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Physica C : Superconductivity XX, XXXXXX (2016)

Type-1.5 superconductivity in multicomponent systems.
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The Royal Institute of Technology, Stockholm, SE-10691 Sweden

2 Department of Physics, University of Massachusetts Amherst, MA 01003 USA

3 School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

In general a superconducting state breaks multiple symmetries and, therefore, is charac-

terized by several different coherence lengths ξi, i = 1, ..., N . Moreover in multiband material

even superconducting states that break only a single symmetry are nonetheless described,

under certain conditions by multi-component theories with multiple coherence lengths. As a

result of that there can appear a state where some coherence lengths are larger and some are

smaller than the magnetic field penetration length λ: ξ1 ≤ ξ2... <
√
2λ < ξM ≤ ...ξN . That

state was recently termed “type-1.5” superconductivity. This breakdown of type-1/type-2

dichotomy is rather generic near a phase transition between superconducting states with

different symmetries. The examples include the transitions between U(1) and U(1) × U(1)

states or between U(1) and U(1)× Z2 states. The later example is realized in systems that

feature transition between s-wave and s + is states. The extra fundamental length scales

have many physical consequences. In particular in these regimes vortices can attract one

another at long range but repel at shorter ranges. Such a system can form vortex clusters in

low magnetic fields. The vortex clustering in the type-1.5 regime gives rise to many physical

effects, ranging from macroscopic phase separation in domains of different broken symme-

tries, to unusual transport properties. Prepared for the proceedings of Vortex IX conference,

Rhodes 12-17 September 2015.

I. INTRODUCTION

Below we briefly discuss the properties and occurrence of “type-1.5” superconducting state

characterized by multiple coherence length, some of which are smaller and some larger than the

magnetic field penetration length1 ξ1 ≤ ξ2... <
√
2λ < ξM ≤ ...ξN . Type-1 superconductors expel

weak magnetic fields, while strong fields give rise to formation of macroscopic phase separation in

the form of domains of Meissner and normal states.2,3 The response of type-2 superconductors is the

following:4 below some critical value Hc1, the field is expelled. Above this value a superconductor

forms a lattice or a liquid of vortices which carry magnetic flux through the system. Only at

a higher second critical value, Hc2 is superconductivity destroyed. These different responses are
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the consequences of the form of the vortex interaction in these systems, the energy cost of a

boundary between superconducting and normal states and the thermodynamic stability of vortex

excitations. In a type-2 superconductor the energy cost of a boundary between the normal and the

superconducting state is negative, while the interaction between vortices is repulsive.4 This leads

to a formation of stable vortex lattices and liquids. In type-1 superconductors the situation is

the opposite; the vortex interaction is attractive (thus making them unstable against collapse into

one large “giant” vortex), while the boundary energy between normal and superconducting states

is positive. The ’ordinary’ Ginzburg-Landau model has a critical regime where vortices do not

interact.5,6 The critical value of κ in the most common GL model parameterization corresponds

to κ = 1/
√
2 (often the factor 1/

√
2 is absorbed into the definition of coherence length in which

case the critical coupling is κc = 1). The noninteracting regime, which is frequently called the

“Bogomolnyi limit” is a property of Ginzburg-Landau model where, at κc = 1/
√
2, the core-

core attractive interaction between vortices cancels at all distances the current-current repulsive

interaction5,6 (up to microscopic corrections beyond the standard Ginzburg-Landau theory). By

contrast in multi-component theories are characterized by multiple coherence length and do not in

general allow to form a single Ginzburg-Landau parameter κ.

The Ginzburg-Landau free energy functional for a multicomponent superconductor has the form

F =
1

2

∑

i

(Dψi)(Dψi)
∗ + V (|ψi|) +

1

2
(∇×A)2, (1)

where ψi are complex superconducting components, D = ∇ + ieA, and ψi = |ψi|eiθi , a = 1, 2,

and V (|ψi|) stands for effective potential. We consider a general form of potential terms but the

simplest gradient terms. In general Eq.(1) indeed can contain mixed (with respect to components

ψi) gradient terms, e.g. Re[Dα=x,y,zψiDβ=x,y,zψj ] (for a more detail on the effects of these terms

see7).

The multiple superconducting components can have various origins. First of all they can arise

in (i) superconducting states which break multiple symmetries. Such systems are described by

several order parameters in the sense of Landau theory of phase transitions, and have different

coherence lengths associated with them. Multiple broken symmetries are present even in the

simplest generalisation of the s-wave superconducting states: the s + is superconducting state,8,9

which breaks U(1) × Z2 symmetry.10 Likewise multiple broken symmetries are present in non-s

wave superconductors. Another example is mixtures of independently conserved condensates such

as the models for the theoretically discussed superconductivity in metallic hydrogen and hydrogen
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rich alloys.11,12 There ψi represents electronic and protonic Cooper pairs or deuteronic condensates.

A similar situation was discussed in certain models of nuclear superconductors in the interior of

neutron stars, where ψi represent protonic and Σ− hyperonic condensates.13,14

Another class of multi-component superconductors is (ii) systems which are described by multi-

component Ginzburg-Landau field theories that do not originate in multiple broken symmetries.

The most common examples are multiband superconductors.15–17 In this case ψi represent su-

perconducting components belonging to different bands. Since a priory there are no symmetry

constraints preventing interband Cooper pair tunnelling the theory contains generic terms which

describe intercomponent Josephson coupling η
2 (ψiψ

∗

j + ψiψ
∗

j ). These terms explicitly break sym-

metry. Here the number of components ψi is not dictated by the broken symmetry pattern.

Multicomponent GL expansions can be justified when for example SU(N) or [U(1)]N symmetry

is softly explicitly broken down to U(1).18 Some generalizations of type-1.5 concepts for the case

of p-wave pairing in multiband systems was discussed in.19 Recently rigorous mathematical work

was done on justification of multicomponent Ginzburg-Landau expansions.20

A. Type-1.5 superconductivity

Multicomponent systems allow a type of superconductivity that is distinct from the type-1 and

type-2.1,7,10,18,21–25 It emerges from the following circumstances: Multi-component GL models have

several fundamental scales, namely the magnetic field penetration depth λ and multiple coherence

lengths (characteristic scales of the variations of the density fields) ξi, which renders the model

impossible to parametrize in terms of a single dimensionless parameter κ, thus making the type-

1/type-2 dichotomy insufficient for classifying and describing these systems. Rather, in a wide

range of parameters, there is a separate superconducting regime with some coherence lengths

that are larger and some that are smaller than the magnetic field penetration length ξ1/
√
2 <

ξ2/
√
2 < ... < λ < ξM/

√
2 < ... < ξN/

√
2. In that regime a situation is possible where vortices

have long-range attractive (due to “outer cores” overlap) and short-range repulsive interaction

(driven by current-current and electromagnetic interaction) and form vortex clusters coexisting

with domains of two-component Meissner state.1 The first experimental works24,25 put forward

that this state is realized in the two-band material MgB2. Moshchalkov et al termed this regime

“type-1.5 superconductivity”.24 Recently experimental works proposed that this state is realised in

Sr2RuO4
26,27 and LaPt3Si.

28,29 The experiments on the MgB2 were done using Bitter decoration,

scanning SQUID and scanning Hall probes.24,25 The analysis of the nature of vortex clustering was
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done by cycling field and observing vortex cluster formation in different parts of the sample. In the

case of Sr2RuO4 the evidence of intrinsic mechanism of vortex cluster formation comes from µSR

experiment that observed vortex clusters contraction with decreasing temperature well below Tc

thus signaling attractive inter vortex forces rather than pinning responsible for clusterization. The

attractive inter vortex forces also provides and explanation for earlier experiment on Sr2RuO4
30

that reported vanishing creep in the absence of dramatic increase of critical current [initially in30

this was attributed to effects of domain walls trapping vortices. However such configurations

would have very characteristic magnetic signatures,31,32 these signatures were not observed in

surface probes26]. A prediction of a (narrow) region of type-1.5 state was made for certain interface

superconductors.33 Also it was pointed out that a generic type-1.5 regime should form in iron-based

superconductors near transitions from s to s+ is pairing states.10 Type-1.5 superconductivity was

discussed in the context of the quantum Hall effect34 and neutron stars.35 For other recent works

on this and related subjects see e.g..19,36–45

In these systems one cannot straightforwardly use the usual one-dimensional argument con-

cerning the energy of superconductor-to-normal state boundary to classify the magnetic response.

First of all, the energy per vortex in such a case depends on whether a vortex is placed in a cluster

or not. Formation of a single isolated vortex might be energetically unfavorable, while formation

of vortex clusters can be favorable, because in a cluster (where vortices are placed in a minimum of

the interaction potential), the energy per flux quantum is smaller than that for an isolated vortex.

Besides the energy of a vortex in a cluster, there appears an additional characteristic associated

with the energy of the boundary of a cluster. In other words for systems with inhomogeneous

vortex states there are many different interfaces, some of which have positive and some negative

free energy. The non-monotonic intervortex interaction is one of key properties of a type-1.5 su-

perconductor, but is not a state-defining one. As discussed in the introduction and also below,

intervortex attraction can arise under certain circumstances in single-component materials as well.

