

This is a repository copy of *Application of Human Factors Analysis and Classification System (HFACS) to UK rail safety-of-the-line incidents*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104357/

Version: Accepted Version

# Article:

Madigan, R orcid.org/0000-0002-9737-8012, Golightly, D and Madders, R (2016) Application of Human Factors Analysis and Classification System (HFACS) to UK rail safety-of-the-line incidents. Accident Analysis and Prevention, 97. pp. 122-131. ISSN 0001-4575

https://doi.org/10.1016/j.aap.2016.08.023

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

## Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

## Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

| 1  | Application of Human Factors Analysis and Classification System (HFACS) to                        |
|----|---------------------------------------------------------------------------------------------------|
| 2  | UK rail safety of the line incidents                                                              |
| 3  | Ruth Madigan <sup>a</sup> , David Golightly <sup>b</sup> , & Richard Madders <sup>c</sup>         |
| 4  |                                                                                                   |
| 5  | <sup>a</sup> Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom |
| 6  | <sup>b</sup> Human Factors Research Group, Innovative Technology Research Centre, Department of   |
| 7  | Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park,   |
| 8  | Nottingham, NG7 2RD.                                                                              |
| 9  | <sup>c</sup> Arcadia Alive Ltd., 8 The Quadrant, 99 Parkway Avenue, Sheffield, S9 4WG             |
| 10 |                                                                                                   |
| 11 |                                                                                                   |
| 12 |                                                                                                   |
| 13 |                                                                                                   |
| 14 |                                                                                                   |
| 15 |                                                                                                   |
| 16 |                                                                                                   |
| 17 |                                                                                                   |
| 18 |                                                                                                   |
| 19 |                                                                                                   |
| 20 |                                                                                                   |
| 21 |                                                                                                   |

## 22 Abstract

23 Minor safety incidents on the railways cause disruption, and may be indicators of more serious safety 24 risks. The following paper aimed to gain an understanding of the relationship between active and 25 latent factors, and particular causal paths for these types of incidents by using the Human Factors 26 Analysis and Classification System (HFACS) to examine rail industry incident reports investigating such 27 events. 78 reports across 5 types of incident were reviewed by two authors and cross-referenced for 28 interrater reliability using the index of concordance. The results indicate that the reports were strongly 29 focused on active failures, particularly those associated with work-related distraction and 30 environmental factors. Few latent factors were presented in the reports. Different causal pathways 31 emerged for memory failures for events such a failure to call at stations, and attentional failures which 32 were more often associated with signals passed at danger. The study highlights a need for the rail 33 industry to look more closely at latent factors at the supervisory and organisational levels when 34 investigating minor safety of the line incidents. The results also strongly suggest the importance of a 35 new factor - operational environment - that captures unexpected and non-routine operating 36 conditions which have a risk of distracting the driver. Finally, the study is further demonstration of the 37 utility of HFACS to the rail industry, and of the usefulness of the index of concordance measure of 38 interrater reliability.

39 Keywords: HFACS, System Analysis, Rail, Accident Investigation,

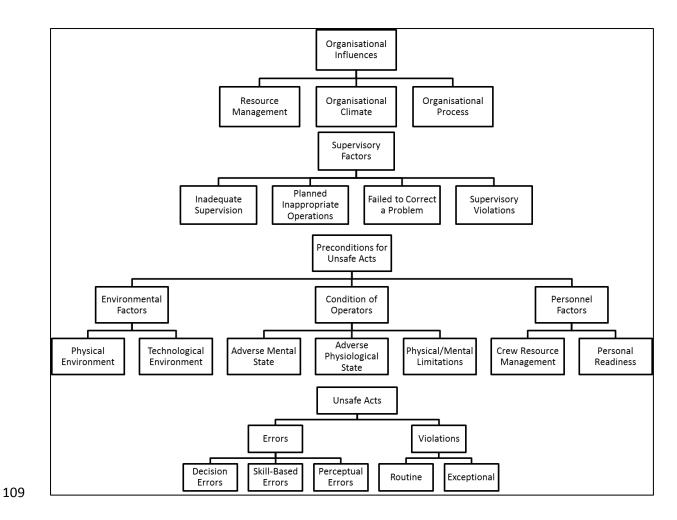
40 **1. Introduction** 

In the period from 2001 to 2014 there were 803 fatalities (excluding suicides) and 5794 major
injuries on the UK rail network (Department for Transport, 2014). Although, the rail industry has an
excellent safety record in comparison to other forms of transport (Department for Transport, 2014),
the Office of Road & Rail has put forward a safety vision for zero workforce and industry-caused
passenger fatalities, and an ever-decreasing overall safety risk (ORR, 2014). If we are to move towards

a realisation of this vision, it is important to gain a detailed understanding of all of the factors which
contribute to accidents and incidents in order to put appropriate controls in place.

48 Recent analyses have argued that human error was a causal factor in the occurrence of many 49 serious and fatal rail accidents, both in the UK (French & Cope, 2012) and across Europe (Kyriakidis, 50 Pak, & Majumdar, 2015). On top of these more serious incidents, there are many hundreds of minor 51 incidents within the UK rail industry, many of which are also attributed to driver error. These include 52 speed exceedances and signals passed at danger (SPADs) that did not lead to any accidents, along with 53 trains that stop short or overshoot their platform, or fail to call altogether. These types of incident are 54 extremely costly for organisations due to fines and infrastructure costs, along with disruption leading to negative public opinion. The most recent National Rail Passenger Survey showed that 55 punctuality/reliability was the factor with the biggest impact on overall customer satisfaction, and 56 57 how a train company dealt with delays had the biggest impact on overall dissatisfaction (NRPS, 2016). 58 Additional costs arise as these incidents often require a driver to be removed from duty for an 59 investigation and possibly retraining. Furthermore, the concern is that a minor event is an indicator of 60 the risk of a more serious incident in the future (Reason, 1997; Hollnagel, 2014).

61 The opportunity for minor safety of the line events to occur is huge. For example, the number 62 of approaches to red signals annually in the UK may be in the region of 7.5m (Gibson, Mills, Basacik, 63 & Harrison, 2015). Few of these result in actual SPADs, and error probability for SPADs or events such 64 as wrong side door openings (Basacik and Gibson, 2015) suggests error rates may be approaching the 65 limits of performance. Therefore, careful analysis of events is required if new levels of safety are to be 66 achieved, and there is a need for rail companies to understand what causes these events, so that 67 potential courses of remedial action can be identified including training, technical or procedural 68 change.


Contemporary human factors approaches to system safety have been used to provide greater
 insights into the causes of accidents in many safety-critical domains (Lenné, Salmon, Liu, & Trotter,

71 2012). Much of this work has been based on Reason's (1990) Generic Error Modelling System (GEMS), 72 which defines two broad categories of error: active and latent failures. Active errors are associated 73 with the front-line operators of a system, and their effects usually become evident almost 74 immediately. Latent (or hidden) errors refer to the errors of designers or managers, and their adverse 75 consequences may lie dormant within the system for a long time, only becoming evident when they 76 combine with other factors to breach the system's defences. Reason (1990) noted that latent errors 77 may pose the greatest risk to system safety because unless they are identified they remain in a system 78 despite attempts to resolve an issue through rectifying the immediate performance issue (e.g. through 79 non-systemic equipment fixes or training). Thus, one of the most important aspects of Reason's model 80 is the argument that human error is a consequence, not a cause, of latent failures; and that "it is only 81 by understanding the context that provoked an error can we hope to limit its reoccurrence" (Reason, 82 1997, p.126). As a result of the issues outlined above, there is currently a strong emphasis on tackling 83 human factors within the rail industry (e.g. Atkins, 2003; FRA, 2007; Lawton & Ward, 2005; RSSB, 84 2009), and as part of this process it is vital that both the active and latent failures which contribute to 85 railway incidents are understood.

