̃ = (R⊗ In)Y (R⊗ In) and Ỹ = (R⊗ In)X(R⊗ In). Hence ‖X̃‖ = ‖Y ‖ and

‖Ỹ ‖ = ‖X‖ for any unitarily invariant norm.

Proof. L̃ is defined as the unique pencil in DL(revP ) = L1(revP ) ∩ L2(revP ) corre-
sponding to the ansatz vector Rv. Therefore to establish (8.5.1) it suffices to show
that the pencil (R⊗In)revL(λ)(R⊗In) belongs to both L1(revP ) and L2(revP ) with
right/left ansatz vector Rv. The other results then follow.

Recall that revP (λ) = λkP (1/λ) and note that λk−1Λ(1/λ) = RΛ, where Λ(r) is
defined in (1.1.5). If L ∈ L1(P ) with right ansatz vector v then

L(λ) · (Λ⊗ In) = v ⊗ P (λ)

⇒ L(1/λ) · (Λ(1/λ)⊗ In) = v ⊗ P (1/λ)

⇒ λL(1/λ) · (λk−1Λ(1/λ)⊗ In) = v ⊗ λkP (1/λ)

⇒ revL(λ) · (RΛ⊗ In) = v ⊗ revP (λ)

⇒ (R⊗ In)revL(λ)(R⊗ In) · (Λ⊗ In) = (R⊗ In)(v ⊗ revP (λ))

= Rv ⊗ revP (λ) ,

which means that the pencil (R⊗In)revL(λ)(R⊗In) is in L1(revP ) with right ansatz
vector Rv.

In a similar manner it can be shown that L ∈ L2(P ) with left ansatz vector v
implies that the pencil (R⊗In)revL(λ)(R⊗In) is in L2(revP ) with left ansatz vector
Rv.
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Combining the previous three lemmas we obtain the following generalization of
Tisseur [80, Lem. 10].

Theorem 8.5.4. Let (α, β) be a simple eigenvalue of P , so that (β, α) is a simple
eigenvalue of revP . Suppose L ∈ DL(P ) with ansatz vector v is a linearization of

P . Then L̃ ∈ DL(revP ) with ansatz vector Rv is a linearization of revP and, if the
weights are chosen as in (8.3.1), κ̂L(α, β) = κ̂

L̃
(β, α).

An analog of Theorem 8.5.4 stating that κL(λ) = κL̃(1/λ) for finite, nonzero λ
can also be derived by similar arguments.

8.6 Companion Linearizations

Recall the two companion form linearizations C1(λ) = λX1+Y1 and C2(λ) = λX2+Y2

from Definition 1.1.5, where

X1 = X2 = diag(Ak, In, . . . , In),

Y1 =




Ak−1 Ak−2 . . . A0

−In 0 . . . 0
...

. . . . . .
...

0 . . . −In 0


 , and Y2 =




Ak−1 −In . . . 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0


 .

In Chapter 2 these pencils were the two key examples motivating the definition of
the pencil spaces L1(P ) and L2(P ) that have been the central players throughout
this thesis. In addition they have historically been the linearizations most used in
practice. Thus it is entirely appropriate to give a special analysis of the conditioning
of these two particular linearizations, and to compare their behavior with that of P
and of suitable linearizations from DL(P ). Recall that C1 ∈ L1(P ) with right ansatz
vector v = e1, C2 ∈ L2(P ) with left ansatz vector w = e1, but neither pencil is in
DL(P ).

Our first result shows that it suffices to analyze the conditioning of C1, because
any results about the conditioning of C1 translate to C2 simply by transposing the
coefficient matrices Ai.

Lemma 8.6.1. Let λ, or (α, β) in homogeneous form, be a simple eigenvalue of P ,
and take ωi = ‖Ai‖2. Then

κ̂P (α, β) = κ̂P T (α, β), κP (λ) = κP T (λ).

Moreover,

κ̂C2(P )(α, β) = κ̂C1(P T )(α, β), κC2(P )(λ) = κC1(P T )(λ),

where Ci(P ), i = 1, 2, denotes the ith companion linearization for P , and P T denotes
the polynomial obtained by transposing each coefficient matrix Ai.