In type-1.5 case this is a consequence of multiple coherence lengths and comes with a number of

new physical effects discussed below. We summarise the basic properties of type-1, type-2 and

type-1.5 regimes in the table I .
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single-component type-1 single-component type-2 multi-component Type-1.5

Characteristic

lengths scales

Penetration length λ & coher-

ence length ξ (λ
ξ
< 1√

2
)

Penetration length λ & coher-

ence length ξ (λ
ξ
> 1√

2
)

Multiple characteristic density

variations length scales ξi, and

penetration length λ, the non-

monotonic vortex interaction oc-

curs in these systems in a large

range of parameters when ξ1 ≤
ξ2 ≤ .... <

√
2λ < ξM ≤ ... ≤ ξN

Intervortex in-

teraction

Attractive Repulsive Attractive at long range and re-

pulsive at short range

Energy of su-

perconduct-

ing/normal state

boundary

Positive Negative Under quite general conditions

negative energy of superconduc-

tor/normal interface inside a vor-

tex cluster but positive energy of

the vortex cluster’s boundary

The magnetic

field required to

form a vortex

Larger than the thermo-

dynamical critical magnetic

field

Smaller than thermodynami-

cal critical magnetic field

In different cases either (i)

smaller than the thermodynam-

ical critical magnetic field or (ii)

larger than critical magnetic field

for single vortex but smaller than

critical magnetic field for a vor-

tex cluster of a certain critical

size

Phases in ex-

ternal magnetic

field

(i) Meissner state at low

fields; (ii) Macroscopically

large normal domains at ele-

vated fields. First order phase

transition between supercon-

ducting (Meissner) and nor-

mal states

(i) Meissner state at low

fields, (ii) vortex lat-

tices/liquids at larger fields.

Second order phase transi-

tions between Meissner and

vortex states and between

vortex and normal states at

the level of mean-field theory.

(i) Meissner state at low fields

(ii) Macroscopic phase separa-

tion into vortex clusters coexist-

ing with Meissner domains at in-

termediate fields (iii) Vortex lat-

tices/liquids at larger fields. Vor-

tices form via a first order phase

transition. The transition from

vortex states to normal state is

second order.

Energy E(N) of

N-quantum ax-

ially symmetric

vortex solutions

E(N)
N

< E(N−1)
N−1 for all N. Vor-

tices collapse onto a single N-

quantum mega-vortex

E(N)
N

> E(N−1)
N−1 for all N. N-

quantum vortex decays into

N infinitely separated single-

quantum vortices

There is a characteristic number

Nc such that E(N)
N

< E(N−1)
N−1 for

N < Nc, while E(N)
N

> E(N−1)
N−1

for N > Nc. N-quantum vortices

decay into vortex clusters.

TABLE I. Basic characteristics of bulk clean superconductors in type-1, type-2 and type-1.5 regimes. Here

the most common units are used in which the value of the GL parameter which separates type-1 and type-2

regimes in a single-component theory is κc = 1/
√
2. Magnetization curves in these regimes are shown on

Fig. 1
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H HHc HcHc1 Hc2

-M -M

HHcHc1 Hc2

-M

Type-1 Type-2 Type-1.5

FIG. 1. A schematic picture of magnetization curves of type-1, type-2 and type-1.5 superconductors. The

magnetisation jump at Hc1 is one of the features of type-1.5 regime, however it is not a state-defining

property conversion of the Hc1 phase transition to a first order one can be caused by a number of rea-

sons (e.g. microscopic corrections near Bogomolnyi point, multi-layer structure, etc) in ordinary type-2

superconductors

II. THE TWO-BAND GINZBURG-LANDAU MODEL WITH ARBITRARY

INTERBAND INTERACTIONS. DEFINITION OF THE COHERENCE LENGTHS AND

TYPE-1.5 REGIME

A. Free energy functional

Realization of the type-1.5 regime requires at least two superconducting components. In this

section we study the type-1.5 regime using the following two-component Ginzburg-Landau (TCGL)

free energy functional.

F =
1

2
(Dψ1)(Dψ1)

∗ +
1

2
(Dψ2)(Dψ2)

∗ − νRe
{

(Dψ1)(Dψ2)
∗

}

+
1

2
(∇×A)2 + Fp (2)

Here D = ∇+ ieA, and ψi = |ψi|eiθi , i = 1, 2, represent two superconducting components. While

in general two components can have different critical temperatures, in the simplest case, the two-

band superconductor breaks only U(1) symmetry. Then eq. (2) can be obtained as an expansion

of the free energy in small gaps and small gradients.17,18,46–49 Such an expansion should not be

confused with the simplest expansion in a single small parameter τ = (1 − T/Tc). The τ -based

expansion for U(1) system is an approximation that yields only one order parameter for a U(1)

system and neglects the second coherence length. The multi-parameter expansions that are not

based on symmetry are justified under certain conditions.18,49 Indeed the existence of two bands in

a superconductor by itself is not a sufficient conditions for a superconductor to be described by a

model like (2) with two well-defined coherence lengths. For discussion of the applicability conditions
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of the theory (2) for two-band U(1) systems see.18,22 Note that, in general in two-band expansion,

the terms corresponding to one component can be larger than a terms contributed by another

component. However as it will be clear below, for the discussion of typology of superconductors,

the relevant parameters are characteristic length scales associated with the exponential laws at

which field component restore their ground state values away from a perturbation such as a vortex

core (i.e. the coherence lengths). Indeed a component with smaller amplitude can give raise to a

longer coherence length that is important for intervortex interaction and should not be discarded

based merely on the smallness of amplitude |ψi|. In principle, for the component with larger

amplitude, one can keep higher-power terms in the GL expansion such as ψiψ
∗

i (Dψi)(Dψi)
∗, |ψi|6

etc. These terms lead to some corrections to two coherence lengths, while not affecting the overall

form of intervortex forces as can be seen from the analysis in.7 As be seen from the comparison

of vortex solutions in the GL formalism and in microscopic model without GL expansion,18 in the

regime of most interest these terms can be neglected.

We begin with the most general analysis by considering the case where Fp can contain an

arbitrary collection of non-gradient terms, of arbitrary power in ψi representing various inter and

intra-band interactions. Below we show how three characteristic length scales are defined in this

two component model (two associated with density variations and the London magnetic field

penetration length).

The only vortex solutions of the model (2) which have finite energy per unit length are the

integer N -flux quantum vortices which have the following phase windings along a contour l around

the vortex core:
∮

l ∇θ1 = 2πN,
∮

l ∇θ2 = 2πN which can be denoted as (N,N). Vortices with

differing phase windings (N,M) carry a fractional multiple of the magnetic flux quantum and have

energy divergent with the system size,50 which under usual conditions makes them irrelevant for

the physics of magnetic response of a bulk system.

In what follows we investigate only the integer flux vortex solutions which are the energetically

cheapest objects to produce by means of an external field in a bulk superconductor. Note that

since this object is essentially a bound state of two vortices, it in general will have two different

co-centered cores.
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III. COHERENCE LENGTHS AND INTERVORTEX FORCES AT LONG RANGE IN

MULTI-BAND SUPERCONDUCTORS

In this section we give criterion for attractive or repulsive force between well separated vortices

in system (2) and condition for non-monotonic inter vortex forces following.1,7,21 We show how

it can be determined by analyzing Fp when ν = 0 and how three fundamental length scales are

defined in the model (2). If the model has mixed gradient terms they can be either treated as

in Ref.7 or eliminated by a linear transformation. By gauge invariance, Fp may depend only on

|ψ1|, |ψ2| and δ = θ1 − θ2. We consider the regime when Fp has a global minimum at some

point other than the one with |ψi| = 0, namely at (|ψ1|, |ψ2|, δ) = (u1, u2, 0) where u1 > 0 and

u2 ≥ 0 (for discussion of phase-separated regimes see43). Then the model has a trivial solution,

ψ1 = u1, ψ2 = u2, A = 0, (i.e. the ground state). Here we are interested in models that support

axially-symmetric single-vortex solutions of the form

ψi = fi(r)e
iθ , (A1, A2) =

a(r)

r
(− sin θ, cos θ) (3)

where f1, f2, a are real profile functions with boundary behavior fi(0) = a(0) = 0, fi(∞) =

ui, a(∞) = −1/e. No explicit expressions for fi, a are known, but, by analyzing the system of

differential equations they satisfy, one can construct asymptotic expansions for them at large r,

see.7,21

At large r from the vortex in the model (2) the system recovers (up to exponentially small

corrections) the ground state. In fact, the long-range field behavior of a vortex solution can be

identified with a solution of the linearization of the model about the ground state, in the presence

of appropriate point sources at the vortex positions. This idea is explained in detail for single

component GL theory in.51 A common feature of topological solitons (vortices being a particular

example) is that the forces they exert on one another coincide asymptotically (at large separation)

with those between the corresponding point-like perturbations (point sources) interacting via the

linearized field theory.52 For (2), the linearization has one vector (A) and 3 real scalar (ǫ1 = |ψ1|−u1,
ǫ2 = |ψ2| − u2 and δ) degrees of freedom. The isolated vortex solutions have, by definition within

the ansatz we use, δ ≡ 0 everywhere. Hence have no source for δ, so we can set δ = 0 in the

linearization, which becomes

Flin =
1

2
|∇ǫ1|2 +

1

2
|∇ǫ2|2 +

1

2





ǫ1

ǫ2



 · H





ǫ1

ǫ2



+
1

2
(∂1A2 − ∂2A1)