### 86 **1.1 Human Factors Analysis & Classification System**

87 A number of studies have used different frameworks to look at the factors contributing to 88 specific types of railway incident i.e. SPADs (e.g. Edkins & Pollock, 1997; Lawton & Ward, 2005; Rjabovs 89 and Palacin, 2016), and specific types of error e.g. communication errors (Murphy, 2001). Read, Lenné, 90 and Moss (2012) used the Contributing Factors Framework to investigate the associations between 91 factors involved in Australian rail accidents and found that task demand factors (e.g. high workload, 92 distraction) were significantly associated with skill-based errors; knowledge and training deficiencies 93 significantly associated with mistakes; and violations significantly linked to social environmental 94 factors. Currently, the UK rail sector is working towards a database of trends and themes in human 95 performance and incident underlying causes for a sample of high risk Great British (GB) rail incidents.

96 This database uses the Incident Factor Classification System (IFCS) of 10 factors that may shape human 97 performance in rail incidents (Gibson et al., 2015). However, one of the most common frameworks for analysis, based on Reason's (1990) model, is the Human Factors Analysis and Classification System 98 99 (HFACS; Wiegmann & Shappell, 2003). HFACS describes four levels of failure based on Reason's Swiss 100 Cheese Model (Reason, Hollnagel, & Paries, 2006): unsafe acts, preconditions for unsafe acts, unsafe 101 supervision, and organisational influences (see Figure 1). Critically, this model specifies that in order 102 for an incident to occur, failures in defences at all levels of the system must line up, thus highlighting 103 the importance of identifying the factors which contribute at each level. The unsafe acts level focuses 104 on identifying any errors or violations made by front line workers that led to an accident or incident 105 occurring. Within the error category there are three subcategories of skill-based error, decision error, 106 and perceptual error. Decision errors can be further broken down into rule-based and choice-based 107 decisions, and skill-based errors can be broken down to attentional and memory failures. Within the 108 violations category there are two subcategories of routine and exceptional violations.



### 110 Figure 1: The HFACS framework (Wiegmann & Shappell, 2003)

111 The second level of the HFACS framework is "preconditions for unsafe acts". These refer to the immediate underlying conditions that contribute to the occurrence of unsafe acts. This level 112 113 comprises three categories: condition of operators, environmental factors, and personnel factors. Each of these categories has a number of subcategories as shown in Figure 1. The third level within 114 115 HFACS is "unsafe supervision". This considers the situations where supervision was either lacking or 116 unsuitable and has four categories of inadequate supervision, planned inappropriate operations, failure to correct a problem, and supervisory violations. The fourth and final level within many 117 118 applications of HFACS models is organisational influences. This level looks at the failures occurring at 119 the higher managerial levels of the organisation which contributed to an accident, focusing on the 120 subcategories of resource management, organisational climate and organisational process.

121 Typically, HFACS is used as a retrospective tool for analysing accident and incident reports, 122 and the different failures which contributed to an accident at all four levels are identified. Although 123 originally designed to classify aviation accidents (Wiegmann & Shappell, 2001; 2003), HFACS has now 124 been applied successfully in numerous safety critical industries including maritime (Celik & Cebi, 125 2009), mining (Lenné et al., 2012; Patterson & Shappell, 2010), medicine (ElBardissi, Wiegmann, 126 Dearani, Daly, & Sundt, 2007) and rail (Baysari, McIntosh, & Wilson, 2008; Reinach & Viale, 2006), with 127 researchers making various adaptations to the model to make it more suitable in different contexts. 128 One criticism of HFACS has been its failure to consider contributory factors outside of the organisation 129 involved, such as government policy, or local authority oversights (Salmon, Cornelissen, & Trotter, 2012). For that reason, some versions have gone beyond the organisational level to include 'external 130 131 influences' which take account of issues such as legislation gaps, administration oversights, and design 132 flaws (e.g. Chen, Wall, Davies, Yang, Wang, & Chou, 2013; Reinach & Viale, 2006).

133 Overall, the results of previous studies provide strong support for the use of HFACS as a tool 134 for understanding incidents in the rail industry. However, only two published studies have applied 135 HFACS in this context. Reinach and Viale (2006) used an adapted version called HFACS-RR to examine six railyard switching incidents in the US and identified 36 probable contributing factors for these 136 137 incidents. Baysari et al. (2008) investigated 40 publicly available railway incident and accident reports 138 in Australia and identified 330 contributing factors. More than half of the incidents identified resulted 139 from an equipment failure. In the remaining cases, skill-based errors (HFACS Level 1), adverse mental 140 state (Level 2), and equipment/facility resources (Level 4) emerged as the most common contributory factors. 141

Both Baysari et al. (2008) and Read et al.'s (2012) studies focus on external inquiries into major accidents by relevant transport bodies (e.g. Australian Safety Transport Bureau), while the Reinach and Viale (2006) study focuses solely on switching yard incidents. However, to date, no published study has focused on the hundreds of minor incidents linked to train drivers every year, such as signals

146 passed at danger or failure to call at stations. As previously noted, these incidents can have extremely 147 damaging consequences in terms of both infrastructure costs and negative public opinion. In addition, 148 the causal pattern of these incidents is often similar to that of more serious incidents (Wright & Van 149 der Schaaf, 2004). Although human error is often identified as a causal factor within these incidents, 150 there has been little effort to gain a systematic understanding of the latent factors which contribute, 151 and whether or not these differ depending on the type of incident which occurs. Studies across other 152 industries e.g. outdoor activity incidents, have shown the potential to identify multiple contributory 153 factors, both active and latent, from similar minor events, thus emphasizing the potential explanatory 154 power of these incidents (e.g. Salmon, Goode, Lenné, Finch & Cassell, 2014; Salmon, Goode, Taylor, 155 Lenné, Dallat, & Finch, in press). Therefore, gaining an understanding of minor safety-of-the-line 156 incidents is important to provide rail companies with the tools to prevent similar and more serious 157 incidents occurring in the future.

HFACS was chosen as the tool for the purposes of this study into the analysis of safety of the line incidents. This was due to the number of studies generally that have used HFACS, its wide availability and research base that makes its application clear and results transferrable, and its prior use within the rail sector.

# 162 **1.2 Reliability and Report Quality**

163 Although a number of strengths of the HFACS model have been identified, including its 164 detailed classification of the organisational context (Baysari, Caponecchia, McIntosh, & Wilson, 2009), 165 and its ability to provide safety professionals with a theoretically based tool for accident investigations 166 (Wiegmann & Shappell, 2001); a number of papers have identified some concerns with the reliability 167 of the model. Beaubien and Baker (2002) and Olsen (2011) criticized the validation evidence 168 supporting the usefulness of the HFACS system, as it was all collected and analysed by the developers 169 of the framework. However, other authors have now successfully used and proven the system in a 170 variety of industries (Baysari et al., 2008; Lenné et al., 2012, Li & Harris, 2006; Reinach & Viale, 2006). 171 Another concern raised by Olsen (2011) is the use of incorrect statistics for the reporting of HFACS 172 reliability levels. It is argued that Cohen's Kappa is an inadequate measure of reliability, as it is based 173 on the argument that coders who are coding randomly will agree by chance a certain percentage of 174 the time, and that this should be deducted from the agreement that is not achieved by chance. 175 However in incident classification systems, coders are not randomly assigning codes but are actually 176 trying to identify the same causal factors, and therefore agreements are not chance events (Olsen, 177 2011). For this reason, Olsen argues that the correct method for calculating inter-coder consensus is 178 to calculate the index of concordance which takes into account both the total number of agreements 179 and the total number of disagreements of raters' codes. An additional issue is that a number of authors 180 have highlighted difficulties with the clarity of error codes within HFACS, particularly in derivatives of 181 HFACS such as HFACS-ADF (Olsen & Shorrock, 2010) and HFACS-DoD (O'Connor & Walker, 2011). 182 Baysari et al. (2008) reported a large difference in the number of errors identified by the three raters 183 in their study, with percentage agreement ranging from 40-75%, and as a result they only reported 184 the ratings of the first author in their paper. Thus, in this paper the index of concordance is used to 185 evaluate the reliability of HFACS as a tool for the categorisation of UK rail incident reports by two 186 Human Factors experts.

