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Graphical abstract 

 

Research highlights 

 A novel super paramagnetic solid acid nano-catalyst [SO4/Fe-Al -TiO2] was synthesised 

 We examined the catalytic activity, stability and reusability of SO4/Fe-Al -TiO2 
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 95.6% of FAME yield was achieved from WCO using newly developed nano-catalyst  

 Synthesised biodiesel from WCO satisfied ASTM D6751 and EN 14214 standards 
 

 

 

Abstract 

A novel magnetic SO4/Fe-Al -TiO2 solid acid catalyst was synthesized for biodiesel production via 

the (trans)esterification of waste cooking oil (WCO). The nanocomposite catalyst was prepared by 

the sequential functionalisation of commercial rutile/anatase mixed phase TiO2 nanoparticles 

(NPs) with alumina as a buffer layer, and subsequently hematite to impart magnetic character, 

prior to sulfation with chlorosulfonic acid to introduce Brønsted acidity. XRD showed that the 

SO4/Fe-Al -TiO2 catalyst comprised titania (rutile and anatase phases), aluminium sulphate, and 

hematite nanoparticles, while electron microscopy revealed the layer-by-layer assembly of these 

components within the SO4/Fe-Al -TiO2 catalyst. FTIR confirmed the presence of surface sulphate 

groups SO4
2- and S2O7

2-/S3O10
2-, creating a predominantly Brønsted acid catalyst with high acid 

loading. The catalyst achieved 96 % fatty acid methyl ester (FAME) yield from WCO after 2.5 h 

of reaction at 90 °C, using 3 wt% of the magnetic catalyst, and a methanol:oil molar ratio of 10:1. 

SO4/Fe-Al -TiO2 was also effective for feedstocks containing up to 20 wt% of free fatty acid (FFA), 

and showed excellent stability for WCO (trans)esterification over 10 recycles. 

Keywords 

Solid acid catalyst; (trans)esterification; magnetic nanoparticle; biodiesel; waste cooking oil 

1. Introduction 

Developing alternative fuel has attracted a growing interest over the past twenty five years due to 

the depletion of fossil fuels, human health hazards and climate change [1, 2]. Biodiesel, which 

comprises fatty acid alkyl esters (FAMEs) is gaining popularity as an alternative fuel because of 

its availability, being eco-friendly, non-toxicity and biodegradability [3, 4]. Currently around 90% 

of the worldwide biodiesel in industry is being produced by homogenous acid/alkaline catalyzed 
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(trans)esterification process of triglycerides in oleaginous food crops with methanol [5]. However, 

using these food oil crops would require significant amounts of freshwater and arable lands. This 

could also lead to food security problems in developing countries [6]. Waste(used) cooking oil [7], 

(micro)algae [8], and jatropha seeds [9] could be used as alternative non-food source feedstocks 

to overcome the aforementioned issue for the production of cheap biodiesel fuel. Nevertheless, 

such raw materials for biodiesel production contain a high level of free fatty acids (FFA) resulting 

in soap (fatty acid salts) formation [10]. Therefore, design of heterogeneous catalysts, as 

alternative to homogeneous catalysts currently used in the industrial synthesis of biodiesel fuel, 

has been the subject of intensive research to overcome this problem [11]. 

 

Solid acid catalyst design has received considerable attention for biodiesel production from cheap 

and non-food feedstocks. This is because solid acid catalysts can simultaneously perform 

esterification of FFAs and transesterification of triglycerides without (1) soap formation, (2) 

corrosion of the reactors, (3) quenching steps, and (4) neutralisation of by-products. They also 

allow for process intensification via continuous biodiesel production [12]. More importantly, the 

potential recovery and reusability of these catalysts from the (trans)esterification reaction make 

them preferable for industrial biodiesel production [13-16]. Numerous synthetic routes are 

emerging for the preparation of solid acid catalysts for different applications [17-33]. Sulfated 

metal oxides have been recently used as typical solid acid catalysts for the (trans)esterification 

process and we have also recently reported the synthesis of a novel titanium sulphate oxide 

[Ti(SO4)O] catalyst for the (trans)esterification of waste cooking oil (WCO) to form biodiesel [5]. 

The incorporation of sulphate groups into metal oxides mainly enhance the Brønsted acidity 

property and catalytic activity [34-36]. However, low surface area and/or difficulty in the 

separation process of solid acid catalysts still persist main drawbacks [18, 30, 37-39]. Some 

researchers have reported that the presence of magnetic properties in catalysts increases their re-

usability by enabling fast recovery with little loss using external magnetic fields [26, 40-43]. 