2 +
1

2
e2(u21 + u22)|A|2. (4)



9

Here, H is the Hessian matrix of Fp(|ψ1|, |ψ2|, 0) about (u1, u2), that is,

Hij =
∂2Fp

∂|ψi|∂|ψj |

∣

∣

∣

∣

(u1,u2,0)

. (5)

Note that, in Flin, the vector potential field A decouples from the scalar fields ψi. This mode me-

diates a repulsive force between vortices (originating in current-current and magnetic interaction)

with decay length which is the London’s magnetic field penetration length λ = 1/µA where µA is

the mass of the field, that is,

µA = e
√

u21 + u22. (6)

By contrast, the scalar fields ǫ1, ǫ2 are, in general, coupled (i.e. the symmetric matrix H has

off-diagonal terms). To remove the cross-terms one should find a proper linear combination of the

fields that correspond to normal modes of the system. To this end we make a linear redefinition of

fields, expanding (ǫ1, ǫ2)
T with respect to the orthonormal basis for R2 formed by the eigenvectors

v1, v2 of H,

(ǫ1, ǫ2)
T = χ1v1 + χ2v2. (7)

The corresponding eigenvalues µ21, µ
2
2 are necessarily real (since H is symmetric) and positive (since

(u1, u2) is a minimum of Fp), and hence

Flin =
1

2

2
∑

a=1

(

|∇χi|2 + µ2iχ
2
i

)

+
1

2
(∂1A2 − ∂2A1)

2 +
1

2
e(u21 + u22)|A|2. (8)

The scalar fields χ1, χ2 describe linear combination of the original density fields. The new fields

recover ground state values at different characteristic length scales. The characteristic length scales

are nothing but coherence lengths which are given by inverse of µi

ξ1 ≡ 1/µ1 , ξ2 ≡ 1/µ2 (9)

respectively (here and below we absorb the factor 1/
√
2 in the definition of coherence length). Each

of these field defines a vortex core of some characteristic size that mediate an attractive force

between vortices at long range. In terms of the normal-mode fields χ1, χ2 and A, the composite

point source which must be introduced into Flin to produce field configurations identical to those

of vortex asymptotics is

κ1 = q1δ(x) , κ2 = q2δ(x) , j = m(∂2,−∂1)δ(x) , (10)
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where κ1 is the source for χ1, κ2 the source of χ2, j the source for A, δ(x) denotes the two

dimensional Dirac delta function and q1, q2 and m are unknown real constants which can, in

principle, be determined numerically by a careful analysis of the vortex asymptotics. Physically,

a vortex, as seen from a long distance can be thought of as a point particle carrying two different

types of scalar monopole charge, q1, q2, inducing fields of mass µ1, µ2 respectively, and a magnetic

dipole moment m oriented orthogonal to the x1x2 plane, inducing a massive vector field of mass

µA ≡ λ−1. The interaction energy experienced by a pair of point particles carrying these sources,

held distance r apart, is easily computed in linear field theory. For example, two scalar monopoles

of charge q inducing fields of mass µ held at positions y and ỹ in R
2 experience interaction energy

Eint = −
∫

R2

κχ̃ = −
∫

R2

qδ(x− y)
q

2π
K0(µ|y − ỹ|) = − q2

2π
K0(µ|y − ỹ|) (11)

where κ is the source for the monopole at y, χ̃ is the scalar field induced by the monopole at ỹ51

and K0 denotes the modified Bessel’s function of the second kind. The interaction energy for a

pair of magnetic dipoles may be computed similarly. In the case of our two component GL model,

the total long-range inter-vortex interaction energy has three terms, corresponding to the three

sources in the composite point source (10), and turns out to be

Eint =
m2

2π
K0(µAr)−

q21
2π
K0(µ1r)−

q22
2π
K0(µ2r). (12)

Note that, the first term in this formula which originates in magnetic and current-current inter-

action is repulsive, while the other two as associated with core-core interactions of two kinds of

co-centered cores are attractive. The linearized theory does not contain information about the

prefactors q1, q2 and m. However they can be determined numerically from the full nonlinear GL

theory. At very large r, Eint(r) is dominated by whichever term corresponds to the smallest of the

three masses, µA, µ1, µ2, so to determine whether vortices attract at long range, it is enough to

compute just these masses. The generalization to the case with larger number of components is

straightforward: additional coherence lengths give additional contributions to attractive interac-

tion in the form − q2
i

2πK0(µir). Generalizations to multiple repulsive length scales in layered systems

or caused by stray fields were discussed in39 . In thin films intervortex interaction acquires also 1/r

repulsion at long ranges due to the magnetic field outside the sample, similarly to single-component

case.53

Consider the case where long-range interaction is attractive due to ξ1 being the largest length

scale of the problem. The criterion for short-range repulsive interaction is thermodynamic stability

of vortices which is equivalent to the condition that the system has solution with negative free
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energy interfaces in external fields.1,7,21 Indeed when the interface energy is always positive the

system exhibits type-1 behavior: i.e. tends to form a single vortex with high finding number. If

there are interfaces with negative energy in the external field, the system tends to maximize these

interfaces. In the type-1.5 regime the system forms vortex clusters, where it maximizes number of

vortex cores inside the vortex clusters. A the same time the system minimizes the interface of the

cluster itself (that costs positive energy).

To summarize, the nature of intervortex forces at large separation in the model under considera-

tion, can be determined purely by analyzing Fp: one finds the ground state (u1, u2) and the Hessian

H of Fp about (u1, u2). From this one computes the mass of the vector field A, µA = e
√

u21 + u22

(i.e. the inverse of the magnetic field penetration length), and the masses µ1, µ2 of the scalar

normal modes (i.e. the inverses of the coherence lengths). These masses being the square roots

of the eigenvalues of H. If either (or both) of µ1, µ2 are less than µA, then the dominant inter-

action at long range is attractive (i.e. vortex core extends beyond the area where magnetic field

is localized), while if µA is less than both µ1 and µ2, the dominant interaction at long range is

repulsive. The special feature of the two-component model is that the vortices where core extends

beyond the magnetic field penetration length are thermodynamically stable in a range of parame-

ters and moreover one can have a repulsive force between the vortices at shorter distances where

the system has thermodynamically stable vortex solutions.1,7,21 It is important to stress that length

scales µ−1
1 , µ−1

2 are not directly associated with the individual condensates ψ1, ψ2. Rather they are

associated with the normal modes χ1, χ2, defined as7,21

χ1 = (|ψ1| − u1) cosΘ− (|ψ2| − u2) sinΘ , χ2 = −(|ψ1| − u1) sinΘ− (|ψ2| − u2) cosΘ . (13)

These may be thought of as rotated (in field space) versions of ǫ1 = |ψ1| − u1, ǫ2 = |ψ2| − u2. The

mixing angle, that is, the angle between the χ and ǫ axes, is Θ, where the eigenvector v1 of H is

(cosΘ, sinΘ)T . This, again, can be determined directly from H.

Note also that the shorter of the length scales µ−1
1 , µ−1

2 , although being a fundamental length

scale of the theory, can be masked in a density profile of a vortex solution by nonlinear effects.

This, for example certainly happens if µ−1
1 ≪ µA ≡ λ−1 (see short discussion in Ref.21). Also

note that in general the minimum of the interaction potential will not be located at the London

penetration length, because it in general will be also affected by nonlinearities.

From the discussion above it follows that in general one cannot drop the subdominant component

based on comparison of the ground state values of the amplitudes of |ψi| in the GL expansion.

Namely, the long-range interaction can be determined by a mode with smaller amplitude. The
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formal justification of the multiband GL expansion can be found in.18

A. Example: a superconductor with a passive band

To illustrate the analysis of the coherence lengths presented above, we consider the simple case

of a two band superconductor where one of the bands is passive, that is, with a potential of the

form

Fp = −α1|ψ1|2 +
β1
2
|ψ1|2 + α2|ψ2|2 − γ(ψ1ψ

∗

2 + ψ∗

1ψ2) (14)

where αj , β1, γ are positive constants. Then Fp is minimized when ψ1 and ψ2 have equal phase,

and have moduli

|ψ1| = u1 =

√

α1

β1

(

1 +
γ2

α1α2

)

, |ψ2| = u2 =
γ

α2
u1. (15)

The mass of the vector field A is

µA = e
√

u21 + u22 = eu1

√

1 +
γ2

α2
2

. (16)

The Hessian matrix of Fp about (u1, u2) is

H =





4α1 +
6γ2

α2
−2γ

−2γ 2α2



 . (17)

It is straightforward to compute explicit expressions for the eigenvalues µ21, µ
2
2 of this matrix. The

power series expansion in γ reveals that

µ1 = 2
√
α1 +O(γ2), µ2 =

√
2α2 +O(γ2). (18)

Similarly, the normalized eigenvector associated with eigenvalue µ21 is

v1 =





1

−(2α1 − α2)
−1γ



+O(γ2) (19)

so the normal modes of fluctuation about the ground state are rotated through a mixing angle

Θ = −(2α1 − α2)
−1γ +O(γ2). (20)

In comparison with the uncoupled model (γ = 0) then, we see that, for small coupling γ the length

scales λ = 1/µA, ξ1 = 1/µ1, ξ2 = 1/µ2 are unchanged to leading order, but the normal modes with

which 1/µ1, 1/µ2 are associated are mixed to leading order. In particular, there are large regions

of parameter space where µ2 < µA < µ1, so that vortices attract at long range, even though the

active band, ψ1, is naively “type-2’ (that is, β1 > e2/4).
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IV. CRITICAL COUPLING (BOGOMOLNYI POINT)

Although it is not related to the topic of this paper, in this section we briefly review Bogomolnyi

point physics. In single-component superconductors, the type-1 and type-2 regimes are separated

by a Bogomolnyi point κc = 1 (note, again that above we absorbed the factor 1/
√
2 into the

definition of coherence length, for this reason the critical coupling is different from 1/
√
2). At

that point vortices do not interact, the free energy of normal-to-superconductor interfaces is zero

and we have Hc1 = Hc2 = Hc.
6,52,54,55 This regime is referred to as the “critical point” because

of the saturation of Bogomolnyi inequality.6,52,54–57 The necessary but not sufficient conditions

for a critical point is lack of intervortex forces at long range within the linear approximation.