187 As outlined in Section 1.1, one of the main benefits of HFACS is in identifying latent factors 188 that can contribute to accident causation. However, this is dependent on the quality of investigation 189 and subsequent reporting of accidents. While significant rail accidents are subject to extensive 190 reporting, it was unclear whether it would be possible to identify latent features of accidents, at both 191 organisational levels and beyond, in the type of reports generated for minor safety of the line 192 incidents, or whether these investigations focus more on surface-level features relating to unsafe acts 193 and their preconditions. Rjabovs and Palacin (2015) found that there was a tendancy not to attribute 194 systemic, physical or design factors to the causation of SPADs in a metro environment, and it is likely 195 that a similar issue might arise when looking at other types of rail transport. Therefore, this paper also

aimed to measure the quality and depth of the information contained in minor incident investigationreports.

## 198 **1.3 Purpose of current study**

This paper presents an application of HFACS as an analysis tool to aid with the understanding of the factors that contribute to minor operational incidents in the UK rail. It aims to investigate the breakdown of causal factors for these incidents, and in doing so evaluate whether the patterns found in Baysari et al. (2008) are replicated in the UK rail industry. The study focuses on incidents which have previously been defined as being caused by Human Error and addresses five key questions:

- 204 1. Can HFACS help us to identify the precursors of minor operational incidents?
- 2052. Are there any differences in the causation paths of different types of incident e.g. SPAD vs206 station overrun?
- What is the breakdown of active and latent factors that contribute to this type of incident anddoes this vary across incident types?
- What is the quality of reporting of minor incidents in the rail industry? Is report content
  sufficient to support the identification of latent factors of incident causation, including
  organisational and regulatory?
- 212 5. How reliably can two independent Human Factors experts' code investigation reports using
  213 HFACS?

214 **2. Method** 

## 215 2.1 Data Sources

216 Incident investigation reports were collected from seven of the UK's Train Operating 217 Companies (TOCs). These incidents had all been previously classified by the TOCs as involving some 218 form of human error. A total of 74 investigation reports were included, all relating to minor safety-of-219 the-line incidents occurring between January 2012 and May 2014. None of the incidents included in

| 220 | this study had been investigated by the Rail Accident Investigation Branch (RAIB), who investigate any |
|-----|--------------------------------------------------------------------------------------------------------|
| 221 | accidents causing death, serious injuries, or extensive damage, or incidents which had the potential   |
| 222 | to lead to these serious effects. 5 main types of incident were included:                              |

- Signals passed at danger (SPADs, N=21)
- Fail to call incidents, where a train failed to stop at a booked station (N=15)
- Station Overruns, where a train overran the booked platform at a station (N=19)
- Stop Short incidents, where a train came to a stop at a station before all carriages were at the
   platform (N=10)
- TPWS Activations, where, for example, a train driver failed to acknowledge a speed restriction
   warning (N=9)

## 230 2.2 Data Coding & Analysis

231 Investigation reports were independently coded by two Human Factors researchers. Prior to 232 commencing the HFACS coding, information about each incident was extracted, including a 233 description of the incident type, the location, and date. Each coder also rated the quality of the 234 investigation report as low, medium, or high depending on the amount of information included in the 235 report and the evidence provided for any conclusions drawn. Each report was then read in its entirety 236 and each contributing/safety factor identified in the incident narrative was mapped to a unique HFACS 237 category following the procedure identified by Baysari et al. (2008) of using the definitions and tables provided in Wiegmann and Shappell (2003) and the flow-charts included in Viale and Reinach (2006). 238 239 For example, in one report the investigator described a sign that was obscured by undergrowth. This 240 was extracted as a contributory factor and coded under the Physical Environment HFACS code. The 241 presence or the absence of each HFACS category was assessed in each accident report narrative. More 242 than one category or sub-category could be identified at each level. However, to avoid over-243 representation from any single accident, each HFACS sub-category was counted a maximum of only 244 once per accident (Li & Harris, 2006). To begin the analysis process, each analyst first independently

coded 10 incidents. This coding was then discussed in detail to ensure a joint understanding prior to
independently analysing the rest of the papers. Where disagreements in the final codes arose, these
were discussed until a consensus was reached.

Once the initial analysis had begun, it became apparent that a total of 18 of the contributory factors identified as belonging in the Environmental Factors category did not fit into either the physical or technological environment, but rather could be described as arising from the operational environment. These factors related to unscheduled operational occurrences that were a departure from the operational norm, and examples included situations where there was a highly unusual signalling pattern, or a train was re-routed. Therefore, an additional subcategory of Operational Environment was included for this analysis (see Table 1 for examples).

255

## 256 Table 1: Examples of report elements that were included in the Operational Environment category

1. A signalling fault led to modified working on the train route, requiring the use of hand signals to communicate with the signaller.

2. A possession on a line led to the driver being directed onto a route that they were not familiar with.

3. An unusual signalling sequence led to a driver being directed to a different platform than usual.

Initial analysis of the incident characteristics and HFACS data were performed using frequency counts. Further analysis to evaluate the associations between HFACS levels and incident types were conducted using Chi Square analysis and adjusted standardized residuals (ASR). The ASR provides a measure of the strength of the difference between observed and expected values in situations when a cross-tabulation result is associated with more than one degree of freedom i.e. larger than a 2X2 contingency table. An ASR with a value of 2 or greater indicates a lack of fit of the null hypothesis in a given cell (Sharpe, 2015).

In order to evaluate interrater reliability the index of concordance was used to provide a
 percentage agreement, following the procedure set out in Olsen and Shorrock (2010). The proportion

of agreeing pairs of codes out of all the possible pairs of codes is calculated as follows: (agreements) / (agreements + disagreements). Interrater consensus can then be reported as a figure between 0 and 1 or as a percentage. This method takes into account the cases where coders disagreed, along with providing a method for including situations where there was a difference in the number of codes assigned between coders. A criterion of 70% agreement between coders was adopted as a reasonable minimum, in accordance with Wallace and Ross (2006) and Olsen and Shorrock (2010).

## 272 **3. Results**

## 273 3.1 Inter-Rater Reliability & Quality of Reports

Prior to resolution of any discrepancies in coding between the two raters, the Index of Concordance was used to evaluate inter-rater reliability (Table 2). The results show that inter-coder consistency was well above the 70% threshold at both the descriptor and category levels for all variables other than Adverse Mental state where the consistency was 68.92%. This discrepancy will be discussed further in Section 3.2.

279 It should be noted that the quality of the incident reports for each of these incident types 280 varied quite substantially across incident types (see Figure 2), leading to the identification of fewer 281 contributory factors where the quality was low. Reports categorised as being of low quality generally 282 contained only tick box information with no supporting data, medium quality reports contained a good 283 description of the incident with support data and information, but generally did not have a systematic 284 approach to evaluating human factors. High quality reports contained a good level of support data 285 and an attempt to systematically evaluate contributory human factors. In general Category A SPADs, 286 Station Overrun and Fail to Call reports tended to be of a high or medium quality, whereas TPWS 287 Activation and Stop Short reports tended to have less detail.