Magnetic properties in solid acid catalysts are an excellent mean for separating the catalyst from 

the reaction media but the surface of magnetic oxide materials are unstable under acidic conditions, 

being very sensitive compared to titania, and the particles can be easily aggregated into large 

clusters due to anisotropic dipolar interactions, which result in loss of their catalytic activity [44, 

45]. Several methods have been introduced to overcome this issue, including a layer-by-layer 
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coating of the surface with different metal oxides and polymers [28, 30, 39]. Therefore, it is 

necessary to develop a novel magnetic solid material as a potential catalyst candidate that could 

fulfil all requirements for the industrial (trans)esterification process. Here, we report, for the first 

time, the design and synthesis of a multifunctional magnetic solid acid [SO4/Fe-Al -TiO2] catalyst 

for the production of biodiesel from WCO. Characterisation and application investigations of this 

new designed magnetic solid acid catalyst for biodiesel production via (trans)esterification of 

WCO are carried out and reported. 

 

2. Experimental 

2.1 Materials 

Aluminium iso-propoxide (+98 % granular, Al(O-i-Pr)3) was purchased from Alfa Aesar whilst 

oleic acid (≥99 %), hydrochloric acid (37%, HCl) and chlorosulfonic acid (HSO3Cl, 99%) were 

obtained from Fluka Analytical. Titanium (IV) oxide nanoparticles (99.5 %, product number 

718467-100G), methanol (≥99.9 %), ethanol (≥99.8 %), ethylene glycol (99.8 %, EG), ammonium 

hydroxide (28-30 %, NH4OH), ferric chloride hexahydrate (≥98 %, FeCl3.6H2O), ferrous chloride 

tetrahydrate (≥99.99 %, FeCl2.4H2O), (methyl heptadecanoate (≥99.5 %), n-heptane (≥99 %), 

acetone (99.9%) and n-hexane (99.5%) were purchased from Sigma-Aldrich. All chemicals were 

used without further purification. The sample of WCO was provided by a local restaurant in Leeds, 

was used as the feedstock for biodiesel production. The collected WCO was pre-treated by 

filtration and then heated at 100 °C for 5 h to reduce the water content; the resulting WCO 

contained 0.14 wt% moisture and 2 wt% FFA.  

 

2.2 Catalyst preparation 

The catalyst was synthesised via stepwise deposition of alumina and iron oxides on to commercial 

TiO2 NPs. This is expected to both increase the surface area, and introduce magnetic character, the 

former should minimise mass transfer limitations by providing a large pore network for subsequent 

liquid phase catalysis [46]. The addition of alumina and iron oxides into the commercial TiO2 
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catalyst should also improve the thermal stability, acidity of TiO2 catalyst as well as catalytic 

activity as compared to previously used Ti(SO4)O [5] and sulphated Fe2O3/TiO2 [47]. 

2.2.1 Synthesis of alumina coated TiO2 

0.1 mols of aluminium iso-propoxide was dispersed in a round-bottomed flask containing 50 ml 

of ethanol. Subsequently, 1 g of commercial TiO2 NPs and 5 ml of ammonium hydroxide were 

added to the flask, and the resulting solution stirred at 250 rpm for 10 min. The resulting suspension 

was refluxed at 80 °C under vigorous stirring until a light yellowish gel formed. The solvent was 

then evaporated by ageing the solution without agitation at room temperature for 24 h, and the 

powder obtained then washed repeatedly with 1:1 vol% ethanol:deionised water. The aluminium 

impregnated TiO2 was then oven-dried overnight at 100 °C, prior to static calcination in air at 400 

°C for 5 h. This sample is denoted Al-TiO2. 

2.2.2 Preparation of iron oxide coated Al-TiO2 

The preceding Al -TiO2 material was subsequently iron oxide functionalised through the co-

precipitation of Fe2+ and Fe3+ precursors under alkaline conditions (Fe2+ + 2 Fe3+ + 8 OH-    

Fe3O4 + 4 H2O [48, 49]). 0.15 mols ferric chloride hexahydrate and 0.1 mols ferrous chloride 

tetrahydrate were separately dissolved in 50 ml of a 1:1 vol% ethanol:deionised water under 

ultrasonication until they formed clear solutions. The resulting solutions were both added dropwise 

to a three neck round-bottomed flask containing 2 g of Al-TiO2 nanoparticles suspended in 50 ml 

of ethanol and 10 ml of ethylene glycol under stirring. 25 ml of concentrated ammonium hydroxide 

were injected into the reaction mixture until the pH reached 9-10. The reaction mixture was then 

heated to 75 °C under reflux and a N2 atmosphere, and vigorously stirred for 2 h, followed by static 

ageing for 12 h. The gel obtained was separated using an external magnetic field, and rinsed 

repeatedly with 1:1 ethanol: deionised water until chloride ions could not be detected (using 

AgNO3) in the washings. The resulting dark-reddish gel was then oven dried overnight at 80 °C, 

prior to calcination under static air at 400 °C for 4 h. This temperature chosen to be below the 

threshold to induce an anatase to rutile phase transition, [50] yet sufficient to form hematite. This 

sample is denoted Fe-Al -TiO2. 