To that end all modes excited in a vortex solution, must have equal masses µi. From eq. (12)

it is obvious that for a multicomponent superconductor it requires a fine-tuning and in general

type-1 and type-2 regimes are not separated by a critical point. Furthermore from the section on

microscopic theory below it is clear that in general µ1 and µ2 (as functions of system’s parameters

and temperature) do not cross but form an avoided crossing. Thus in the two-component case the

Bogomolnyi critical point is a zero-measure parameter set which requires special symmetry of the

model. Such a fine tuning for a composite vortex can be achieved in U(1) × U(1) system with a

potential that is symmetric with respect to both components

Fp = −α|ψ1|2 +
β

2
|ψ1|2 − α|ψ2|2 +

β

2
|ψ2|2 (21)

For a standard form of gradient terms this potential gives equal coherence lengths. The Bogo-

molnyi point is realised when ξ1 = ξ2 = λ, just like in single-component system vortices do not

interact in this regime.

The lack of interaction between vortices at Bogomolnyi point originates in exact cancelation of

electromagnetic and core-core interaction. However some weak interaction indeed appear beyond

the Ginzburg-Landau theory e.g. by non-locality effects, as was studies in detail single-component

models.58–61 This opens up a narrow window in the parameter space near κ ≈ 1 where the interac-

tion, as was suggested by Eilenberger and studies in detail by Jacobs et al is non-monotonic and in

general depends on microscopic detail.58–60 The simplest approach that was used to investigate the

κ ≈ 1 regime was to carry single-component GL expansion to next to leading order in τ = 1−T/Tc
and gradients.62,63 However to estimate width of the region, full microscopic theory is need. This

was studied in.58–61
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In two-band superconductors similar “near-Bogomolnyi” regime can be realised in the regimes

where there are two-bands but there is no second coherence length and system is characterized by

a single parameter κ ≈ 1 [such situations appear e.g. when there is strong interband coupling18,22].

Two-band microscopic theory confirmed that the intervortex interaction that play role in “near-

Bogomolnyi” regime in single-component model, are important only in the narrow window of κ ≈ 1

in two-band materials well characterized by single κ and is negligible otherwise. The multi-band

materials where this physics should be relevant for intervortex interaction should have κ ≈ 1

and Hc1 ≈ Hc2. These microscopic corrections cannot give observable intervortex attraction of

materials like the introduction MgB2 and Sr2RuO4.

In the type-1.5 regime the dominant intervortex forces have different origin and the effects

responsible for intervortex forces in the “near-Bogomolnyi” point (non locality etc) are not impor-

tant. For a comparative study of this physics in multiband materials, full microscopic theory is

required that accounts both for multiple coherence lengths and nonlocal effects. It was presented

in,22 certain aspects of it are discussed in the section below.

V. MICROSCOPIC THEORY OF TYPE-1.5 SUPERCONDUCTIVITY IN U(1)

MULTIBAND CASE

In this section we briefly outline microscopic theory of type-1.5 superconductivity in the particu-

lar case of clean multi-band superconductors that break only U(1) symmetry. In this case existence

of multiple coherence lengths does not follow from symmetry and has to be justified. A reader who

is interested in more general cases of higher symmetry breaking as well the general properties of

the type-1.5 state can skip this discussion and proceed directly to the next section. Existence of

multiple superconducting bands is not a necessary condition for appearance of multiple coherence

lengths.22 The appearance of multiple coherence lengths and type-1.5 regime in multiband-band

superconductors was described using microscopic theory at all temperatures, without relying on

GL expansions in.22 We refer a reader, interested in a full microscopic theory that does not rely

on GL expansion to that work, while here we mainly focus on microscopic justification of GL

expansion.

As discussed above, in multi-band systems, in general multi-component GL expansions are not

based on symmetry (indeed it is a particular example when a soft explicit breaking of a higher

symmetry does not necessarily eliminate classical-field-theoretic description of non-critical modes).

Therefore obviously it cannot be obtained as an expansion in a single small parameter τ = 1−T/Tc.
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Instead such expansions are justified when the system has multiple small parameters which are not

symmetry-related. In the simplest case these are multiple small gaps in different bands, small

gradients, and small interband coupling constants. A single-parameter-τ expansion emerges as a

single-component reduction of the model in the τ → 0 limit for a system that breaks only U(1)

symmetry.18

In this section we focus on two-band case and consider the microscopic origin of two-component

GL model (TCGL) described by the following free energy density:

F =
∑

j=1,2

(

aj |∆j |2 +
bj
2
|∆j |4 +Kj |D∆j |2

)

− γ (∆1∆
∗

2 +∆2∆
∗

1) +
B2

8π
(22)

where D = ∇ + iA, A and B are the vector potential and magnetic field and ∆1,2 are the gap

functions in two different bands.

A. Microscopic model for U(1) two-band system.

To verify applicability of TCGL theory we consider the microscopic model of a clean super-

conductor with two overlapping bands at the Fermi level.18,22 Within quasiclassical approximation

the band parameters characterizing the two different cylindrical sheets of the Fermi surface are

the Fermi velocities VFj and the partial densities of states (DOS) νj , labelled by the band index

j = 1, 2.

It is convenient to normalize the energies to the critical temperature Tc and length to r0 =

~VF1/Tc. The vector potential is normalized by φ0/(2πr0), the current density normalized by

cφ0/(8π
2r30) and therefore the magnetic field is measured in units φ0/(2πr

2
0) where φ0 = π~c/e is

the magnetic flux quantum. In these units the Eilenberger equations for quasiclassical propagators

take the form

vFjnpDfj + 2ωnfj − 2∆jgj = 0, (23)

vFjnpD
∗f+j − 2ωnf

+
j + 2∆∗

jgj = 0.

Here vFj = VFj/VF1, ωn = (2n+ 1)πT are Matsubara frequencies, the vector np = (cos θp, sin θp)

parametrizes the position on 2D cylindrical Fermi surfaces. The quasiclassical Green’s functions

in each band obey normalization condition g2j + fjf
+
j = 1.

The self-consistency equation for the gaps is

∆i = T

Nd
∑

n=0

∫ 2π

0
λijfjdθp. (24)
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The coupling matrix λij satisfies the symmetry relations n1λ12 = n2λ21 where ni are the partial

densities of states normalized so that n1 + n2 = 1. The vector potential satisfies the Maxwell

equation ∇×∇×A = j where the current is

j = −T
∑

j=1,2

σj

Nd
∑

n=0

Im

∫ 2π

0
npgjdθp. (25)

The parameters σj are given by σj = 4πρnjvFj and ρ = (2e/c)2(r0VF1)
2ν0.

First we can use the microscopic model formulated above to check if it is consistent with the

basic feature of the multicomponent GL theory, namely the existence of several distinct coherence

lengths. For that purpose we calculate asymptotics of gap functions |∆1,2|(r) linearizing the systems

of Eilenberger equations (23) together with the self-consistency equation (24). In momentum

representation this linear system has a discrete and continuous spectrum of imaginary eigenvalues

which determine the inverse decay scales of the gap functions deviations from the ground state.22

The discrete eigenvalues correspond to the masses of gap functions fields (i.e. the inverse of

coherence lengths associated with the linear combinations of the fields as in the previous sections).

Besides that there is a continuous spectrum which contains all scales lying on the branch cut going

along the imaginary axis starting at mink 2
(

√

|∆k|2 + (πT )2/vFk

)

.

The examples from ref.22 of the temperature dependencies of the masses µL,H(T ) are shown

in the Fig.2. The evolution of the masses µL,H is shown in the sequence of plots Fig.2(a)-(d) for

λJ increasing from the small values λJ ≪ λ11, λ22 to the values comparable to intraband coupling

λJ ∼ λ11, λ22. The regime with two massive modes is exactly the same as the given by a two-

component GL theory. In this model, at very low temperatures there exists only one massive mode

µL(T ) lying below the branch cut. As the interband coupling is increased above some critical value

the mass µH(T ) disappears at all temperatures. In such a regime the asymptotic is determined

by a single coherence length and a branch cut with a continuous spectrum of scales. The branch

cut contribution is essentially a non-local effect which is not captured by GL theory. Therefore

one can expect growing discrepancies between effective GL solution and the result of microscopic

theory at low temperatures.