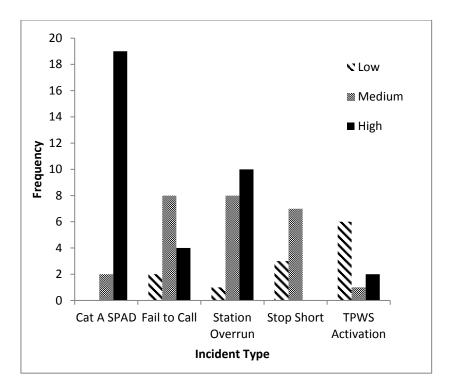




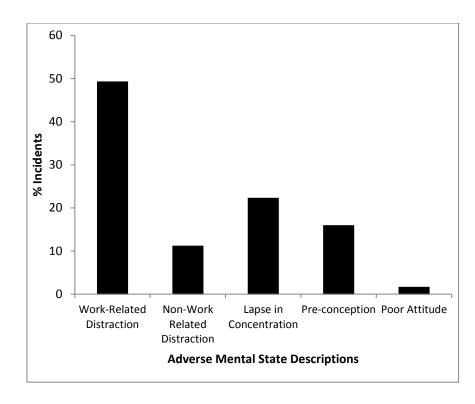

Figure 2: Quality of investigation reports across incident types

| 290 | Table 2: Inter-rater reliability (pric | or to resolution) and Freq | quency counts (post-resolution for ea | ach HFACS |
|-----|----------------------------------------|----------------------------|---------------------------------------|-----------|
|     |                                        |                            |                                       |           |

291 category<sup>a</sup>

| Error Categories                    | Error Subcategories         | % Agreement | Frequency <sup>a</sup> | % Reports |
|-------------------------------------|-----------------------------|-------------|------------------------|-----------|
| Operator Acts                       |                             |             |                        |           |
| Skill Based                         | Attention                   | 77.03       | 42                     | 56.76     |
|                                     | Memory                      | 81.08       | 31                     | 41.89     |
| Decision Error                      | Poor Choice                 | 86.49       | 9                      | 12.16     |
| Perceptual Error                    |                             | 98.65       | 1                      | 1.35      |
| Violation                           | Routine Violation           | 98.65       | 2                      | 2.70      |
|                                     | Exceptional Violation       | 98.65       | 1                      | 1.35      |
|                                     | Acts of Sabotage            | 100         | 0                      | 0         |
| Preconditions to Unsafe<br>Acts     |                             |             |                        |           |
| Environmental Factor                | Physical Environment        | 97.30       | 6                      | 8.11      |
|                                     | Technological Environment   | 83.79       | 13                     | 17.57     |
|                                     | Operational Environment     | 72.97       | 18                     | 24.32     |
| Personnel Factor                    | Crew Resource<br>Management | 97.30       | 6                      | 8.11      |
|                                     | Personal Readiness          | 91.89       | 7                      | 9.46      |
| Condition of Operator               | Adverse Mental State        | 68.92       | 63                     | 85.14     |
|                                     | Adverse Physiological State | 90.54       | 12                     | 16.22     |
|                                     | Physical/Mental Limitations | 90.54       | 10                     | 13.51     |
| Supervisory Factors                 |                             |             |                        |           |
| Inadequate Supervision              |                             | 97.30       | 2                      | 2.70      |
| Planned Inappropriate<br>Operations |                             | 100.00      | 0                      | 0         |
| Failure to Correct Known<br>Problem |                             | 91.89       | 6                      | 8.11      |
| Supervisory Violations              |                             | 100.00      | 2                      | 0         |
| Organisational Factors              |                             |             |                        |           |
| Resource Management                 |                             | 94.59       | 2                      | 2.70      |
| Organisational Climate              |                             | 100.00      | 2                      | 2.70      |
| Organisational Process              |                             | 93.24       | 4                      | 5.41      |

| Organisational Violations | 100.00 | 0 | 0 |
|---------------------------|--------|---|---|
|                           |        |   |   |


<sup>a</sup> More than one category could be identified at each of the HFACS levels

# 3.2 Can HFACS help us to identify the precursors of minor operational incidents which have the potential to lead to more serious events?

It was possible to code all of the contributing factors using our edited version of HFACS
including Operational Environment. The presence of HFACS codes in the 74 incidents is presented in
Table 2. A total of 228 contributory factors were identified, with an average of 4.05 factors (SD=1.07)
per incident.

299 Unsafe acts were identified in all of the reports investigated. The most frequent Level 1 unsafe 300 acts were skill-based errors (87.84%). Of these skill-based errors, the majority involved some type of 301 attentional failure (56.76% incidents) such as failing to notice the status of a signal or getting 302 distracted. 41.89% of the skill based errors involved an issue with memory e.g. forgetting a station 303 stop. A decision error was identified in 12.16% of reports, all of which involved a poor choice e.g. not 304 making any attempt to stop at a station because of weather conditions. Finally, only 4.05% of unsafe 305 acts involved a violation, 2 of which were routine violations e.g. drivers always stopping at a certain 306 incorrect part of a platform to avoid passengers having to walk out in the rain, and one of which was 307 an exceptional violation involving a failure to clarify instructions.

One or more of the Level 2 preconditions for unsafe acts were evident in almost all incidents investigated, with one exception (a TPWS Activation). Adverse mental state was identified as a precondition in 85.16% incidents. Operational environment (24.32%), technological environment (17.57%), adverse physiological state (16.22%), and physical/mental limitations (13.51%) were all also identified as Level 2 contributory factors in 10 or more incidents. Unlike the pattern for other industries, crew resource management was not a pre-dominant causal factor, and only emerged in 8.11% incidents. 315 As adverse mental state was deemed to be quite a broad category, and was also the category 316 where the inter-rater reliability was lowest, it was decided to explore the themes which emerged 317 within this category further (see Figure 3). Five main themes emerged. The most commonly identified 318 adverse mental state was work-related distraction, which occurred when drivers claimed to have been 319 distracted by thinking about something which had occurred during work hours - including problems in 320 the environment, time pressures, or previous driving patterns. Non-work related distraction occurred 321 when the driver was distracted by thinking about non-work issues e.g. relationship problems. Lapses 322 in concentration occurred when the driver claimed to have stopped concentrating on the task for no 323 particular reason. A preconception refers to situations in which the driver had made an incorrect assumption about what would happen next. Finally, poor attitude - not following procedures correctly 324 325 to avoid having a fault on record - was identified as contributory factor in one incident. As Figure 3 326 shows, drivers were considerably more likely to be distracted by work-related issues than non-work 327 related ones. Of the 31 cases in which work-related distraction was identified, environmental issues 328 were also identified in 18 of these reports (58.06%), suggesting a strong link between any unexpected 329 changes to the driving environment and the propensity for the driver to lose focus. The weaker inter-330 rater reliability of adverse mental state can be accounted for by the fact that one rater was more 331 inclined to only identify the environmental code in these cases, where the other rater selected both 332 categories.





## Figure 3: Breakdown of themes emerging in Adverse Mental State category

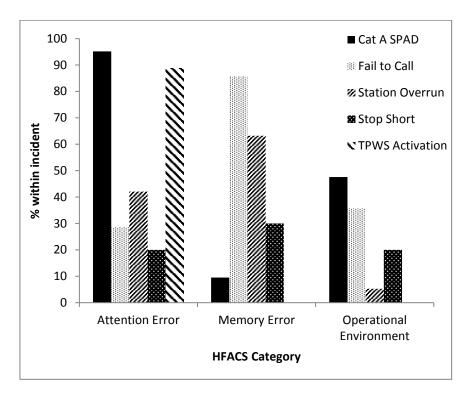
Finally, Level 3 supervisory factors and Level 4 organisational factors were both only identified in 10.81% investigations. Failure to correct a problem (8.11%) was the most common supervisory factor, usually resulting from a failure to implement development changes identified in previous incidents. The most common Organisational Factor was organisational process (5.41%), usually arising from poor practice and procedures.