Proof. If (λ, x, y) is an eigentriple for P then (λ, y, x) is an eigentriple for P T . The
first two equalities follow by considering the formulae (8.1.2) and (8.1.5). It is easy to
see that C2(P ) = C1(P

T )T . The second pair of equalities are therefore special cases
of the first.
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For the rest of the section we work with λ and κ(λ); for (α, β) and κ̂(α, β) anal-
ogous results hold. We first obtain a formula for left eigenvectors w∗ of C1.

Lemma 8.6.2. The vector y ∈ Cn is a left eigenvector of P corresponding to a
simple, finite, nonzero eigenvalue λ if and only if

w =




I
(λAk + Ak−1)

∗
...

(λk−1Ak + λk−2Ak−1 + · · ·+ A1)
∗


 y (8.6.1)

is a left eigenvector of C1 corresponding to λ.

Proof. Since C1 is a linearization of P , λ is a simple eigenvalue of C1. The proof
therefore consists of a direct verification that w∗C1(λ) = 0.

Lemma 8.6.2 shows that, even though C1 6∈ L2(P ), a left eigenvector of P can be
recovered from one of C1 — simply by reading off the leading n components.

Since C1 ∈ L1(P ), we know that the right eigenvectors z and x of C1 and P are
related by z = Λ ⊗ x. Evaluating (8.2.11) (which holds for any member of L1(P ))
with L = C1 at an eigenvalue λ, then multiplying on the left by w∗ and on the right
by 1⊗ x = x, we obtain

w∗C ′
1(λ)z = w∗(v ⊗ P ′(λ)x).

Using the formula (8.6.1) for w and the fact that v = e1 gives

w∗C ′
1(λ)z = y∗P ′(λ)x.

By applying Theorem 8.1.1 to C1 we obtain the following analog of Theorem 8.2.2.

Theorem 8.6.3. Let λ be a simple, finite, nonzero eigenvalue of P with right and
left eigenvectors x and y, respectively. Then, for the first companion linearization
C1(λ) = λX1 + Y1,

κC1
(λ) =

(|λ|ωX1
+ ωY1

) ‖w‖2 ‖Λ‖2 ‖x‖2

|λ| |y∗P ′(λ)x| ,

where w is given by (8.6.1).

Now we can compare the condition number of the first companion form with that
of P . We have

κC1
(λ)

κP (λ)
=

‖w‖2

‖y‖2

· (|λ|ωX1
+ ωY1

) ‖Λ‖2∑k
i=0 |λ|iωi

.

We choose the weights ωX1
= ‖X1‖2, ωY1

= ‖Y1‖2, and ωi = ‖Ai‖2 in (8.1.2), and
consequently need bounds on the norms of X1 and Y1. These are provided by the
next lemma, which is similar to Lemma 8.3.1.

Lemma 8.6.4. For C1(λ) = λX1 + Y1 we have ‖X1‖2 = max(‖Ak‖2, 1) and

max
(
1, max

i=0: k−1
‖Ai‖2

)
≤ ‖Y1‖2 ≤ k max

(
1, max

i=0: k−1
‖Ai‖2

)
. (8.6.2)
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Proof. Straightforward, using (8.3.5).

For notational simplicity we will now concentrate on the quadratic case, k = 2.
With the notation (8.4.1), we have

ψ

21/2

‖w‖2

‖y‖2

≤ κC1
(λ)

κP (λ)
≤ 2ψ

‖w‖2

‖y‖2

(8.6.3)

where

ψ =
(1 + |λ|)(max(a, 1)|λ|+ max(b, c, 1)

)

a|λ|2 + b|λ|+ c
≥ 1

and

‖w‖2

‖y‖2

=

∥∥∥∥
[

I
(λA + B)∗

]
y

∥∥∥∥
2

‖y‖2

=

∥∥∥∥
[

I
(λ−1C)∗

]
y

∥∥∥∥
2

‖y‖2

(8.6.4)

satisfies

1 ≤ ‖w‖2

‖y‖2

≤ min
(
(1 + (|λ|a + b)2)1/2, (1 + c2/|λ|2)1/2

)
.