Besides justifying the predictions of phenomenological two-component GL theory18 the micro-

scopic formalism developed in Ref.(22) allows to describe type-1.5 superconductivity beyond the

validity of GL models. As shown on Fig.3a the function µL(T ) is non-monotonic at low tem-

peratures. Therefore for a certain range of parameters in contrast with the physics of singe-band

superconductors the product of London penetration depth Λ and µL has a strong and nonmonotonic

temperature dependence making intervortex attraction possible if ΛµL < 1.
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FIG. 2. Calculated in22 the inverse of coherence lengths (or masses) µL and µH (red solid lines) of the

composite gap function fields for the different values of interband Josephson coupling λJ and vFk = 1. By

black dash-dotted lines the branch cuts are shown. The coupling constants are λ11 = 0.25, λ22 = 0.213 and

λJ = 0.0005; 0.0025; 0.025 for plots (a-d) correspondingly. In (a) the blue dash-dotted lines correspond to

λJ = 0 showing two masses going to zero at two different temperatures. This corresponds to U(1) × U(1)

theory with two independently diverging coherence lengths. For λJ 6= 0 only µL goes to zero at Tc: this is in

turn a consequence of the fact that Josephson coupling breaks the symmetry down to single U(1). However

when symmetry breaking is weak there is a local maximum of coherence length (local minimum of µL) at

lower temperature.

To demonstrate the type-1.5 superconductivity i.e. large-scale attraction and small-scale repul-

sion of vortices which originates from disparity of two coherence lengths, the inter-vortex interaction

energy Eint was calculated in.22 In Fig.3(c,d) Eint (normalized to the single vortex energy Ev) is

shown as a function of the distance between two vortices d. The plots on Fig.3(c) clearly demon-

strate the emergence of type-1.5 behavior when the parameter γF = vF1/vF2, which characterizes

the disparity in band characteristics is increased.

The type-1.5 regime manifested in the appearance a non-monotonic behavior of Eint(d) when

one of the coherence length becomes larger than the magnetic field penetration length. The Fig.3(d)

shows Eint for a U(1) two band superconductor that is type-2 near Tc and becomes type-1.5 near

the temperature where one band crosses over from interband-proximity-effect-induced to intrinsic
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superconductivity. The long-range attractive forces in type-1.5 regime are similar to the long-range

forces in type-1 superconductors, while short-range forces are similar to those in type-2 supercon-

ductors. The physical origin and form of these interactions are obviously principally different from

the discussed in section IV microscopic-physics and non-locality-dominated intervortex forces in

superconductors near Bogomolnyi point.

B. Microscopic Ginzburg-Landau theory for U(1) two-band system.

Here we briefly outline the derivation of TCGL functional (22) from the microscopic equations

following.18 First we find the solutions of Eilenberger Eqs.(23) in the form of the expansion by

the amplitudes of gap functions |∆1,2| and their gradients |(npD)∆1,2|. Then these solutions are

substituted to the self-consistency Eq.(24). Using this procedure we find the solutions of Eqs.(23)

in the form:

fj =
∆j

ωn
− |∆j |2∆j

2ω3
n

− vFj

2ω2
n

(npD)∆j +
v2Fj

4ω3
n

(npD)(npD)∆j . (26)

and f+j (np) = f∗j (−np). Note that this GL expansion is based on neglecting the higher-order terms

in powers of |∆| and |(npD)∆|. Indeed this approximation naturally fails in a number of cases. The

regimes when it can be justified were determined in the work18 by a direct comparison to the full

microscopic model. Let us determine microscopic coefficients in the GL expansion. Substituting

to the self-consistency Eqs.(24) and integrating by θp we obtain

∆1 = (λ11∆1 + λ12∆2)G+ (λ11GL1 + λ12GL2) (27)

∆2 = (λ21∆1 + λ22∆2)G+ (λ21GL1 + λ22GL2) (28)

where

G = 2

Nd
∑

n=0

πT

ωn
; X =

∑

n=0

πT

ω3
n

(29)

GLj = X

(

v2Fj

4
D2∆j − |∆j |2∆j

)

(30)

Expressing GLi from the equations above we obtain

n1GL1 = n1

(

λ22

DetΛ̂
−G

)

∆1 −
λJn1n2

DetΛ̂
∆2 (31)

n2GL2 = n2

(

λ11

DetΛ̂
−G

)

∆2 −
λJn1n2

DetΛ̂
∆1 (32)
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FIG. 3. Calculated in ref.22 (a) the inverse of coherence lengths (or masses) µL and µH (red solid and

dotted lines) of the composite gap function fields and inverse London penetration (blue dashed lines) for

the different values of ΛµL(Tc)/
√
2 = 1; 2; 3; 5. Scales above the black dash-dotted line are contained in

a branch-cut contribution. (b) Distributions of magnetic field H(r)/H(r = 0), gap functions |∆1|(r)/∆10

(dashed lines) and |∆2|(r)/∆20 (solid lines) for the coupling parameters λ11 = 0.25, λ22 = 0.213 and

λ21 = 0.0025 and different values of the band parameter γF = 1; 2; 3; 4; 5. (c,d) The interaction energy

Eint between two vortices normalized to the single vortex energy Ev as function of the intervortex distance

d. In panel (c) the pairing constants are the same as in (d) and T = 0.6Tc. In panel (d) λii are the same as

in (c) but λ21 = 0.00125, and γF = 1. The panel (d) shows that when, at lower temperature, one of the

coherence lengths becomes larger than the magnetic field penetration length, the system falls into type-1.5

regime. The strength on the attraction grows as temperature becomes lower. The inter vortex distance

corresponding to minimum of interaction potential is strongly temperature dependent even below 0.5Tc. It

diminishes when temperature is decreased which should result in vortex cluster shrinkage with decreasing

temperature.
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The system of two coupled GL Eqs.(31) can be obtained minimizing the free energy provided the

coefficients in Eq.(22) are given by

ai = ρni(λ̃ii + lnT −Gc) (33)

γ = ρn1n2λJ/DetΛ̂

bi = ρniX/T
2

Ki = v2Fibi/4

where λJ = λ21/n1 = λ12/n2. Note that the expression for Ki in Ref.18 an extra coefficient ρ. The

temperature is normalized to the Tc. Here X = 7ζ(3)/(8π2) ≈ 0.11, λ̄ij = λ−1
ij and Gc = G(Tc) is

determined by the minimal positive eigenvalue of the inverse coupling matrix λ̂−1 :

Gc =
Trλ−

√
Trλ2 − 4Detλ

2Detλ
.

We have used the expression G(T ) = G(Tc) − lnT . Near the critical temperature lnT ≈ −τ and

we obtain

ai = αi(T − Ti) (34)

αi = niλJ (35)

Ti = (1 +Gc − λ̃ii). (36)

In the above procedure of GL expansion leading to the system (31) we assumed both the

eigenvalues of the coupling matrix λ̂ are positive.

C. Temperature dependence of coherence lengths.

Coherence lengths are given by the inverse masses of linear modes. First we investigate the

asymptotic behaviour of the superconducting gaps formulated in terms of the linear modes of the

density fields both in TCGL and microscopic theories described in the previous section. To find

the linear modes we follow the procedure described in the section (III) using the GL model with

expansion coefficients (33). Let us set K1 = K2 which can be accomplished by rescaling the fields

∆1,2. Then the corresponding Hessian matrix (5) can be diagonalized with the k-independent

rotation introducing the normal modes χβ = Uβi(∆i − ∆i0) where β = L,H and i = 1, 2. The

rotation matrix Û is characterized by the mixing angle7,22 as follows:

Û =





cos θL sin θL

− sin θH cos θH



 (37)
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Note that in accordance with the results of section (III) the TCGL theory yields identical values

of two mixing angles θL = θH = Θ where Θ is given by the Eq.(20). However, in general, outside

the region where GL expansion is accurate, the exact microscopic calculation of asymptotic yields

deviations θH 6= θL. This is discussed in Ref.18

The fields χL,H corresponding to the linear combinations of ∆1,2 vary at distinct lengths: ξH =

1/µH and ξL = 1/µL. They constitute coherence lengths of the TCGL theory (22) and characterize

the asymptotic relaxation of the linear combinations of the fields ∆1,2, the linear combinations are

represented by the composite fields χL,H .

With the help of Eqs.(33) for GL coefficients obtained from microscopic theory we can study the

temperature dependencies of the coherence lengths characterizing the asymptotic relaxation of the

gap fields and compare them to the temperature dependence of coherence lengths in full microscopic

theory. Since the system in question breaks only one symmetry, then at critical temperature only

one coherence length can diverge while the second coherence should stay finite. Infinitesimally

close to critical temperature T = Tc − 0 the divergent coherence length has the following standard

mean-field behavior ξL = 1/µL ∼ 1/τ1/2, where τ = 1− T/Tc. The contribution of another linear

mode in the theory sets the scale which is proportional to ξH = 1/µH . It remains finite at T = Tc.

But the amplitude of this mode rapidly vanishes in that region T = Tc − 0. In Fig.(4)a,b the

temperature dependence of masses µL,H is plotted comparing the results of the full microscopic22

and microscopically derived TCGL theories.18 It is shown for the cases of weak and strong interband

coupling in Fig.(4)c,d. We have found that TCGL theory describes the lowest characteristic mass

µL(T ) (i.e. the longer coherence length) with a very good accuracy near Tc [compare the blue and

red curves in Fig. (4)a,b]. Remarkably, when interband coupling is relatively weak [Fig.(4)c] the

“light” mode is quite well described by TCGL also at low temperatures down to T = 0.5Tc around

which the weak band crosses over from active to passive (proximity-induced) superconductivity.