# **3.3 Are there any differences in the causation paths of different types of incident?**

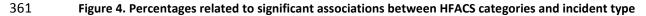
| Error Categories                    | Error<br>Subcategories                | % Cat A<br>SPAD | % Fail to<br>Call | % Station<br>Overrun | % Stop<br>Short | % TPWS<br>Activation |
|-------------------------------------|---------------------------------------|-----------------|-------------------|----------------------|-----------------|----------------------|
| Operator Acts                       | 5                                     |                 |                   |                      |                 |                      |
| Skill Based                         | Attention                             | 95.24           | 26.67             | 42.11                | 20.00           | 88.89                |
|                                     | Memory                                | 9.52            | 86.67             | 63.16                | 30.00           | 0                    |
| Decision Error                      | Poor Choice                           | 4.76            | 13.33             | 5.26                 | 40.00           | 11.11                |
| Perceptual Error                    |                                       | 4.76            | 0                 | 0                    | 0               | 0                    |
| Violation                           | Routine                               | 4.76            | 0                 | 0                    | 10.00           | 0                    |
|                                     | Violation<br>Exceptional<br>Violation | 4.76            | 0                 | 0                    | 0               | 0                    |
| Preconditions to<br>Unsafe Acts     |                                       |                 |                   |                      |                 |                      |
| Environmental Factor                | Physical<br>Environment               | 4.76            | 13.33             | 5.26                 | 0               | 22.22                |
|                                     | Technological<br>Environment          | 23.98           | 13.33             | 15.79                | 30.00           | 0                    |
|                                     | Operational<br>Environment            | 47.61           | 33.33             | 5.26                 | 20.00           | 0                    |
| Personnel Factor                    | Crew Resource<br>Management           | 14.29           | 13.33             | 5.26                 | 0               | 0                    |
|                                     | Personal<br>Readiness                 | 14.29           | 0                 | 15.79                | 0               | 11.11                |
| Condition of Operator               | Adverse Mental<br>State               | 85.71           | 93.33             | 94.74                | 70.00           | 66.67                |
|                                     | Adverse<br>Physiological<br>State     | 9.52            | 6.67              | 26.31                | 10.00           | 33.33                |
|                                     | Physical/Mental<br>Limitations        | 19.05           | 6.67              | 5.26                 | 30.00           | 11.11                |
| Supervisory Factors                 |                                       |                 |                   |                      |                 |                      |
| Inadequate<br>Supervision           |                                       | 4.76            | 0                 | 0                    | 0               | 11.11                |
| Planned Inappropriate<br>Operations |                                       | 0               | 0                 | 0                    | 0               | 0                    |
| Failure to Correct<br>Known Problem |                                       | 19.05           | 0                 | 0                    | 20.00           | 0                    |
| Supervisory Violations              |                                       | 0               | 0                 | 0                    | 0               | 0                    |
| <b>Organisational Factors</b>       |                                       |                 |                   |                      |                 |                      |
| Resource Management                 |                                       | 9.52            | 0                 | 0                    | 0               | 0                    |
| Organisational Climate              |                                       | 0               | 0                 | 10.52                | 0               | 0                    |
| Organisational Process              |                                       | 4.76            | 0                 | 5.26                 | 10.00           | 11.11                |
| Organisational<br>Violations        |                                       | 0               | 0                 | 0                    | 0               | 0                    |

# 341 Table 3: Frequency counts across Incident Types for each HFACS category

Table 3 shows that there was a difference in the pattern of contributory factors for each of the five incident types. In order to determine where significant differences between the groups emerged a series of chi-square analyses were conducted. Three of these relationships reached significance and these are explored further in Table 4 and Figure 4.


| Incident Type          |                  | Attention Error                             | Memory Error                                 | <b>Operational Environment</b>               |
|------------------------|------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
|                        |                  | <u>χ</u> <sup>2</sup> =28.26 (df=4) p<0.001 | <u>χ<sup>2</sup>=31.05, df=4, p&lt;0.001</u> | <u>χ<sup>2</sup>=13.79 (df=4), p&lt;0.01</u> |
| Category A SPAD        | Observed         | 20                                          | 2                                            | 10                                           |
|                        | Expected         | 12.1                                        | 8.3                                          | 5.2                                          |
|                        | ASR <sup>a</sup> | 4.1                                         | -3.4                                         | 2.9                                          |
| Fail to Call           | Observed         | 4                                           | 12                                           | 5                                            |
|                        | Expected         | 8.1                                         | 5.6                                          | 3.5                                          |
|                        | ASR <sup>a</sup> | -2.4                                        | 3.9                                          | 1.1                                          |
| Station Overrun        | Observed         | 8                                           | 12                                           | 1                                            |
|                        | Expected         | 10.9                                        | 7.5                                          | 4.7                                          |
|                        | ASR <sup>a</sup> | -1.6                                        | 2.4                                          | -2.3                                         |
| Stop Short             | Observed         | 2                                           | 3                                            | 2                                            |
|                        | Expected         | 5.8                                         | 4.0                                          | 2.5                                          |
|                        | ASR <sup>a</sup> | -2.6                                        | -0.7                                         | -0.4                                         |
| <b>TPWS</b> Activation | Observed         | 8                                           | 0                                            | 0                                            |
|                        | Expected         | 5.2                                         | 3.6                                          | 2.2                                          |
|                        | ASR <sup>a</sup> | 2.0                                         | -2.6                                         | -1.8                                         |

347 Table 4: Significant associations between HFACS categories and incident type


<sup>a</sup>ASR = adjusted standardized residual

At level 1 of the HFACS framework, attention and memory errors were both significantly associated with incident type. For Category A SPADs (ASR=4.1) and TPWS Activations (ASR=2.0), attentional errors were over-represented. However for Fail to Call (ASR=3.9) and Station Overrun incidents (ASR=2.4), memory errors were over-represented. This suggests that attention and memory errors lead to different outcomes, and thus different initiatives will have to be taken to address each incident type.

At level 2 of the HFACS framework, operational environment was the only variable to be significantly associated with incident type. This category was significantly over-represented in Category A SPADs (ASR=2.9). This suggests that Category A SPADs are more likely to occur after some change in the operational environment.



360



# 362 4. Discussion

The aim of the study was to examine the active and latent causal factors of minor safety of the line incidents, using the HFACS methodology, and one purpose of the research was to understand the utility of HFACS for the task at hand. A number of specific research questions were outlined, which are addressed below.

## 367 4.1 Can HFACS help us to identify the precursors of minor operational incidents?

368 74 minor incident investigations were analysed using HFACS to identify the factors which 369 contribute to the occurrence of these types of events. In total, 228 contributory factors were identified 370 and classified from the reports. The findings provide some initial evidence that the pattern of 371 contributory factors for minor incidents is similar to that identified in more serious incidents (e.g. 372 Baysari et al., 2008, Read et al., 2012), at least in terms of the Level 1 and Level 2 contributory factors. 373 Consistent with previous research in both rail (Baysari et al., 2008, Reinach & Viale, 2006) and 374 other sectors (e.g. ElBardissi et al., 2007; Lenné et al., 2012; Li & Harris), skill-based errors emerged as 375 the most common contributory factor at Level 1, with more attentional than memory errors arising. 376 However, unlike previous studies, very few violations occurred, with only 2 routine violations and 1 377 exceptional violation identified. This suggests that minor incidents are more likely to be caused by an 378 error or mistake than by a deliberate breach of rules. Adverse mental state was the most common 379 Level 2 category, followed by operational environment, technological environment, and adverse 380 physiological state. Baysari et al. (2008) also identified adverse mental state as the most common 381 precondition and, indeed, adverse mental state and environmental factors consistently emerge as 382 strong contributory factors across a range of sectors, although the order of importance may vary (e.g. 383 Li & Harris, 2006; Shappell et al., 2007, Lenné et al., 2012). However, in both aviation and medicine, 384 Crew Resource Management (CRM) also emerges as a common contributory factor (e.g. ElBardissi et 385 al., 2007; Li et al., 2008; Shappell et al., 2007), which was not identified in this study. This is most likely 386 a result of the more solitary nature of the train driver role compared to that of an airline pilot or 387 medical surgeon.