2.2.3 Chlorosulfonic acid functionalization of Fe-Al-TiO 2  
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1 g of Fe-Al -TiO2 was dispersed in 50 ml of dry toluene by ultrasonication. The suspension was 

then cooled to -5 °C using an ice bath, and gently stirred during the addition of 2 ml chlorosulfonic 

acid, injected at 0.1 ml.min-1. The suspension was refluxed at 60 °C for 2 h under a N2 atmosphere, 

and the resulting solid magnetically separated from the solution, thoroughly washed with fresh 

toluene until neutral washings were obtained, and then oven-dried overnight prior to calcination at 

400 °C for 4 h. This sample, representing the final solid acid catalyst is denoted SO4/Fe-Al -TiO2. 

The overall catalyst synthesis is summarised in Scheme 1. 

 

Scheme 1. Schematic of SO4/Fe-Al -TiO2 catalyst synthesis. 

2.3 Catalyst characterisation 

Sample crystallinity was explored by powder X-ray diffraction (XRD) using a Bruker D8 

diffractometer and Cu KĮ radiation (1.54 Å, 40 kV/40 mA) between 10 and 70 ° and steps of 

0.0495° (35 s per step). Fourier transform infrared (FTIR) spectra were recorded at room 

temperature using a Nicolet iS10 spectrometer between 650 and 4000 cm-1 with a resolution of 4 

cm-1. Catalyst morphology and particle size distributions were examined using a cold field emission 

scanning electron microscopy (CFE-SEM, SU8230 Hitachi) operated at 1-2 kV, and scanning 

transmission electron microscopy (STEM, FEI Titan Themis Cubed 300) operated at 300 kV. 

Samples were dispersed in acetone over a carbon-coated copper grid. Elemental compositions and 

spatial distributions were determined by HAADF detector in conjunction with an energy dispersive 
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X-ray spectrometer (EDS, Oxford INCA 350). Nitrogen adsorption-desorption isotherms were 

measured on a Micromeritics TriStar 3000 porosimeter at 77 K, on samples degassed overnight at 

120 °C in vacuo. Thermogravimetric analysis (TGA) was performed on a Mettler Toledo 

(TGA/DSC-1) stare system under N2 gas at 50 ml.min-1 and a heating rate of 10 °C.min-1 from 25 

to 900 °C. Brønsted/Lewis acid character was determined by diffuse reflectance IR spectroscopy 

(DRIFTS) on pyridine titrated samples. Prior to DRIFTS analysis, samples were diluted to 10 wt% 

in KBr, and pyridine adsorbed ex-situ by wetting samples with physisorbed pyridine removed in 

vacuo at 100 °C overnight. Spectra were collected at 50 °C on a Thermo Scientific Nicolet iS50 

spectrometer using an environmental cell and Smart Collector accessory. Acid loadings were 

determined by TGA-MS through the thermal desorption of reactively formed propene, with samples 

first saturated with n-propylamine, and physisorbed n-propylamine removed in vacuo at 30 °C 

overnight. Analysis of untreated and n-propylamine treated samples was performed using a Mettler 

Toledo TGA/DSC-2 instrument connected via a heated capillary to a Pfeiffer ThermoStar mass 

spectrometer under flowing He at 30 ml.min-1 and a heating rate of 10 °C.min-1 from 40 to 800 °C. 

The amount and temperature at which reactively-formed propene (m/z=41) and ammonia (m/z=15) 

were evolved are respectively quantitative measures of the number and strength of acid sites at 

which n-propylamine chemisorbed. Magnetic properties were assessed on a Maglab 9T vibrating 

sample magnetometer (VSM, Oxford instruments) at room temperature. 10-15 mg of sample was 

accurately weighed into a gelatine capsule and loaded into the sample holder which was 

subsequently placed between pick-ups coils located in a He flow cryostat and sinusoidally vibrated. 

The centre of sample oscillation was first positioned at the vertical centre of the pick-up coils, and 

off-centre. The sample was held in a 2 Tesla magnetic field at room temperature, with the resulting 

change in magnetic flux induced within the coils and associated electromagnetic field (EMF) 

proportional to the magnetic moment (M) of the sample. Finally, the coercivity (Hc) and the 

remanence (Mr in unit Am2) were determined from the magnetic moment/ external magnetic field 

curve. 