Indeed the τ parameter is large in that case. Nonetheless if the interband coupling is small one

does have a small parameter to implement a GL expansion for one of the components. Namely

one can still expand, e.g. in the powers of the weak gap |∆2|/πT ≪ 1. On the other hand for

the “heavy” mode we naturally obtain some discrepancies even relatively close to Tc, although

TCGL theory gives qualitatively correct picture for this mode when the interband coupling is not

too strong. More substantial discrepancies between TCGL and microscopic theories appear only

at lower temperatures or at stronger interband coupling [Fig.(4)d] where the microscopic response

function has only one pole, while TCGL theory generically has two poles. Note that these expected

deviations concern shorter-range physics and do not directly affect long-range intervortex forces. In
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the type-1.5 regime long-range attractive forces are governed by core-core interaction which range

is set by the larger coherence length (lighter mode).

The microscopic two-band GL expansion discussed in this section has straightforward general-

ization to N-component expansions in N-band U(1) models.49 For a discussion of microscopic GL

expansion in more complicated states such as s+ is that break multiple symmetries see.9,49

( )a ( )b

( )c ( )d

FIG. 4. (a) and (b) Comparison of field masses (inverse coherence lengths) given by full microscopic (solid

lines), and microscopically-derived TCGL (dotted) theories. The microscopic parameters are λ11 = 0.5,

λ22 = 0.426 and λ12 = λ21 = 0.01; 0.1 for (a,b) correspondingly. The yellow shaded region above the

dashed-dotted line shows the continuum of length scales determined by a branch-cut contributions which

are specific to the microscopic theory and are not captured by the TCGL description. (c,d) Comparison of

the mixing angle behaviour given by the exact microscopic (red lines) and microscopically derived TCGL

theories (blue line). Note that the larger coherence length has a maximum as a function of temperature

deep below Tc near the crossover to the regime when the weak band superconductivity is induced by an

interband proximity effect (the corresponding inverse quantity µL has a minimum). This non-monotonic

coherence length behavior is more pronounced at weak interband coupling and disappears at strong interband

coupling.22 A multiband system with weak interband interaction can easily fall into type-1.5 regime near

that crossover temperature. Panels (b) and (d) show a pattern how the TCGL theory starts to deviate from

the microscopic theory at lower temperature when interband coupling is increased. Parameters are the same

as on the panels (a,b) correspondingly.
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VI. SYSTEMS WITH GENERIC BREAKDOWN OF TYPE-1/TYPE-2 DICHOTOMY

In this section we discuss the simplest situations of generic type-1/type-2 dichotomy breakdown.

One example is superconducting systems that exhibit a phase transition from U(1) to U(1) ×
U(1) state (or similar transitions between the states with broken higher symmetries), such as

the theoretically discussed superconducting states of liquid metallic hydrogen or deuterium,11 or

models involving mixture of protonic and Σ− hyperonic condensates in neutron stars,13 as well

as microscopic certain interface superconductors.33 Indeed at such a transition the magnetic field

penetration length remains finite but there is a divergent coherence length due to the breakdown

of additional symmetry (if the phase transition is continuous). Also the mode associated with

the divergent coherence length looses its amplitude at the phase transition. Therefore near this

transition one of the coherence lengths is the largest length scale of the problem and the system

can only be either a type-1 or type-1.5 superconductor.

Similar but more subtle situation takes place at the transition from s to s+is state.10 The s+is

superconductor breaks additional Z2 symmetry and there is a corresponding diverging coherence

length in the problem. An important generic aspect of the s+ is superconducting states is that the

density excitations are coupled with the phase difference excitations in the linear theory.10 One of

the mixed phase-difference–density mode gives raise to a divergent coherence length at that phase

transition. Thus such a system can be either type-1 or type-1.5 near the transition from s to s+ is

state. We discuss this example in more detail in Section VIII.

VII. STRUCTURE OF THE VORTEX CLUSTERS IN TYPE-1.5 TWO-COMPONENT

SUPERCONDUCTOR.

In this section, following Ref.23 we consider in more detail the full non-linear problem in two-

component Ginzburg-Landau models, with and without Josephson coupling η which directly cou-

ples the two condensates (for treatment of other kinds of interband couplings see,7 for microscopic

derivation of the coefficients see Sec.IV). When η = 0 the condensates are coupled electromagneti-

cally. When there is non-zero interband Josephson coupling, the phase difference is associated with

a massive mode with mass
√

η(u21 + u22)/u1u2.

F =
1

2

∑

i=1,2

[

|(∇+ ieA)ψi|2 + (2αi + βi|ψi|2)|ψi|2
]

+
1

2
(∇×A)2 − η|ψ1||ψ2| cos(θ2 − θ1) (38)

Since the Ginzburg-Landau model is non-linear, in general intervortex interaction is non-

pairwise. Non-pairwise interaction are important at shorter ranges where linearised theory, consid-
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ered above, does not in general apply. Below we discuss the importance of complicated non-pairwise

forces between superconducting vortices arising in certain cases in multicomponent systems.23,43,44

These non-pairwise forces in certain cases have important consequences for vortex clusters forma-

tion in the type-1.5 regime.

FIG. 5. Ground state of Nv = 9 flux quanta in a U(1) × U(1) type-1.5 superconductor (i.e. η = 0).

The parameters of the potential being here (α1, β1) = (−1.00, 1.00) and (α2, β2) = (−0.60, 1.00), while

the electric charge is e = 1.48 (in these units the electric charge value parameterises London penetration

length). The displayed physical quantities are a the magnetic flux density, b (resp. c) is the density of the first

(resp. second) condensate |ψ1,2|2. d (resp. e) shows the norm of the supercurrent in the first (resp. second)

component. Panel f is Im(ψ∗
1ψ2) ≡ |ψ1||ψ2| sin(θ2 − θ1) being nonzero when there appears a difference

between the phase of two condensates. The solution shows that clearly there is vortex interaction-induced

phase-difference gradient which contributes to non-pairwise intervortex forces. Parameters are chosen so that

the second component has a type-1 like behavior while the first one tends to from well separated vortices.

The density of the second band is depleted in the vortex cluster and its current is mostly concentrated on

the boundary of the cluster (see Ref.23).

Fig. 5 and Fig. 6 show numerical solutions for N-vortex bound states in several regimes (for

technical details see Appendix of23). The common aspect of the regimes shown on these figures

is that the density of one of the components is depleted in the vortex cluster and has its current

mostly concentrated on the boundary of the vortex cluster (i.e. has a “type-1”-like behavior). At

the same time the second component forms a distinct vortex lattice inside the vortex cluster (i.e.

has a “type-2”-like behavior).
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FIG. 6. Elongated ground state cluster of 18 vortices in a superconductor with two active bands. Parameters

of the interacting potential are (α1, β1) = (−1.00, 1.00), (α2, β2) = (−0.0625, 0.25) while the interband

coupling is η = 0.5. The electric charge, parameterizing the penetration depth of the magnetic field, is

e = 1.30 so that the well in the nonmonotonic interacting potential is very small. In this case there is

visible admixture of the current of second component in vortices inside the cluster, though its current is

predominantly concentrated on the boundary of the cluster.

Next we report the regime where the passive second band (i.e. with positive α2) is coupled to

the first band by strong Josephson coupling η = 7.0 (shown on Fig. 7). This coupling imposes

a strong energy penalty both for disparities of the condensates variations and for the difference

between phases of the condensates. In this regime there are also relatively strong non-pairwise

intervortex forces favouring chain-like vortex arrangements compared to compact clusters.23 We get

a relatively flat and complicated energy landscape for multi-vortex configurations and the outcome

of the energy minimization strongly depends on initial configuration. Simulations whose outcome

is compact clusters like Fig. 5 and Fig. 6 are clearly ground states, since various initial guesses lead

to similar final configurations. Simulating systems like in Fig. 7 is less straightforward. Numerical

evolution in these systems is extremely slow because of the complicated energy landscape. The

final state strongly depends on the initial field configuration, indicating the configuration is not

the ground state, but a “quasi-stationary” bound state with a very slow evolution. Formation of

highly disordered states and vortex chains due to the short-range nature of the attractive potentials

and many-body forces was a common outcome of the simulation in similar type-1.5 regimes,23 in
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spite of the use of a fine numerical grid. Another example of systems that are generally more

inclined to posses non-pairwise intervortex forces that promote vortex-stripes are superconducting

condensates with phase separation.43

The Fig. 7 shows the typical non-universal outcome of the energy minimization in this case. A

striking feature here is formation of vortex stripe-like configuration, in contrast with the ground

state expected from the two-body forces in this system. Namely the axially symmetric two-body

potentials with long range attraction and short-range repulsion (which we have in this case) do

not allow ground states with stripe formation. In that regime the formation of vortex stripes and

small lines is aided by the repulsive non-pairwise intervortex interactions.23

Note that even in this regime, the non-linear effects in caused by intervortex interaction result

in self-induced gradients of the phase difference, in spite of the strong Josephson coupling.