388 Adverse mental state was the most commonly identified category across all of the incidents 389 investigated. As it is quite a broad category, a deeper analysis was deemed necessary and it was, 390 therefore, further broken down into 5 main themes. This analysis showed that distraction due to work-391 related issues was the single biggest contributory factor. Some caution should be taken in interpreting 392 this result, as this finding arises from self-report aspects of the report and it is possible that drivers 393 were unable to accurately remember, or chose to misrepresent what they had been thinking about 394 prior to an incident. However, the fact that environmental factors, in particular operational 395 environment, were also identified as a causal factor in over half of the reports suggests that work-396 related distraction is a real issue in incident causation.

397 Linked to this, one of the key findings of this study was the importance of the operational 398 environment. The items in this category were environmental factors that were not overtly physical 399 (e.g. weather) or technical (e.g. faulty equipment), but altered driving conditions based on operational circumstances - such as other late running trains in the area causing the incident-involved train to run 400 401 on cautionary signals, or a temporary change to the station calling pattern. While these situations are 402 well within the driver's required competency, they were a deviation from planned or routine action. 403 Cognitively, changes to the operational environment create a situation where the driver moves from 404 a skill-based, proactive feedforward mode of control (Rasmussen, 1983; Hollnagel and Woods, 2005), 405 to a more rule-based, and cognitively effortful (and error prone), reactive mode of control. To amplify 406 the risk, this change of mode takes place just at that point where the driver is likely to be late or trying 407 to preserve tight performance allowances in the timetable. Thus, they have the paradox of needing to 408 work faster at a time when the environment demands, cognitively, that they take longer. Baysari et 409 al.'s (2008) analysis of Australian railway incidents identified a similar issue, and they advocated the 410 creation of an extra category of Task Factors at the preconditions for unsafe acts level - many of the 411 factors they identified could also be considered as part of the Operational Environment.

The problems identified in these analyses are not unique to the rail industry, and indeed similar incidents can easily be identified in other industries. For example, in aviation a flight path may have to be changed at short notice, or in medicine a routine operation may become more complex due to unforeseeable complications. Thus, the addition of the category of Operational Environment to HFACS would provide an additional opportunity to understand the impact of alterations to planned routine on the propensity for incidents to occur.

On the whole, these results highlight the potential power of minor incidents to provide valuable insights into common causal factors, at least at the unsafe acts and preconditions levels, and to reinforce some of the similarities (importance of skill-based error, and adverse mental state) and differences (few violations, increased emphasis on context including operational environment,

reduced emphasis on CRM) between train driving and other domains. This highlights that a simple
transfer of initiatives, such as training programmes, from other domains (e.g. aviation) into train
driving is not always appropriate, and indicates where adaption (e.g. an emphasis on attentional over
CRM-type support) is required.

## 426 **4.2** Are there any differences in the causation paths of different types of incident e.g.

## 427 SPAD vs station overrun.

428 Although Li et al. (2013) had compared contributory factors across aircraft type, pilot rank, and 429 flight phase; this is the first study to investigate the causes of specific incident types within a single 430 study. Our results indicate that different types of railway incidents appear to have different causal 431 pathways, at least in terms of the factors immediately preceding the incident. Of particular interest is 432 the fact that any change in the Operational Environment e.g. a change in diagrammed stops, an 433 unusual sequence of restrictive aspects; was found to be significantly linked to the occurrence of a 434 SPAD. Although the SPAD investigations included in this study were relatively minor events with no 435 major repercussions, similar circumstances have been identified in more serious incidents. As far back 436 as 1997, a study of over 100 Australian railway incidents identified that the expectation of a green 437 signal was one of the most common skill-based errors contributing to drivers passing a red signal 438 (Edkins & Pollock, 1997), and recent major incident investigations have re-iterated this finding (e.g. 439 RAIB, 2014). Similarly, Rjabovs and Palacin (2016) found that unfamiliar tasks and locations may play 440 a role in safety of the line incidents in a metro environment. In our paper it may not be that the 441 location was unfamiliar as such, but that the conditions in which the location was experienced may be 442 unfamiliar or, at least, a divergence from the norm. This highlights the importance of providing 443 additional support to drivers in situations which are more cognitively effortful, suggesting that 444 interventions which specifically address the methods of communicating and alerting drivers to areas 445 of importance during changes to the operational environment could be successful in reducing the 446 occurrence of SPADs.

447 In addition, it appears that Category A SPADs and TPWS activations (which have the capacity 448 to escalate to become a SPAD) were both more likely to be caused by an attentional failure, while Fail 449 to Call and Station Overrun incidents were more likely to be caused by a memory failure. The fact that 450 different causal paths are emerging suggests that companies need to take different approaches to 451 how they address these incidents and, in some cases, technical solutions will be required, similar to 452 the ones reported by Basacik and Gibson (2015) for wrong side door openings. Read, Lenné, and Moss 453 (2012) found that task demand factors (e.g. high workload, distraction) were significantly associated 454 with skill-based errors in Australian rail accidents. We have further broken this down to show how the 455 impacts of different types of skill-based error (i.e. memory versus attention) can vary, suggesting that 456 safety interventions need to be carefully targeted to maximise their benefits. For example, technical systems to more clearly alert drivers of diagrammed station stops may be beneficial in preventing Fail 457 458 to Call and Station Overrun incidents, whereas improving communication of the likely risk areas during 459 non-routine running may reduce the risk of a SPAD.

## 460 **4.3 What is the breakdown of active and latent factors that contribute to this type of**

## 461 incident, and does this vary across incident types?

462 Active factors dominated the causes identified from the incident analysis. Due to the small 463 number of organisational and supervisory factors identified, it was impossible to identify any causal 464 paths originating at these levels. In addition, some of the reports around TPWS activations, Stop Short, 465 and Fail to Call incidents were of a low quality containing minimal information, which was usually 466 related solely to driver error – no Supervisory or Organisational Factors were identified in any of the 467 Fail to Call reports. In these reports it was often quite difficult to build a picture of the events which 468 led up to the incident. Although, these incidents are often seen as quite minor, and companies have 469 to make trade-offs in terms of the costs associated with detailed investigations; being able to address 470 the causes of these minor incidents and eliminate them is likely to significantly reduce the risk of a 471 more serious incident occurring (Wright & van der Schaaf, 2004), and result in greater savings in the long run. The fact that it was possible to identify differences in causal pathways from even basic quality 472

473 minor investigations provides evidence of the importance of using minor events and near misses to474 further our understanding of how safety systems can be improved.

It is important to note, however, that even in reports with extensive data e.g. for SPADs or Station Overruns, there were still few references to organisational and supervisory issues, and many that were identified were cases where a driver had not yet completed relevant training after a prior incident (classified as 'Failure to correct known problem'). This indicates an issue with the focus of reporting, discussed next. Certainly, the perception of driver error as captured in the reports is that the issues lie in active factors, and this reinforced by train operating companies' interest in Non-Technical Skills programmes.

## 482 **4.4** What is the quality of reporting of minor incidents in the rail industry?

483 Building on the point above, one of the questions entering into this study was whether reports 484 contained enough detail to identify issues arising at the supervisory, organizational and regulatory 485 levels. In practice the number of examples of this kind of factors in the data were few and far between. 486 This is one of the major drawbacks of using HFACS as a tool to investigate more minor accidents, as 487 several studies have found that systems approaches are hugely dependent on the quality of the data 488 provided (e.g. Lenné et al., 2012). The majority of the investigations reported in this study were carried 489 out by front-line supervisors rather than dedicated accident investigators, and thus it is perhaps 490 unsurprising that these supervisors might be reluctant to find fault with themselves and, in many 491 cases, their employers. Research shows that latent errors pose the greatest risk to system safety 492 (Reason, 1990; 1997), and it is a key characteristic that these latent errors are the pre-conditions that 493 enable active errors to occur. It is therefore important that organisations are able to identify these 494 latent errors to mitigate against potentially serious accidents occurring in the future.