Therefore κC1
(λ) will be of the same order of magnitude as κP (λ) only if both ψ

and ‖w‖2/‖y‖2 are of order 1. It is difficult to characterize when these conditions
hold. However, it is clear that, unlike for the DL(P ) linearizations, the conditioning
of C1 is affected by scaling Ai ← γAi, i = 0: k, as might be expected in view of the
mixture of identity matrices and Ai that make up the blocks of X1 and Y1. Indeed
if a, b, c ¿ 1 then ψ À 1, while if a, b, c À |λ| ≥ 1 then ‖w‖2/‖y‖2 À 1, unless y
is nearly a null vector for (λA + B)∗ and C∗. The only straightforward conditions
that guarantee κC1

(λ) ≈ κP (λ) are a ≈ b ≈ c ≈ 1: then ψ ≈ 1 and one of the two
expressions for ‖w‖2/‖y‖2 in (8.6.4) is clearly of order 1 (the first if |λ| ≤ 1, otherwise
the second). The predilection of the first companion form for coefficient matrices of
unit 2-norm was shown from a different viewpoint by Tisseur [80, Thm. 7]: she proves
that when a = b = c = 1, applying a backward stable solver to the companion pencil
is backward stable for the original quadratic.

It is natural to scale the problem to try to bring the 2-norms of A, B, and C close
to 1. The scaling of Fan, Lin, and Van Dooren [23], which was motivated by backward
error considerations, has precisely this aim. It converts Q(λ) = λ2A + λB + C to

Q̃(µ) = µ2Ã + µB̃ + C̃, where

λ = γµ, Q(λ)δ = µ2(γ2δA) + µ(γδB) + δC ≡ Q̃(µ), (8.6.5a)

γ =
√

c/a, δ = 2/(c + bγ). (8.6.5b)

This is the same scaling factor γ we used in Section 8.4, combined with the multipli-
cation of each coefficient matrix by δ.

Now we compare κC1
(λ) with κL(λ ; v∗), where v∗ for λ is defined analogously to

v∗ for (α, β) in (8.3.6) by

v∗ =
Λ

‖Λ‖2

, |p(λ ; v∗)| = ‖Λ‖2 .
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We have, from (8.2.12),

κL(λ ; v∗) =
(|λ|ωX + ωY )‖Λ‖2 ‖y‖2 ‖x‖2

|λ| |y∗P ′(λ)x| ,

and so

κC1
(λ)

κL(λ ; v∗)
=

‖w‖2

‖y‖2

· |λ|ωX1
+ ωY1

|λ|ωX + ωY

.

Again, specializing to k = 2, and using Lemmas 8.3.1 and 8.6.4, we have

‖w‖2

‖y‖2

·
(
max(a, 1)|λ|+ max(b, c, 1)

)

23/2 max(a, b, c)(1 + |λ|) ≤ κC1
(λ)

κL(λ ; v∗)
(8.6.6)

≤ ‖w‖2

‖y‖2

·
(
max(a, 1)|λ|+ 2 max(b, c, 1)

)

a|λ|+ c
.

If a ≈ b ≈ c ≈ 1 then we can conclude that κC1
(λ) ≈ κL(λ ; v∗). However, κC1

(λ) À
κL(λ ; v∗) if ‖w‖2/‖y‖2 À 1 or if (for example) a, b, c ¿ 1.

Our results for the companion forms are not as neat as those in Section 8.3 for the
DL(P )-linearizations, which focus attention on a single, easily computed or estimated,
scalar parameter ρ. The conditioning of the companion forms relative to P and to
the class DL(P ) depends on both (a) the ratios of norms of left eigenvectors of C1

and P and (b) rational functions of the coefficient matrix norms and λ. It does not
seem possible to bound the norm ratio in a useful way a priori. Therefore the only
easily checkable conditions that we can identify under which the companion forms
can be guaranteed to be optimally conditioned are ‖Ai‖2 ≈ 1, i = 0: k (our proof of
this fact for k = 2 is easily seen to generalize to arbitrary k).

Finally, we note that the bounds (8.6.3) and (8.6.6) remain true when “λ” is
replaced by “α, β”, with just minor changes to the constants.