When stray fields are taken into account in thin films, they give repulsive inter vortex interaction

at very long distances, while vortices can retain attractive interaction at intermediated length

scales. That gives raise to various hierarchical structures such as lattices of vortex clusters or

vortex stripes.39,64 The study of dynamics demonstrated that such vortex systems can form vortex

glass phase.65 This is in contrast to type-2 superconductors where vortex glass can appear only in

the presence of vortex pinning and not in clean samples.

VIII. MACROSCOPIC SEPARATION IN DOMAINS OF DIFFERENT BROKEN

SYMMETRIES IN TYPE-1.5 SUPERCONDUCTING STATE.

As discussed above a system with non-monotonic intervortex interaction potentials allow a state

with macroscopic phase separation in vortex droplets and Meissner domains. In type-1.5 super-

conductors this state can also represent a phase separation into domains of states with different

broken symmetries. In this section we will give two different examples of how such behavior arises.

Note that in multicomponent superconductors some symmetries are global (i.e. associated with

the degrees of freedom decoupled from vector potential) and some are local i.e. associated with the

degrees of freedom coupled to vector potential. As is well known, in the later case the concept of

spontaneous symmetry breakdown is not defined the same way as in a system with global symmetry.

However below, for brevity we will not be making terminological distinctions between local and

global symmetries (detailed discussion of these aspects can be found in e.g.50).
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FIG. 7. A bound state of an Nv = 25 vortex configuration in case when superconductivity in the second

band is due to interband proximity effect and the Josephson coupling is relatively strong η = 7.0. The

initial configuration in this simulation was a giant vortex. Other parameters are (α1, β1) = (−1.00, 1.00),

(α2, β2) = (3.00, 0.50), e = 1.30. For the simulations, like the one shown on Fig. 6 the stopping criterion

of energy minimization was when relative variation of the norm of the gradient of the GL functional with

respect to all degrees of freedom to be less than 10−6. Here the situation is slightly different from that

shown on two previous figures. Clearly in the shown above configuration the ground state was not reached.

However the interaction potentials a such that the evolution at the later stages becomes extremely slow.

The number of energy minimization steps in this case was order of magnitude larger than what was required

for convergence in the previous regimes. This signals that in similar systems vortex stripes will be likely to

form (relative to more compact vortex clusters) for kinetic reasons as well as due to thermal fluctuations

A. Macroscopic phase separation into U(1)× U(1) and U(1) domains in type-1.5 regime.

Consider a superconductor with broken U(1)×U(1) symmetry, i.e. a collection of independently

conserved condensates with no intercomponent Josephson coupling. As discussed above, in the

vortex cluster state, in the interior of a vortex droplet, the superconducting component which has

vortices with larger cores is more depleted. In U(1)×U(1) system the vortices with phase windings

in different condensates are bound electromagnetically, resulting in an asymptotically logarithmic

interaction potential with a prefactor proportional to |ψ1|2|ψ2|2/(|ψ1|2 + |ψ2|2),50 and even weaker

interaction strength at shorter separations.

Consider now a macroscopically large vortex domain. Even if the second component there
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is not completely depleted, its density is suppressed and as a consequence the binding energy

between vortices with different phase windings (∆θ1 = 2π,∆θ2 = 0) and (∆θ1 = 0,∆θ2 = 2π) can

be arbitrarily small. Moreover the vortex ordering energy in the component with more depleted

density is small as well. As a result, even tiny thermal fluctuation can drive vortex sublattice

melting transition11,66 in a large vortex cluster. In that case the fractional vortices in weaker

the component tear themselves off the fractional vortices in strong the component and form a

disordered state. Note that the vortex sublattice melting is associated with the phase transition

from U(1)×U(1) to U(1) broken symmetries.11,66 Thus, a macroscopically large vortex cluster can

realise a domain of U(1) phase (associated with the superconducting state of strong component)

immersed in domain of vortexless U(1) × U(1) Meissner state. If the magnetic field is increased,

the system will go from the vortex clusters state (with coexisting U(1)× U(1) and U(1) domains)

to a U(1) vortex state.

B. Macroscopic phase separation in U(1) and U(1)× Z2 domains in three band type-1.5

superconductors.

In this subsection we discuss an example of vortex clusters in three-band superconductors that

locally break additional Z2 symmetry forming “phase-frustrated” states. Such superconductors

also allow the coexistence of domains with different broken symmetries in the ground state. The

minimal GL free energy functional to model a three-band superconductor is

F =
1

2
(∇×A)2 +

∑

i=1,2,3

1

2
|Dψi|2 + αi|ψi|2 +

1

2
βi|ψi|4 +

∑

i=1,2,3

∑

j>i

ηij |ψi||ψj | cos(ϕij) . (39)

Here the phase difference between two components are denoted ϕij = θj − θi. Microscopic deriva-

tions of such models describing s+ is superconducting states can be found in.9,49

Systems with more than two Josephson-coupled bands can exhibit phase frustration.8–10,67,68

For ηij < 0, a given Josephson interaction energy term is minimal for zero phase difference (we then

refer to the coupling as “phase-locking” ), while when ηij > 0 it is minimal for a phase difference

equal to π (we then refer to the coupling as “phase-antilocking” ). Two-component systems with

bilinear Josephson coupling are symmetric with respect to the sign change ηij → −ηij as the phase
difference changes by a factor π, for the system to recover the same interaction. However, in

systems with more than two bands there is generally no such symmetry. For example if a three-

band system has η > 0 for all Josephson interactions, then these terms can not be simultaneously

minimized, as this would correspond to all possible phase differences being equal to π.
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The ground state values of the fields |ψi| and ϕij of system (39) are found by minimizing the

potential energy

∑

i

{

αi|ψi|2 +
1

2
βi|ψi|4

}

+
∑

j>i

ηij |ψi||ψj | cos(ϕij). (40)

This can however not be done analytically in general, though certain properties can be derived

from qualitative arguments. In terms of the sign of the η’s, there are four principal situations:

Case Sign of η12, η13, η23 Ground State Phases

1 −−− ϕ1 = ϕ2 = ϕ3

2 −−+ Frustrated

3 −++ ϕ1 = ϕ2 = ϕ3 + π

4 + + + Frustrated

The case 2) can result in several ground states. If |η23| ≪ |η12|, |η13|, then the phase differences

are generally ϕij = 0. If on the other hand |η12|, |η13| ≪ |η23| then ϕ23 = π and ϕ12 is either 0 or

π. However in certain parameter ranges the resulting state is in fact a “compromise” where ϕij is

not an integer multiples of π.

The case 4) is in fact equivalent to 2) (mapping between these scenarios is trivial). The wide

range of resulting groundstates can be seen in Fig. 8. As η12 is scaled, ground state phases change

from (−π, π, 0) to the limit where one band is depleted and the remaining phases are (−π/2, π/2).

An important property of the potential energy (40) is that if any of the phase differences ϕij

is not an integer multiple of π, then the ground state posses an additional discrete Z2 degener-

acy. For example for a system with αi = −1, βi = 1 and ηij = 1, two possible ground states

exist and are given by ϕ12 = 2π/3, ϕ13 = −2π/3 or ϕ12 = −2π/3, ϕ13 = 2π/3. Thus in this

case, the broken symmetry is U(1) × Z2, as opposed to U(1). As a result, like any other system

with Z2 degeneracy, the theory allows an additional set of topological excitations: domain walls

interpolating between the two inequivalent ground states as well as more complicated topologi-

cal excitations.69–71 Generalisations to frustrated systems with larger number of components was

discussed in.72

There is a divergent coherence length at the critical point where the system undergoes the

U(1)× Z2 → U(1) phase transition (when there is a second order phase transition from an s+ is

to an s state). The nature of this divergent length-scale is revealed by calculation of the normal

modes. Specifically, generating a set of differential equations from the eq.(39) and linearising these
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FIG. 8. Ground state phases of the three components as function of η12 (here θ3 = 0 fixes the gauge).

The GL parameters are αi = 1, βi = 1, η13 = η23 = 3. For intermediate values of η12 the ground state

exhibits discrete degeneracy (symmetry is U(1)× Z2 rather than U(1)) since the energy is invariant under

the sign change θ2 → −θ2, θ3 → −θ3. For large η12 we get θ2 − θ3 = π implying that |ψ3| = 0 and so

there is a second transition from U(1) × Z2 to U(1) and only two bands at the point d). Here, the phases

were computed in a system with only passive bands, though systems with active bands exhibit the same

qualitative properties except for the transition to U(1) and two bands only (i.e. active bands have non-zero

density in the ground state).

close to the groundstate, gives a mass-matrix whose eigenbasis is also an orthonormal basis of

small perturbations to the ground state.10 In systems that break only U(1) symmetry, these modes

are segregated with respect to phase and amplitude so that small perturbations to the phase and

amplitude sectors decay independently of each other. Small perturbations to the amplitude thus

has no implications for the phase difference sector, and vice versa. In contrast, in the region where

Z2 symmetry is broken the modes are generally mixed in this kind of models. In this case a

perturbation to the amplitude sector necessarily implies a perturbation to the phase sector and

vice versa.