However, it is important not to appear too critical of reporting. Of all 74 reports identified by train
operators as being related to human error, all did cover human error and presented issues that fitted
naturally within HFACS. None presented information that suggested a significant misclassification of

the report (e.g. that it was primarily a technical fault). This suggests a good level of understanding of basic human factors within the industry, and further work could help to refine or expand that understanding to seek out more latent factors. Further work to develop investigation and reporting around supervisory, organisation and external factors should not just look to support accident analysis using HFACS. This level of reporting would also help assist in the identification of causes of accident using systems-orientated approaches such as STAMP (Leveson, 2004) and Accimap (Rasmussen, 1997).

# 4.5 How reliably can two independent Human Factors experts code investigation reports using HFACS

507 On the whole, the research team found HFACS to be a straightforward tool to use, although it was 508 not without its flaws. Previous research had identified problems with inter-rater reliability, and 509 difficulties in identifying the level at which factors should be categorised (Olsen, 2011; Olsen & 510 Shorrock, 2010; Baysari et al., 2008). Olsen (2011) investigated the success of air traffic controllers and 511 human factors specialists in applying HFACS consistently and found that neither group achieved 512 acceptable agreement levels between raters. However, this was not a problem in the current study, 513 with inter-rater reliability reaching an acceptable level in all categories other than Adverse Mental 514 State, where it was just below the 70% agreement level advocated. Prior to beginning the coding 515 process, both raters had spent some time agreeing on their interpretation of each of the categories 516 and this may have aided the coding process. Also, all incidents had already been classified by the train 517 operating companies as relating to human error, which again may have reduced some of the scope for variance. 518

### 519 4.6 Limitations

A limitation of this study, particularly for TPWS activation and Stop Short events was the lack of data in the reports, and, as noted above, all of the reports lacked information on supervisory and organisational factors. This, coupled with a modest sample size of 74 investigation reports, limits the

523 depth of conclusions that can be drawn from the reports regarding causal factors. As noted under data 524 quality, a second factor is the potential bias in the reports through the reliance on the skills of the line 525 managers and supervisors as investigators. These investigators could not be assumed to have 526 extensive training or knowledge of Human Factors, and may have a personal relationship with the 527 driver they were interviewing. Thirdly, putting aside the role of the investigator, the drivers were asked 528 to recall their thoughts and mental states at the time of the incident. This is also likely to be biased, 529 and caution must be taken when interpreting any self-report data. A final limitation is that HFACS was 530 the only interpretation tool used in the study. While the aims of the study were practical, rather than 531 a study of methodology, it might be useful to compare different tool outputs e.g. Accimap (Rasmussen, 532 1997), STAMP (Leveson, 2004), along with the Incident Factor Classification Study which is being 533 adopted in the UK rail section (Gibson et al., 2015).

# 534 **5. Conclusions**

The current study successfully applies HFACS to provide a retrospective analysis of minor incident investigations in the rail industry. Such examination of minor incidents provides a much wider scope for us to interpret accident causal pathways, as these incidents occur much more frequently than more serious incidents. By highlighting the differences in the causes of different incident types, a greater level of understanding of the mechanisms required to prevent future incidents is achieved.

540 Active failures, specifically those related to attention and adverse mental state, dominate the 541 results, suggesting that measures to reduce safety of the line incidents should be targeted at these 542 areas. However, it is important to stress that training approaches should not be the only solution, and 543 more systemic solutions are also required. Currently, supervisory and organisational issues are under-544 represented in the reports, and therefore more efforts should be made to identify latent factors that 545 might be setting up the preconditions for active failures. Uncovering these latent errors may need rail 546 companies to refine the current approach to minor incident investigation, in order to ensure that all factors can be identified, not only those relating to the competency or attitude of the driver. 547

548 Finally, this study has also identified the importance of the operational environment in 549 shaping risk. Gibson et al (2015) put the case that as an aggregate, performance may be approaching 550 a ceiling, and that further investigation is required to target specific locations or circumstances that 551 might lead to error. From this analysis, we argue that operational environment may be one of those 552 factors. To test this, one could compare the risk of SPAD for signals approached at red when 553 operational conditions were out of the norm, from those approached in normal circumstances. If 554 operational environment is a factor, then SPAD risk will be found to be higher. Also, it would also be 555 interesting to investigate whether similar differences emerge in the causal factors of incidents on 556 different types of routes (e.g. high-speed trains versus metro-links).

## 557 Acknowledgements

558 This project was co-funded by Innovate UK, ESRC and EPSRC as a Knowledge Transfer Partnership.

559 We are also grateful to the UK Train Operating Companies who provided access to and information

about their incident investigation processes, without whom this research would not have been

561 possible.

562

## 563 **References**

- Atkins. (2003). Research programme management rail-specific HRA technique for driving tasks user
   manual. *Rail Safety Standards Board Research Catalogue.*
- 566 Basacik, D. & Gibson, H. (2015) Where is the platform? Wrong side door release at stations. In:
- 567 Sharples, S., Shorrock, S. and Waterson, P. (Eds) Contemporary Ergonomics and Human Factors
- 568 2015, Proceedings of the International Conference on Ergonomics & Human Factors 2015, Daventry,
- 569 Northamptonshire, UK, 13-16 April 2015. London: Taylor and Francis.

- 570 Baysari, M.T., Caponecchia, C., McIntosh, A.S., & Wilson, J.R. (2009). Classification of errors
- 571 contributing to rail incidents and accidents: A comparison of two human error identification

572 techniques. *Safety Science*, 47(7), 948-957.

- 573 Baysari, M.T., McIntosh, A.S., & Wilson, J.R. (2008). Understanding the human factors contribution to
- railway accidents and incidents in Australia. *Accident Analysis & Prevention*, 40(5), 1750-1757.
- 575 Beaubien, J.M., & Baker, D.P. (2002). A review of selected aviation human factors taxonomies,
- 576 accident/incident reporting systems and data collection tools. International Journal of Applied
- 577 Aviation Studies, 2(2), 11-36.
- 578 Celik, M., & Cebi, S. (2009). Analytical HFACS for investigating human errors in shipping accidents.
- 579 Accident Analysis & Prevention, 41(1), 66-75.
- 580 Chen, S-T., Wall, A., Davies, P., Young, Z., Wang, J., & Chou, Y-H. (2013). A human and organisational
- 581 factors (HOFs) analysis method for marine casualties using HFACS-Maritime Accidents (HFACS-MA).
- 582 *Safety Science*, 60, 105-114.
- 583 Department for Transport (2014). Transport Statistics Great Britain 2014. Retrieved from
- 584 <u>https://www.gov.uk/government/statistics/transport-statistics-great-britain-2014.</u>
- 585 Edkins, G.D. & Pollock, C.M. (1997). The influence of sustained attention on railway accidents.
- 586 Accident Analysis & Prevention, 29(4), 533-539.
- 587 ElBardissi, A.W., Wiegmann, D.A., Dearani, J.A., Daly, R.C., & Sundt, T.M. (2007). Application of the
- 588 human factors analysis and classification system methodology to the cardiovascular surgery
- 589 operating room. *The Annals of Thoracic Surgery*, 83(4), 1412-1419.
- 590 FRA. (2007). Role of Human Factors in Rail Accidents. Washington DC: U.S. Government Printing
- 591 Office.