2.4 Catalyst test 

The (trans)esterification of WCO was conducted in a glass batch reactor equipped with a 

temperature controller, mechanical stirrer, and a reflux condenser. Specific amounts of SO4/Fe-Al -

TiO2 catalyst, methanol and pre-treated WCO were charged to the reactor at room temperature. The 
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solid-liquid-liquid phases were mixed under constant stirring and heated to the required 

temperature. After a specified time, the reaction mixture was subsequently transferred to a 

separating funnel and allowed to cool to room temperature. The FAME-containing layer was then 

separated from the residual catalyst by centrifugation at 9000 rpm for 10 min, and a few ml of the 

FAME then analysed by off-line GC-MS (580S, Perkin Elmer Clarus gas chromatograph, equipped 

with a 560S mass spectrometer) according to the modified ASTM and EU standard methods [5]. 

2.5 Biodiesel characterisation 

The flash point of the produced biodiesel was measured by an auto ramp, closed cup, flash point 

tester (Setaflash series 3). The temperature was ramped at 1-2 °C.min-1 until the flash was captured. 

Biodiesel density at 15 °C was measured using the pycnometric method. A Bohlin-Gemini 150 

rotary rheometer (Malvern, UK) was used to measure the biodiesel viscosity. Trace moisture 

content was analysed by volumetric Karl Fischer titration (Mettler Toledo-V20, Germany). The 

acid values and FFA% of the oil and synthesised biodiesel were measured according to standard 

methods [51, 52]. The acid value and the percentage of free fatty acid of biodiesel were calculated 

as follows: 

 Acid valueǡ mgKOHȀg ൌ ሺౘ౩ିౘሻכେכହǤଵଵ             Eqn. (1) Free fatty acidǡ Ψ ൌ ሺౘ౩ିౘሻכେכଶ଼Ǥଶସ                  Eqn. (2) 

 
Where: Vୠୱis consumed volume of titrate for the biodiesel sample in ml; Vୠ is consumed volume 

of titrate for the blank in ml; C is exact concentration of standardised alcoholic potassium 

hydroxide solution (mole/l) and W is mass of biodiesel sample used in g. 

 

The biodiesel cloud point was determined using a differential scanning calorimetry (DSC 1, Mettler 

Toledo, UK) equipped with an intracooler system (Huber TC45): 5±2.5 mg of biodiesel sample 

was weighted in a 40 ȝl sealed aluminium pan and placed in the DSC sample chamber and heated 

to 50 °C at 1 °C.min-1 and held for 5 min to homogenise the sample should it contain any wax 

compounds. The system was then cooled to -30 °C at 1 °C.min-1 and held for 5 min, with onset 

temperature of the initial exothermic peak during cooling defined as the cloud point [12]. The 

sample was maintained under flowing nitrogen at 50 ml.min-1 throughout. Finally, the thermal 
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stability of the biodiesel was assessed on a Stanton Redcroft thermogravimetric analyser (TGA-

TGH 1000) on 20-25 mg of biodiesel sample which was heated from 25 to 600 °C at 10 °C.min-1 

under flowing air at 50 ml.min-1. 

 

3. Results and discussion 

3.1 Catalyst characterisation 

3.1.1 Crystalline structure 

The crystallinity of SO4/Fe-Al -TiO2 was explored through XRD, which revealed reflections 

characteristic of rhombohedral Į-Fe2O3 (JCPDS-ICDD: 01-076-4579), rhombohedral aluminium 

sulphate (millosevichite, JCPDS-ICDD: 00-042-1428), and tetragonal titanium dioxide (anatase, 

JCPDS-ICDD: 04-006-9240 and rutile, JCPDS-ICDD: 01-076-9000) as shown in Figure 1. The 

sharp reflections of Į-Fe2O3 and aluminium sulfate evidence a highly ordered (extended) hematite 

phase, while those for titania were far weaker/broader consistent with small crystallites. 

Corresponding volume-averaged crystallite sizes and d-spacings for the most intense reflection of 

each phase are given in Table 1. 
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Figure 1. Powder XRD pattern of SO4/Fe-Al -TiO2 catalyst. 
 

Table 1. Crystallite sizes and d-spacings for components of SO4/Fe-Al -TiO2. 

Phase Reflection 2 / ° FWHM / ° d-spacing / Å Crystallite size / nm 

Anatase [101] 25.1 0.15 3.5 56 

Rutile [110] 27.5 0.19 3.2 42 

Į-Fe2O3 [104] 33.4 0.24 2.7 34 

Al 2(SO4)3 [113] 25.4 0.15 3.5 56 

 

3.1.2 Electron microscopy 

SEM of the initial aluminium functionalised titania reveals agglomerates of approximately 50 nm 

spherical particles (Figure S1). Corresponding TEM reveals tetragonal and hexagonal particles, 

some of which exhibit a core-shell like (Figure S2a), with some evidence for anatase truncated 

octahedron crystallites terminating in [001]. The mean particle size was around 15-25 nm (Figure 

S2b). HRTEM and EDX analysis (Figure 2) is consistent with the formation of a low contrast 

amorphous alumina shell (Figure S2a inset), approximately 3 nm thick, encapsulating a denser 

titania core. 
 