8.7 Numerical Experiments

In this final section we illustrate the theory developed in this chapter on four quadratic
eigenvalue problems. Experiments were performed in MATLAB 7, for which the unit
roundoff is 2−53 ≈ 1.1 × 10−16. To obtain the angular error θ

(
(α, β), (α̃, β̃)

)
for a

computed eigenvalue (α̃, β̃), we took as exact eigenvalue (α, β) the value computed
in MATLAB’s VPA arithmetic at 40 digit precision. In all the figures the x-axis is
the eigenvalue index and the eigenvalues are sorted in increasing order of absolute
value. We compare the κ̂ condition numbers of the quadratic Q, the first companion
form, and the DL(Q) linearizations with v = e1 and v = e2. All four problems have
real symmetric coefficient matrices, so we know from Lemma 8.6.1 that the second
companion form has exactly the same condition numbers as the first companion form.
In three of the problems we apply the scaling given by (8.6.5). Table 8.7.1 reports
the problem sizes, the coefficient matrix norms, and the values of ρ in (8.3.7) before
and after scaling.

Our first problem shows the benefits of scaling. It comes from applying the
Galerkin method to a PDE describing the wave motion of a vibrating string with
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Table 8.7.1: Problem statistics.

Problem Wave Nuclear Mass-spring Acoustics
n 25 8 50 107

Unscaled Scaled Unscaled Scaled Unscaled Unscaled Scaled
‖A‖2 1.57e0 1.85e0 2.35e8 1.18e0 1.00e0 1.00e0 2.00e0
‖B‖2 3.16e0 1.49e-1 4.35e10 8.21e-1 3.20e2 5.74e-2 3.64e-5
‖C‖2 9.82e2 1.85e0 1.66e13 1.18e0 5.00e0 9.95e6 2.00e0

ρ 6.25e2 1.00e0 7.06e4 1.00e0 3.20e2 9.95e6 1.00e0

clamped ends in a spatially inhomogeneous environment [26], [36]. The quadratic Q
is elliptic; the eigenvalues are nonreal and have absolute values in the interval [1, 25].
Figure 8.7.1 shows the condition numbers κ̂L(α, β) for the DL(Q) linearization with
v = e1 and the first companion linearization, the condition number κ̂P (α, β) for Q,
and the angular errors in the eigenvalues computed by applying the QZ algorithm
to the two linearizations. Figure 8.7.2 shows the corresponding information for the
scaled problem. Since the eigenvalues are all of modulus at least 1, we know from
Theorem 8.3.3 that for every eigenvalue, the DL(Q) linearization with v = e1 has
condition number within a factor 4ρ = 2500 of the condition number for Q. The
actual ratios are between 3.5 and 266. Since this problem is elliptic, we know from
Theorem 8.4.1 that for the scaled problem, whose eigenvalues lie between 0.04 and 1
in modulus, the DL(Q̃) linearization with v = e2 will have condition number similar to

that of Q̃ for every eigenvalue. This is confirmed by Figure 8.7.2; the maximum ratio
of condition numbers is 3.3. The benefit of the smaller condition numbers after scaling
is clear from the figures: the angular error of the computed eigenvalues is smaller by
a factor roughly equal to the reduction in condition number. The behaviour of the
companion linearization is very similar to that of the DL(Q) linearizations, and this
is predicted by our theory since the term ψ‖w‖2/‖y‖2 in (8.6.3) varies from 3.7 to
511 without scaling and only 1.0 to 4.5 with scaling.

The next problem is a simplified model of a nuclear power plant [43], [83]. There
are 2 real and 14 nonreal eigenvalues, with absolute values in the interval (17, 362).
Since ρ = 7 × 104, it is not surprising that the DL(Q) linearization with v = e1 has
eigenvalue condition numbers up to 369 times as large as those of Q, as Figure 8.7.3
indicates. Although the problem is not elliptic, ‖B‖2 ≤

√
‖A‖2‖C‖2, and so our

theory says that scaling will make the DL(Q) linearization with v = e2 (since the
scaled eigenvalues have modulus at most 1) optimally conditioned. This prediction
is confirmed in Figure 8.7.4. Scaling also brings a dramatic improvement in the
conditioning and accuracy of the companion linearization; again, this is predicted by
our theory since the scaled problem has coefficient matrices of norm approximately 1,
and the magnitude of the reduction is explained by the term ψ‖w‖2/‖y‖2 in (8.6.3),
which has a maximum of 2×1010 without scaling and 1.5 with scaling. Note however
that scaling increases the condition numbers κ̂P (α, β) by factors ranging from 1.2 to
173.