The immediate implication of this is that in the region with broken Z2-symmetry, there are five

rather than three coherence lengths that describe amplitude perturbations. If the phase transition

is second order one of these coherence lengths diverges as we approach the transition point where

Z2-symmetry is restored. Thus, vortices in this region produce a perturbation to the amplitude

that recovers with a coherence length that is divergent. Since the magnetic field penetration depth

is finite at that transition the system can be either type-1 or type-1.5 with attractive inter-vortex

interaction.10

In the iron-based superconductors a phase transition from s-wave to s+ is state is expected to
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take place as a function of doping.9 Thus, if there is an s+ is region at the phase diagram, there

should be a range of doping and temperatures in the proximity of the critical point where the type-

1.5 superconductivity is generic. The general case of N -component frustrated superconductors is

less studied, however certainly in case of larger number of components there are more possibilities

for the appearance of normal modes with low or zero masses leading to type-1.5 regimes.72

C. Non-linear effects and long-range intervortex interaction in s+ is superconductors.

The ground state of a phase frustrated superconductor is in many cases non-trivial, with phase

differences being compromises between the various interaction terms. Inserting vortices in such a

system can shift the balance between different competing couplings, since vortices can in general

have different effects on the different bands. In particular, since the core sizes of vortices are

not generally the same in all bands, vortex matter typically depletes some components more than

others and thus can alter the preferred values of the phase difference. So the minimal potential

energy inside a vortex lattice or cluster may correspond to a different set of phase differences than

in the vortex-free ground state. In particular even in s-wave systems vortices can create “bubbles”

of Z2 order parameter around themselves. To see this, consider the following argument: The

phase-dependent potential terms in the free energy (39) are of the form

ηijuiujfi(r)fj(r) cos(ϕij(r)) , (41)

where ui are ground state densities and each fi(r) represent an Ansatz which models how superfluid

densities are modulated due to vortices. Consider now a system where N vortices are uniformly

distributed in a domain Ω. The phase dependent part of the free energy is

Uϕ =





∑

i>j

ηijuiuj





∫

Ω
drfi(r)fj(r) cos(ϕij(r)). (42)

If ϕij is varying slowly in comparison with the inter vortex distance, then it can be considered

constant in a uniform distribution of vortices (as a first approximation). In that case (42) can be

approximated by

Uϕ ≃
∑

ij

η̃ijuiuj cos(ϕij) where η̃ij = ηij

∫

Ω
drfi(r)fj(r) (43)

If on the other hand ϕij varies rapidly, then it is not possible to define η̃ij without a spatial

dependence. Then ϕij will depend on η̃ij(r) which is related to the local modulation functions fifj

and vary with a characteristic length scale.
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Thus, η̃ is the effective inter-band interaction coupling resulting from density modulation. Since

in general, fi 6= fj (unless the two bands i, j are identical), one must take into account the

modulation functions fi when calculating the phase differences. In particular, if the core size in

component i is larger than in component j, then
∫

drfifk <
∫

drfjfk and therefore the phase

differences ϕij minimizing (43) depend on fi, and consequently on the density of vortices. Thus

introducing vortices in the system is, in a way, equivalent to a relative effective decrease of some

of the Josephson coupling constants.

This can alter the state of the system, as the symmetry of the problem depends on the Josephson

interaction terms. In Figs. 9 , 10 we see a type-1.5 system in which the symmetry of the ground

state is U(1). As vortices are inserted into the system, they form clusters and the effective inter

band interactions η̃ij are renormalized to a degree that the symmetry of the domain near vortex

clusters changes to U(1)×Z2. Thus the vortex cluster state in such a system represents macroscopic

phase separation in domains of broken U(1) and U(1)× Z2 symmetries.

The vortex structure near the Z2 phase transition which we discussed in this section has impor-

tant consequences for the phase diagram of the system beyond mean-field approximation, leading

to reentrant phase transitions.73

In the vicinity of Z2 phase transition, besides the appearance of type-1.5 regime, the system has

a number of other unusual properties such as anomalous vortex viscosity74 and distinct anomalous

thermoelectric effects.75,76

IX. FLUCTUATION EFFECTS IN TYPE-1.5 SYSTEMS

In single-component Ginzburg-Landau models, the order of superconducting transition in zero

applied magnetic field in three dimensions depends on the ratio of magnetic field penetration length

and coherence length. Halperin, Lubensky and Ma established that in extreme type-1 supercon-

ductors the gauge field fluctuations make the superconducting phase transition first order.77,78 In

the opposite limit of extreme type-2 systems, Dasgupta and Halperin79 demonstrated that the

superconducting transition is second order in single-component systems and has the universality

class of the inverted-3DXY model. The nature of the superconducting phase transition in this

limit is the proliferation of vortex-loop excitations. The inverted-3DXY universality class can be

demonstrated by duality mapping.57,79–81

The value of the Ginzburg-Landau parameter κ = λ/ξ at which the phase transition changes

from second to first order is difficult to establish. Early numerical works suggested that the tri-
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FIG. 9. Interacting vortex clusters with internally broken Z2 symmetry in a frustrated three band su-

perconductor. The snapshot represents a slowly evolving (quasi-stationary) state of the weakly interacting

well-separated clusters. In this numerical computation, each of the clusters has with a good accuracy con-

verged to a physical solution of GL equations, but the snapshot is taken during the slow evolution driven by

the weak long-range intercluster interaction. The snapshot demonstrates the existence of long-range field

variations associated with the soft mode. The soft mode, as discussed in the text, appears near the Z2 phase

transition. This produces weak but long-range intervortex forces. Displayed quantities are: a) Magnetic

field, b-d) |ψ1|2, |ψ2|2, |ψ3|2, e) |ψ1||ψ2| sinϕ12, f) |ψ1||ψ3| sinϕ13), g) |ψ1||ψ3| sinϕ23). The GL parameters

are α1 = −3, β1 = 3, α2 = −3, β2 = 3, α3 = 2, β3 = 0.5, η12 = 2.25, η13 = −3.7. The parameter set was

chosen so that it lies in the regime where the ground state symmetry of the system without vortices is U(1),

but is close to the U(1) × Z2 region. Because of the disparity in vortex core size the effective interaction

strengths η̃ij are depleted to different extents. As a consequence, a vortex cluster produces a bubble of state

with broken U(1)× Z2 symmetry.

critical point does not coincide with the Bogomolnyi critical point.82 The largest Monte Carlo

simulations performed at this time83,84 claim that the tricritical κtri = (0.76± 0.04) is slightly
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FIG. 10. Interacting vortex clusters with broken internal Z2 symmetry in a frustrated three band super-

conductor. The panel A displays the magnetic field B. Panels B and C respectively display sinϕ12 and

sinϕ13, the third phase difference can obviously be obtained from these two ones. Second line, shows the

densities of the different condensates |ψ1|2 (D), |ψ2|2 (E), |ψ3|2 (F). The third line displays the supercurrent

densities associated with each condensate |J1| (G), |J2| (H), |J3| (I). The parameter set here is the same

as in Fig. 9.Here the difference compared to the previous picture, is that the sine of the phase differences is

represented ‘unweighted’ by the densities in contrast to Fig. 9, clearly indicating that vortices create an area

with broken Z2 symmetry. Panel C now makes clear that the inner cluster is in a defined state ϕ13 ≈ π/2

(whose opposite state would have been −π/2). Panel B gives a visualization of the long range interaction

between the clusters.

smaller than the critical κc = 1, which, in our units, separates the type-1 regime with thermo-

dynamically unstable vortices and the type-2 regime with thermodynamically stable vortices. In

these works it is claimed that even in the weakly type-1 regime where the vortex interaction is

purely attractive and vortices are not thermodynamically stable, the phase transition can be con-

tinuous. This raises the question about the nature of the phase transition in type-1.5 regime where

by contrast vortices have long-range attractive interaction but are thermodynamically stable. The

problem was investigated in the effective j-current model85 where thermally excited vortices are
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modeled by directed loops with long-range attractive, short-range repulsive interaction similar to

the long-range interaction between vortices in GL model. The results indicate that the zero-field

superconducting phase transition in type-1.5 materials can be first order.85 This is in contrast to or-

dinary single-component GL theory which always has a continuous phase transition in the inverted

3d XY universality class in the parameter regime where vortices are thermodynamically stable.

For the s + is type-1.5 systems it was found that fluctuations can modify the mean-field phase

diagrams quantitatively, resulting in reentrant phase transitions where Z2 symmetry is broken by

heating.73

X. CONCLUSION

We briefly outlined the basic concepts and gave a brief account on type-1.5 superconductivity

that takes place in multicomponent systems. In general a superconducting state state is charac-

terised by multiple coherence lengths ξi, (i = 1, ...,M) arising from multiple broken symmetries or

multiple bands. The type-1.5 state is the regime where some of the coherence lengths are larger

and some smaller than the magnetic field penetration length: ξ1 ≤ ξ2... < λ < ξM ≤ ... ≤ ξN

(here we absorbed the usual factor 1/
√
2 into the definition of coherence lengths). Such a situation

should rather generically arise in systems that have phase transitions between superconducting

states that break different symmetries: at such phase transitions some of the coherence length

diverge while other coherence lengths and magnetic field penetration length stay finite. Among

various unconventional properties that the system acquires in this regime long-range attractive,

short-range repulsive intervortex interaction potential. This allows a macroscopic phase separation

into domains of Meissner and vortex states in an applied external field. This phase separation can

also be accompanied by different broken symmetries in vortex clusters and Meissner domains. This

regime leads to unconventional magnetic, thermal and transport properties.
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