 
 

Ti 

Ti 

Ti 

Ti 

EDX (2) 

EDX (1) 

Al  

Al  
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Figure 2. TEM-EDX spectra for a single particle shows the coating of alumina on the TiO2 NPs. 

The blue arrows represent the oriented attachment of nanoparticles.  

 

SEM (Figure S3) and TEM (Figure S4) images of the Al -TiO2 material after iron oxide 

functionalisation (Fe-Al -TiO2) again reveal dense agglomerates of ~50 nm diameter and irregular 

shape nanoparticles, some of which are decorated with very small (<10 nm) higher contrast 

nanoparticles which we attribute to hematite. Particle agglomeration may well reflect the magnetic 

character imparted by the iron oxide component. Elemental analysis (Table 2) of Fe-Al -TiO2 

reveals a near 1:1 Al:Ti atomic ratio (Figure S5), and Fe:Al ratio of 0.4 consistent with only partial 

decoration of the surface of the alumina encapsulated titania nanoparticles. EDS elemental maps 

of Fe-Al -TiO2 are shown in Figure 3, demonstrate that Al and Fe are deposited as relatively 

homogenous shells around titania nanoparticles, illustrated in Figure S6.  

 

Table 2. EDS elemental analysis of Fe-Al -TiO2.  

Element O Ti  Al  Fe 

wt% 36.9 32.6 16.5 14.0 
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Figure 3. (clockwise from top left) Dark-field HAADF-STEM, and EDS elemental maps of O, 

Ti, Al, and Fe highlighting uniform distribution of each component in Fe-Al-TiO2 catalyst. 

 

The sulfonated Fe-Al -TiO2 was subsequently examined by SEM (Figure S7-9) and TEM (Figure 

4). SEM micrographs reveal little change in the morphology upon sulfonation, with dense 

aggregates of irregular shaped nanoparticles around 50 nm diameter visible. Corresponding TEM 

confirm the presence of a range of nanoparticle shape and size (<50 nm), with lattice fringes of 

0.356 nm attributable to the rhombohedral millosevichite form of Al2(SO4)3 (Figure 4a), [110] 

planes of anatase (Figure 4b), and [110] and [012] planes of rutile TiO2 (Figures 4c and e) and 

rhombohedral hematite (Figure 4e). A SAED pattern confirmed the presence of all four crystalline 

phases within individual nanoparticles, in agreement with XRD. Figure 4c-d also provide further 

evidence that the core-shell structure of the parent Al-TiO2 nanoparticles are retained following 

Fe and S modification, resulting in a uniform (~5 nm thick) shells comprising a mix of alumina, 

hemite and millosevichite encapsulating anatase and rutile cores.  
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Figure 4. (a-e) TEM images and (f) SAED of SO4/Fe-Al -TiO2 
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EDS confirms the presence of O, S, Fe, Al and Ti (Figure S8-9 and Table 3) in the SO4/Fe-Al -

TiO2 with S uniformly distributed across the material (Figure S9). 

Table 3. Elemental analysis of SO4/Fe-Al -TiO2 by EDS 

 

 

3.1.2 Surface functionality 

The nature of surface sulphoxy species arising from sulfonation was explored by attenuated total 

reflection (ATR)-FTIR (Figure 5). Comparison with the parent Fe-Al -TiO2 spectrum reveals that 

sulfonation results in the appearance of new bands characteristic of sulphate groups, with strong 

peaks at 980, 1065 and 1138 cm-1 assigned to S-O stretches of sulfated metal oxides [19, 53-55], 

and peaks at 1430 and 1469 cm-1 attributed to S=O asymmetric and symmetric sulfate stretches 

respectively. These features are consistent with polynuclear sulphates S2O7
2- or S3O10

2- [56], 

presumably arising from the chlorosulfonic acid dimerization (Figure S10) prior to surface 

sulfation. The bands in the region of ~550 to 780 cm-1 in Fe-Al -TiO2 and SO4/Fe-Al -TiO2 likely 

arise from M-O-M bridging stretches [30, 57], and the broad band between 3050-3800 cm-1 to 

surface surface hydroxyls [20, 39, 55, 58] whose presence has been reported to enhance catalytic 

activity [59]. FTIR thus confirms successful sulfation of Fe-Al -TiO2 particles. 