Our third problem is a standard damped mass-spring system, as described in
[83, Sec. 3.9]. The matrix A = I, B is tridiagonal with super and subdiagonal
elements all −64 and diagonal 128, 192, 192, . . . , 192, and C is tridiagonal with super
and subdiagonal elements all −1 and diagonal 2, 3, . . . , 3. Here, ρ = 320. The
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eigenvalues are all negative, with 50 eigenvalues of large modulus ranging from −320
to −6.4 and 50 small modulus eigenvalues approximately −1.5× 10−2. Figures 8.7.5
and 8.7.6 show the results for v = e1 and v = e2, respectively. Our theory suggests
that for the eigenvalues of large modulus the linearization with v = e1 will have
nearly optimal conditioning, while for eigenvalues of small modulus the linearization
with v = e2 will be nearly optimal. This behaviour is seen very clearly in the figures,
with a sharp change in condition number at the three order of magnitude jump in
the eigenvalues. This example also clearly displays non-optimal conditioning of the
first companion linearization for small eigenvalues: for the 50 eigenvalues of small
modulus, κ̂C1

(α, β) exceeds κ̂P (α, β) and κ̂L(α, β ; e2) by a factor at least 103, and
again this is accurately reflected in the bounds (8.6.3). For this problem, scaling
has essentially no effect on the two DL(Q) linearizations, but for the companion
linearization it increases the condition number for the large eigenvalues and decreases
it for the small eigenvalues, with the result that all the condition numbers lie between
3.6 and 13.

Finally, we briefly describe an example that emphasizes the importance in our
analysis that the pencil L ∈ DL(P ) be a linearization of P . The problem is a
quadratic polynomial of dimension 107 arising from an acoustical model of a speaker
box [45]. After scaling, ρ = 1. The computed eigenvalues from the companion form
have moduli of order 1, except for two eigenvalues with moduli of order 10−5. We
found the pencil with v = e2 to have eigenvalue condition numbers of the same order
of magnitude as those of Q (namely from 106 to 1013)—as predicted by the theory.
But for v = e1 the conditioning of L was orders of magnitude worse than that of Q for
every eigenvalue, not just the small ones, which at first sight appears to contradict
the theory. The explanation is that this problem has a singular A0 and hence a
zero eigenvalue; L is therefore not a linearization for v = e1, as we noted earlier
(see (8.3.11), and the first sentence of the proof of Theorem 8.3.2). In fact, since
L ∈ DL(P ) for v = e1 is not a linearization, it must by Theorem 2.2.3 be a singular
pencil. This example is therefore entirely consistent with the theory.
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Figure 8.7.1: Wave problem, unscaled; v = e1, ρ = 625.
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Figure 8.7.2: Wave problem, scaled; v = e2, ρ = 1.
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Figure 8.7.3: Nuclear power plant problem, unscaled; v = e1, ρ = 7× 104.
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Figure 8.7.4: Nuclear power plant problem, scaled; v = e2, ρ = 1.
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Figure 8.7.5: Damped mass-spring system, unscaled; v = e1, ρ = 320.
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Figure 8.7.6: Damped mass-spring system, unscaled; v = e2, ρ = 320.
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8.8 Addendum — Some Useful Bounds

The following result is needed in the proofs of Theorems 8.3.3 and 8.3.5.

Proposition 8.8.1. Consider the functions

f1(x) =
(1 + x2)(1 + x2 + x4 + · · ·+ x2(k−1))

1 + x2k
,

f2(x) =
(1 + x2)(1 + x2 + x4 + · · ·+ x2(k−1))

1 + x2 + x4 + · · ·+ x2k
,

f3(x) =
(1 + x)2(1 + x2 + x4 + · · ·+ x2(k−1))

(1 + xk)2
,

f4(x) =
(1 + x)2(1 + x2 + x4 + · · ·+ x2(k−1))