- French, S., & Cope, J. (2012). A review of human factors identified in investigations by the Rail
  Accident Investigation Branch (RAIB). *Paper Presented at the International Railway Safety Conference,* London, UK.
- 595 Gibson, W. H., Mills, A., Basacik, D., & Harrison, C. (2015). The Incident Factor Classification System
- and Signals Passed at Danger. Paper Presented at the 5th Conference of Rail Human Factors, London,
- 597 UK.
- Hollnagel, E. (2014). Safety-I and Safety-II: The Past and Future of Safety Management. Surrey, UK:
  Ashgate.
- 600 Hollnagel, E. & Woods, D.D. (2005). Joint Cognitive Systems: Foundations of Cognitive Systems
- 601 *Engineering*. Boca Raton, FL: Taylor & Francis.
- 602 Kyriakidis, M., Pak, K.T., & Majumdar, A., (2015). Railway accidents due to Human Error: A historic
- analysis of the UK Railways (1945-2012). Transportation Research Record: Journal of the
- 604 Transportation Research Board, forthcoming.
- Lawton, R., & Ward, N.J. (2005). A systems analysis of the Ladbroke Grove rail crash. Accident
- 606 Analysis & Prevention, 37(2), 235-244.
- 607 Lenné, M.G., Salmon, P.M., Liu, C.C., & Trotter, M. (2012). A systems approach to accident causation
- in mining: An application of the HFACS method. Accident Analysis & Prevention, 48, 111-117.
- Leveson, N.G. (2004). A new accident model for engineering safer systems. *Safety Science*, 42, 237270.
- 611 Li, W.C., & Harris, D. (2006). Pilot error and its relationship with higher organizational levels: HFACS
- 612 analysis of 523 accidents. *Aviation, Space, and Environmental Medicine*, 77(10), 1056-1061.

- Li, W.C., & Harris, D. (2013). Identifying training deficiencies in military pilots by applying the human
- 614 factors analysis and classification system. International Journal of Occupational Safety and
- 615 *Ergonomics*, 19(1), 3-18.
- 616 Murphy, P. (20010). The role of communications in accidents and incidents during rail possessions.
- 617 In: Engineering Psychology and Cognitive Ergonomics: Aerospace and Transportation Systems. Paper
- 618 presented at the Third International Conference on Engineering Psychology and Cognitive
- 619 Ergonomics: Aerospace and Transportation Systems. Edinburgh, Scotland.
- 620 NRPS (2016). Rail Passenger Satisfaction at a glance: Great Britain Autumn 2015. Accessed at
- 621 <u>http://www.transportfocus.org.uk/research/publications/national-rail-passenger-survey-nrps-at-a-</u>
- 622 glance-great-britain-wide-autumn-2015 on 27th January 2016
- 623 O'Connor, P., & Walker, P. (2011). Evaluation of a human factors analysis and classification system as
- 624 used by simulated mishap boards. *Aviation, Space, and Environmental Medicine,* 82(1), 44-48.
- Olsen, N.S. (2011). Coding ATC incident data using HFACS: Inter-coder consensus. *Safety Science*,
  49(10), 1365-1370.
- 627 Olsen, N.S., & Shorrock, S.T. (2010). Evaluation of the HFACS-ADF safety classification system: inter-
- 628 coder consensus and intra-coder consistency. *Accident Analysis & Prevention*, 42(2), 437-444.
- 629 ORR (2014). 2013-14 Annual Statistical Release: Safety Key Statistics. Retrieved 19<sup>th</sup> August, 2015
- 630 from http://orr.gov.uk/\_data/assets/pdf\_file/0006/14784/key-safety-statistics-release-2013-14.pdf
- 631 Patterson, J.M. & Shappell, S.A. (2010). Operator error and system deficiencies: analysis of 508
- 632 mining incidents and accidents from Queensland, Australia using HFACS. Accident Analysis &
- 633 *Prevention*, 42(4), 1379-1385.
- RAIB (2014). Unauthorised entry of a train onto a single line at Greenford, 20 March 2014. Accessedat

- 636 <u>https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/408651/141222\_R</u>
- 637 <u>292014 Greenford.pdf</u> on 25th July 2016.
- Rasmussen, J. (1983). Skills, rules, and knowledge: signals, signs and symbols, and other distinctions
- 639 in human performance models. *IEEE Transactions on Systems, Man, and Cybernetics*, 13(3), 257-266.
- Rasmussen, J. (1997). Risk management in a dynamic society: A modelling problem. *Safety Science*,
  27, 182-213.
- 642 Read, G.J., Lenné, M.G., & Moss, S.A. (2012). Associations between task, training and social
- 643 environmental factors and error types involved in rail incidents and accidents. Accident Analysis &
- 644 *Prevention*, 48, 416-422.
- 645 Reason, J.T. (1990). *Human Error*. Cambridge: Cambridge University Press.
- 646 Reason, J.T. (1997). *Managing the risks of organizational accidents*. Ashgate: Aldershot, UK.
- 647 Reason, J.T., Hollnagel, E., & Paries, J. (2006). Revisiting the Swiss cheese model of accidents. Journal
- 648 *of Clinical Engineering*, 27, 110-115.
- 649 Reinach, S., & Viale, A. (2006). Application of a human error framework to conduct train
- accident/incident investigations. *Accident Analysis & Prevention*, 38(2), 396-406.
- 651 Rjabovs, A., & Palacin, R. (2015). Attitudes of Metro Drivers Towards Design of Immediate Physical
- 652 Environment and System Layout. Urban Rail Transit, 1(2), 104-111.
- 653 Rjabovs, A., & Palacin, R. (2016). The influence of system design-related factors on the safety
- 654 performance of metro drivers. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal*
- 655 *of Rail and Rapid Transit*, 0954409716630007.
- 656 RSSB (2009). An analysis of formal inquiries and investigations to identify human factors issues:
- 657 Human factors review of railway incidents. Rail Safety and Standards Board Research Catalogue.

- 658 Salmon, P.M., Cornelissen, M., & Trotter, M.J. (2012). Systems-based accident analysis methods: A
- 659 comparison of Accimap, HFACS and STAMP. *Safety Science*, 50, 1158-1170.
- 660 Salmon, P., Goode, N., Lenné, M.G., Finch, C.F., & Cassell, E. (2014). Injury causation in the great
- 661 outdoors: A systems analysis of led outdoor activities. *Accident Analysis and Prevention*, 63, 111-120.
- 662 Salmon, P.M., Goode, N., Taylor, N., Lenné, M.G., Dallat, C.E., & Finch, C.F. (in press). Rasmussen's
- 663 legacy in the great outdoors: A new incident reporting and learning system for led outdoor activities.
- 664 Applied Ergonomics. Advance online publication. doi:
- 665 <u>http://dx.doi.org/10.1016/j.apergo.2015.07.017</u>
- 666 Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A., & Wiegmann, D.A. (2007). Human
- 667 error and commercial aviation accidents: An analysis using the Human Factors Analysis and
- 668 Classification System. *Human Factors*, 49, 227-242.
- 669 Sharpe, D. (2015). Your chi-square test is statistically significant: Now what? Practical Assessment,
- 670 *Research & Evaluation*, 20, 1-10.
- 671 Viale, A., & Reinach, S. (2006). A pilot examination of a joint railroad management-labour approach
- to root cause analysis of accidents, incidents, and close calls in a diesel and car repair shop
- 673 environment. Federal Railroad Administration.
- Wallace, B. & Ross, A. (2006). *Beyond Human Error: Taxonomies and Safety Science*. CRC Press, Boca
  Raton, FL.
- 676 Wiegmann, D.A., & Shappell, S.A. (2001). Human error analysis of commercial aviation accidents:
- 677 Application of the Human Factors Analysis and Classification System (HFACS). Aviation, Space, and
- 678 *Environmental Medicine*, 72(100), 1006-1016.
- 679 Wiegmann, D.A. & Shappell, S.A. (2003). A Human Error Approach to Aviation Accident Analysis: The
- 680 Human Factors Analysis and Classification System. Ashgate: Aldershot.

- 681 Wright, L., & Van der Schaaf, T. (2004). Accident versus near miss causation: A critical review of the
- 682 literature, and empirical test in the UK railway domain, and their implications for other sectors.

<sup>683</sup> Journal of Hazardous Materials, 111(1), 105-110.