 

Figure 5. FTIR spectra of Fe-Al -TiO2 and SO4/Fe-Al -TiO2 
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3.1.3 Textural properties 

Nitrogen adsorption/desorption isotherms and corresponding pore size and pore volume 

distributions are shown in Figure 6 for the parent TiO2 NPs, and for the functionalised Al -TiO2, 

Fe-Al -TiO2 and SO4/Fe-Al -TiO2 materials. Except for the Fe-Al -TiO2 sample, the materials all 

exhibited type II adsorption-desorption isotherms characteristic of macroporous materials (or non-

porous materials possessing large interparticle voids). The BET surface areas spanned 49-78 m2.g-

1 (Table S1) similar to that of the parent titania nanoparticles. All materials exhibited a single 

hysteresis loop with that for Fe-Al -TiO2 sample of type II while those of the other materials were 

of type I [60]. The increase mesoporosity of Fe-Al -TiO2 suggests that iron functionalisation of the 

alumina-coated titania NPs creates a highly porous second shell, and/or mesoporous interparticle 

voids between discrete hematite particles and the Al-TiO2 nanoparticles. 

     

     

Figure 6. N2 adsorption-desorption isotherms and total pore volumes with mean pore sizes 
(inset) for catalysts (a) TiO2, (b) Al-TiO2, (c) Fe-Al -TiO2 and (d) SO4/Fe-Al -TiO2 

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

0 200 400 600 800 1000 1200
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 Pore volume
 Pore size

Pore width (Å)

dV
/d

lo
g(

w
) 

po
re

 v
ol

um
e 

(c
m

³/
g)

0

20

40

60

80

100

dA
/d

lo
g(

w
) 

po
re

 a
re

a 
(m

2 /g
)

12.9 nm

(a)

 Adsorption
 Desorption

Relative pressure (P/P0)

Q
ua

nt
ity

 a
ds

or
be

d 
(m

m
ol

/g
) 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0 200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 Pore volume
 Pore size

Pore Width (Å)

dV
/d

lo
g(

w
) 

P
or

e 
V

ol
um

e 
(c

m
³/

g)

0

50

100

150

200

 d
A

/d
lo

g(
w

) 
P

or
e 

A
re

a 
(m

²/
g)

(b)
Q

ua
nt

ity
 A

ds
or

be
d 

(m
m

ol
/g

)

Relative pressure (P/P0)

 Adsorption
 Desorption

15.5 nm

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Pore volume
 Pore size

Pore Width (Å)

d
V

/d
lo

g
(w

) 
P

o
re

 V
o

lu
m

e
 (

cm
³/

g
)

0

200

400

600

800

 d
A

/d
lo

g
(w

) 
P

o
re

 A
re

a
 (

m
²/

g
)

 Adsorption
 Desorption

Relative pressure (P/P0)

Q
ua

nt
ity

 A
ds

or
be

d 
(m

m
ol

/g
) (c)

4.1 nm

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

0 200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5
 Pore volume
 Pore size

Pore Width (Å)

dV
/d

lo
g(

w
) 

P
or

e 
V

ol
um

e 
(c

m
³/

g)

0

20

40

60

80

100

120

140

 d
A

/d
lo

g(
w

) 
P

or
e 

A
re

a 
(m

²/
g)

 Adsorption
 Desorption

Relative pressure (P/P0)

Q
ua

nt
ity

 A
ds

or
be

d 
(m

m
ol

/g
) (d)

11.1 nm

ACCEPTED M
ANUSCRIP

T



16 
 

3.1.4 Thermal stability 

The TGA profiles of all samples (Figure 7) showed only a small weight loss between room 

temperature and 150 °C due to physisorbed water [18]. No significant further weight losses were 

observed for any of the samples except for SO4/Fe-Al -TiO2 which lost approximately 15 % of the 

initial total mass above 633 °C due to decomposition of sulphate groups, indicating excellent 

thermal stability (other sulphated metal oxides are often reported to decompose >430 °C [18, 56]. 

 

 

Figure 7. TGA profiles for TiO2 NPs, Al-TiO2, Fe-Al -TiO2 and SO4/Fe-Al -TiO2. 

 

3.1.5 Surface acidity 

DRIFTS of pyridine titrated materials was employed to quantify their Brønsted/Lewis acid 

character (Figure S11). DRIFT spectra of the samples suggested that all non-sulfonated samples 

possess a mixture of Lewis and Brønsted acid sites but SO4/Fe-Al-TiO2 catalyst is purely Brønsted 

acidic as shown in Figure S11. The shifting of the stretching frequencies of the sulphate groups 

vibration from Al -TiO2 and Fe-Al -TiO2 and SO4/Fe-Al -TiO2 indicates stronger interaction between 

the surface sulphur complex and the adsorbed pyridine molecules. This shifting increases the 
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activity of the catalysts [53]. The mode at 1490 cm-1 appeared in all catalyst samples indicating the 

strong coordination of pyridine and pyridinium ions on the Brønsted and Lewis acid sites, 

respectively [61]. The ratio of Brønsted to Lewis acid (B/L) sites, extracted from the peak areas of 