(1 + x + x2 + · · ·+ xk)2
,

for any k ≥ 2. The functions f1, f2, f3, and f4 are all unimodal on the interval
[ 0,∞), with a unique interior extreme point at x = 1 and another extreme point at
x = 0. In particular, we have the following sharp bounds:

1 ≤ f1(x) ≤ k , (8.8.1)

1 ≤ f2(x) ≤ 2k

k + 1
, (8.8.2)

1 ≤ f3(x) ≤ k , (8.8.3)

4k

(k + 1)2
≤ f4(x) ≤ 1 . (8.8.4)

As a preliminary to proving these bounds, first observe that each of these four
functions has the “reciprocal symmetry” property:

f(1/x) = f(x) . (8.8.5)

The qualitative behavior of such functions is somewhat constrained, as illustrated by
the following lemma.

Lemma 8.8.2 (Unimodality of Reciprocally Symmetric Functions).
Suppose f is a differentiable function satisfying the property f(1/x) = f(x) on the
interval ( 0,∞). Then x = 1 must be a critical point for f . Furthermore, if f ′ has
constant sign on either the interval (0, 1) or the interval (1,∞), then f is unimodal
on ( 0,∞) with a unique extreme point at x = 1.

Proof. A simple calculation shows that f(1/x) = f(x) ⇒ f ′(1/x) · (−1/x2) = f ′(x),
and so

f ′(1/x) = −x2f ′(x) . (8.8.6)

Evaluating at x = 1 shows that f ′(1) = −f ′(1), hence f ′(1) = 0, so x = 1 is a critical
point. The relation (8.8.6) also shows that f ′ has constant sign on (0, 1) if and only
if f ′ has constant and opposite sign on (1,∞), thus implying the unimodality of f
and the existence of a unique extreme point at x = 1.
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A second more specialized result will also be needed to help establish the bounds
in Proposition 8.8.1.

Lemma 8.8.3. For any k ≥ 2, the polynomial p(x) = −x2k + kxk+1 − kxk−1 + 1 has
exactly three positive roots, all at x = 1.

Proof. Since there are three sign changes in the coefficients of p, Descartes’ Rule of
Signs says that p(x) has either one or three positive roots. Clearly p(1) = 0, so x = 1
is one of these roots. But a straightforward calculation shows that p′(1) = p′′(1) = 0,
so x = 1 is a root of at least multiplicity three. This accounts for all possible positive
roots that p could possibly have.

As final preparation for the proof of Proposition 8.8.1, note the following alterna-
tive expressions for the functions f1 through f4, found using the standard geometric
series formula and valid for all x 6= ±1.

f1(x) =
1 + x2

1− x2
· 1− x2k

1 + x2k
,

f2(x) = 1 +

[
(x2)k − x2

(x2)k+1 − 1

]
,

f3(x) =
1 + x

1− x
· 1− xk

1 + xk
,

f4(x) = 1 −
[

xk − x

xk+1 − 1

]2

.

These formulas not only make it easier to compute derivatives, but also reveal close
connections between the functions that might have otherwise remained obscure. For
example, we see that

f1(x) = f3(x
2) (8.8.7)

on the interval [ 0,∞), a relation that is not at all evident from the original formulas.

Proof. [of Proposition 8.8.1] We begin with an analysis of f3. Straightforward
calculation shows that

f ′3(x) =
2p(x)[

(1− x)(1 + xk)
]2 ,

where p(x) is as in Lemma 8.8.3. Thus the only positive roots of either the numerator
or denominator of f ′3 are at x = 1, so f ′3 has constant sign on the interval (0, 1).
Therefore f3 is unimodal on (0,∞) by Lemma 8.8.2; this unimodality extends by
continuity to the closed interval [ 0,∞). The bounds (8.8.3) are then obtained upon
evaluating at x = 0 and x = 1. The unimodality of f1 now follows from that of
f3 because of the relation (8.8.7); the bounds (8.8.1) again come from evaluating at
x = 0 and x = 1.

The unimodality of f2 and f4 are obtained in a similar manner, using the derivative
formulas

f ′2(x) =
2xp(x2)[

(x2)k+1 − 1
]2 and f ′4(x) = −2

[
xk − x

xk+1 − 1

]
· p(x)(

xk+1 − 1
)2 ,

where p(x) is again the polynomial in Lemma 8.8.3.
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