1541 and 1445 cm-1, for all catalysts are summarised in Table 4. Acid loadings were determined 

from the desorption of reactively-formed propene from n-propylamine saturated TiO2 and SO4/Fe-

Al -TiO2 samples (Figure 8) and shown in Table 4. Sulfation dramatically increased the acid 

loading relative the parent titania NPs as well as some of this acid loading coming from the acid 

sites formed by iron oxide or alumina layers [20]. In addition to acting as the catalyst support 

(nanoparticle core) TiO2 may also introduce some Lewis acidity to complementing the Brønsted 

acidity of surface sulfate groups. 
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Figure 8. (left) Thermograms, and (right) mass spectra for TiO2 NPs and SO4/Fe-Al -TiO2 of 

pure and saturated with n-propylamine. 
 

Table 4. Acidic properties of the synthesised materials  

Materials Brønsted:Lewis ratio Acid loading /mmol.g-1 

TiO2 0.05 0.28 

Al -TiO2 0.33 - 

Fe-Al -TiO2 0.13 - 

SO4/Fe-Al -TiO2 3.58 1.18 

 

TPD profiles MS profiles 
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3.1.6 Magnetic properties 

The magnetisation curve for SO4/Fe-Al -TiO2 was measured at room temperature between 2 and -

2 T. The resulting hysteresis loop is shown in Figure 9. The magnetic field (M) versus applied 

magnetic field (H) curve indicates a saturation magnetisation value of the sample at ~10 emu/g. 

The saturation magnetisation value for pure iron oxide (Fe2O3 and Fe3O4) is higher than SO4/Fe-

Al -TiO2. However, SO4/Fe-Al -TiO2 still exhibited super paramagnetic behaviour (M r = 0.65 

emu/g and Hc = 0.0024 T as seen in the inset for Figure 9) which has been shown sufficient to 

effect separation of magnetic catalysts from reaction media [45]. 

 

Figure 9. Magnetisation hysteresis loop of SO4/Fe-Al -TiO2 at room temperature. (left inset) 

photograph demonstrating magnetic separation of material from solution, (right inset). 

3.2 Catalytic performance 

The SO4/Fe-Al -TiO2 material was subsequently evaluated for the simultaneous esterification and 

transesterification of WCO to produce biodiesel. Optimum reaction conditions were explored 

through examining the impact of methanol:WCO stoichiometry, temperature, and catalyst loading 

on FAME yield. Figure 10a shows the time dependence of FAME production for 1.5 wt% SO4/Fe-

Al -TiO2, a methanol:WCO molar ratio of 9:1 and reaction temperature of 75 °C (these initial 

conditions chosen from our previous studies on Ti(SO4)O catalysts [5]). FAME yield increased 

linearly with time before reaching a plateau at 83 % after 2.5 h. The effect of catalyst mass was 

subsequently explored (Figure 10b) at a methanol:WCO molar ratio of 9:1 after 2.5 h reaction at 
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75 °C, with increases between 0.5-1.5 wt% resulting in a linear increase in FAME yield to a 

maximum of 91 %; additional catalyst loadings had negligible impact. This observation shows that 

esterification/transesterification were reaction-rate limited for loadings 1.5 wt% and that higher 

loadings are therefore undesirable. Since esterification and transesterification are both reversible, 

excess methanol is employed to shift the equilibrium reaction towards FAME, with methanol:oil 

molar ratios between 3-60:1 commonly employed; higher methanol concentrations promote oil 

solubility and hence FAME yields [62-64]. 

Figure 10c shows the effect of methanol:WCO ratio with 3 wt% catalyst after 2.5 h reaction at 75 

°C. FAME yield was directly proportional to the methanol:WCO ratio between 1:1-10:1, with a 

limiting value of 92 % again attained. Finally, the impact of reaction temperature was assessed 

between 25-90 °C (Figure 10d) for 3 wt% catalyst and a 10:1 methanol:oil molar ratio after 2.5 h 

reaction. FAME yield increased continuously for temperatures <75 °C, reaching a limiting value 

of 95 %, probably reflecting both increased reactant activation and higher oil miscibility [20]. 

Higher temperatures had negligible impact on FAME production indicating that the reaction had 

reached equilibrium. 

The sensitivity of SO4/Fe-Al -TiO2 to FFA within bio-oil feedstocks was also explored by 

evaluating catalytic performance in the transesterification of a virgin corn oil feedstock 

deliberately spiked with between 0.5-20 wt% oleic acid (as a model FFA) using the optimum 

reaction conditions determined above (Figure 11a): 3 wt% catalyst loading, 10:1 methanol:oil, 

and 90 °C after 2.5 h reaction). Surprisingly, the FAME yield remained at 95 % independent of 

the FFA content of the oil feedstock, indicating a robust catalyst. Catalyst lifetime was also 

assessed in 10 consecutive reactions (Figure 11b) under the same reaction conditions, employing 

magnetic separation to recover the spent catalyst each time. The spent catalyst was washed 

repeatedly with a 1:1 vol% methanol:n-hexane mixture to remove any organic residues, and then 

calcined for 2 h at 250 °C before addition to a fresh reaction mixture. Excellent stability was again 

evidence by retention of a high (>90 %) FAME yield for 10 recycles. Powder XRD patterns of the 

spent catalyst after each reaction confirmed retention of the crystalline phases present in the fresh 

material (Figure S12). 
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Figure 10. Effects of (a) reaction time, (b) catalyst loading, (c) methanol to WCO molar ratio, 

and (d) reaction temperature 1on the FAME yield using synthesized SO4/Fe-Al -TiO2 catalyst.  

 

Table 5 compares the performance of SO4/Fe-Al -TiO2 with some solid acid catalysts from 

literature, showing that the catalyst synthesized in this study can produce similar amount of FAME 

(96 % FAME) at much milder reaction temperature and shorter time. Although our previously 

reported Ti(SO4)O catalyst gave an excellent 97 % FAME yield from a WCO feedstock under 
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similar reaction conditions (albeit a lower temperature and catalyst loading), this was less robust 

than the present SO4/Fe-Al -TiO2 catalyst, deactivating after 10 recycles due to sulfate leaching. It 

is also important to note that Ti(SO4)O was only effective for WCO containing ≤6 wt% FFA, 

versus 20 wt% for SO4/Fe-Al -TiO2. Al and Fe within SO4/Fe-Al -TiO2 may inhibit sulfate leaching 

[65]. In addition to this, water by-product from the esterification of oleic acid (as a model FFA) 

had no significant impact on the deactivation or poisoning of active sites in the SO4/Fe-Al -TiO2 

catalyst, and SO4/Fe-Al -TiO2 is readily separated from the reaction mixture by an external 

magnetic field. 

 

  

 
Figure 11. Effect of (a) oleic acid content and (b) recycling of SO4/Fe-Al -TiO2

 catalyst on the 
FAME yield. The inset TEM result for the recovered spent catalyst from WCO transesterification 

process after run 10 shows a clear [110] facets for the rutile TiO2 NPs (ICDD: 01-076-9000)  
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Table 5. Comparison of sulfated metal oxide catalysts for biodiesel production from WCO. 

 This work Gardy et al [5] Alhassan et al [31] Wang et al [66] 

Feedstock WCO WCO WCO WCO 

Methanol:oil ratio 10:1 9:1 20:1 10:1 

Catalyst SO4/Fe-Al -TiO2 Ti(SO4)O Fe2O3-MnO-SO4/ZrO2 SOସଶି/TiO2/La+3 

Catalyst loading / wt% 3 1.5 3 5 

Reaction time / h 2.5 3 6 1 

Particle size / nm 47 25 - - 

Surface area / m2.g-1 51 45 72 229 

Temperature / °C 90 75 180 110 

FAME yield / % 96 97 96 >90 

Recycles 10 (94 %) 10 (73 %) 7 (94 %) 5 (90%) 
 

 

 

3.3 Biodiesel characterisation 

The biodiesel derived from the esterification and transesterification of WCO over SO4/Fe-Al -TiO2
 

was analysed and characterised according to ASTM and/or EN standards and the results 

summarized in Table S2 and Table S3. The principal FAME components in Table S2 were methyl 

palmitate, methyl oleate and methyl linoleate. The physical characteristics of the biodiesel 

properties conformed with ASTM and EU standards, with a cloud point of -11.3 °C (Figure S13). 

Decomposition/combustion of the synthetic biodiesel occurred >144 °C and was complete by 226 

°C (Figure S14). 

Conclusions 

A super paramagnetic solid acid catalyst comprising SO4/Fe-Al -TiO2 was prepared by the stepwise 

functionalise of titania NPs. Extensive characterisation of the catalyst bulk and surface properties 

revealed it possessed a high acid loading and Brønsted acid character arising from surface sulfate 

and persulfate species generated by chlorosulfonic acid functionalisation, and strong magnetic 

character arising from hematite nanoparticle. SO4/Fe-Al -TiO2 exhibited promising activity for the 

(trans)esterification of WCO to biodiesel. Under optimum conditions of 3 wt% catalyst, a 10:1 
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molar ratio of methanol:WCO molar and 90 °C, a 95.6% FAME yield was attained after 2.5 h 

reaction. The SO4/Fe-Al -TiO2 catalyst exhibited excellent stability and recyclability employing 

magnetic separation and thermal regeneration, maintaining a high performance for virgin corn oil 

transesterification even in the presence of up to 20 wt% oleic acid, and for over 10 consecutive 

reactions cycles with WCO. 
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