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Reduced-Rank STAP Schemes for Airborne Radar

Based on Switched Joint Interpolation, Decimation

and Filtering Algorithm
Rui Fa, Rodrigo C. de Lamare and Lei Wang

Abstract— In this paper, we propose a reduced-rank space-
time adaptive processing (STAP) technique for airborne phased
array radar applications. The proposed STAP method performs
dimensionality reduction by using a reduced-rank switched joint
interpolation, decimation and filtering algorithm (RR-SJIDF).
In this scheme, a multiple-processing-branch (MPB) framework,
which contains a set of jointly optimized interpolation, decima-
tion and filtering units, is proposed to adaptively process the
observations and suppress jammers and clutter. The output is
switched to the branch with the best performance according
to the minimum variance criterion. In order to design the
decimation unit, we present an optimal decimation scheme
and a low-complexity decimation scheme. We also develop two
adaptive implementations for the proposed scheme, one based
on a recursive least squares (RLS) algorithm and the other on a
constrained conjugate gradient (CCG) algorithm. The proposed
adaptive algorithms are tested with simulated radar data. The
simulation results show that the proposed RR-SJIDF STAP
schemes with both the RLS and the CCG algorithms converge at
a very fast speed and provide a considerable SINR improvement
over the state-of-the-art reduced-rank schemes.

Index Terms— Space-time adaptive processing (STAP),
reduced-rank techniques, airborne phased array radar.

I. INTRODUCTION

S
PACE-time adaptive processing (STAP) techniques have

been motivated as a key enabling technology for advanced

airborne radar applications following the landmark publication

by Brennan and Reed [1]. A great deal of attention has

been given to STAP algorithms and much of the work has

been done in the past three decades [2]–[15]. It is fully

understood that STAP techniques can improve slow-moving

target detection through better mainlobe clutter suppression,

provide better detection in combined clutter and jamming

environments, and offer a significant increase in output signal-

to-interference-plus-noise-ratio (SINR). However, due to its

large computational complexity cost by the matrix inversion

operation, the optimum STAP processor is prohibitive for

practical implementation. Furthermore, an even more challeng-

ing issue is raised by full-rank STAP techniques when the

number of elements M in the filter is large. It is well-known

that K ≥ 2M independent and identically distributed (i.i.d)

training samples are required for the filter to achieve the steady

performance [16]. Thus, in dynamic scenarios the full-rank

STAP with large M usually fail or provide poor performance

This work is funded by the Ministry of Defence (MoD), UK. Project
MoD, Contract No. RT/COM/S/021.The authors are with the Communications
Research Group, Department of Electronics, University of York, YO10 5DD,
United Kingdom. Email: {rf533, rcdl500, lw517}@ohm.york.ac.uk

in tracking target signals contaminated by interference and

noise.

Reduced-rank adaptive signal processing has been consid-

ered as a key technique for dealing with large systems in the

last decade. The basic idea of the reduced-rank algorithms

is to reduce the number of adaptive coefficients by project-

ing the received vectors onto a lower dimensional subspace

which consists of a set of basis vectors. The adaptation of

the low-order filter within the lower dimensional subspace

results in significant computational savings, faster convergence

speed and better tracking performance. The first statistical

reduced-rank method was based on a principal-components

(PC) decomposition of the target-free covariance matrix [4].

Another class of eigen-decomposition methods was based on

the cross-spectral metric (CSM) [8]. Both the PC and the

CSM algorithms require a high computational cost due to

the eigen-decomposition. A family of the Krylov subspace

methods has been investigated thoroughly in the recent years.

This class of reduced-rank algorithms, including the multistage

Wiener filter (MSWF) [12], [18] and the auxiliary-vector

filters (AVF) [19]–[21], projects the observation data onto a

lower-dimensional Krylov subspace. These methods are very

complex to implement in practice and suffer from numerical

problems despite their improved convergence and tracking per-

formance. The joint domain localized (JDL) approach, which

is a beamspace reduced-dimension algorithm, was proposed

by Wang and Cai [22] and investigated in both homogeneous

and nonhomogeneous environments in [23], [24], respectively.

Recently, reduced-rank adaptive processing algorithms based

on joint iterative optimization of adaptive filters [25], [26]

and based on an adaptive diversity-combined decimation and

interpolation scheme [27], [28] were proposed, respectively. In

our prior work [26], a joint iterative optimization of adaptive

filters STAP scheme using the linearly constrained minimum

variance (LCMV) was considered and applied to airborne radar

applications, resulting in a significant improvement both in

convergence speed and SINR performance as compared with

the existing reduced-rank STAP algorithms.

The goal of this paper is to devise cost-effective STAP algo-

rithms that have substantially faster convergence performance

than existing methods. This enables the radar system with a

significantly better probability of detection (PD) with limited

training. We develop a reduced-rank STAP design based on

a switched joint interpolation, decimation and filtering (RR-

SJIDF) algorithm for airborne radar systems. In this scheme,

the number of elements for adaptive processing is substantially
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reduced, resulting in considerable computational savings and

very fast convergence performance for radar applications. The

proposed approach obtains the subspace of interest via a mul-

tiple processing branch (MPB) framework which consists of a

set of simple interpolation, decimation and filtering operations.

Unlike the previous work in [27], multiple interpolators and

reduced-rank filters are employed in the MPB framework

and are designed with the LCMV criterion. For each branch,

the interpolator and the reduced-rank filter can be jointly

optimized by minimizing a cost function subject to linear con-

straints. We describe an optimal decimation scheme and a low-

complexity decimation scheme for the proposed structure. We

also derive two adaptive implementations using the recursive

least squares (RLS) and the constrained conjugate gradient

(CCG) algorithms for the proposed scheme and evaluate their

computational complexity. The numerical results show that

the proposed RR-SJIDF STAP schemes with both the RLS

and the CCG algorithms converge at a very fast speed and

provide a considerable SINR improvement with significantly

low complexity compared with the existing reduced-dimension

and reduced-rank algorithms, namely, the JDL, the MSWF and

the AVF algorithms.

The main contributions of our paper are listed as follows:

i) A reduced-rank STAP scheme based on SJIDF algorithm

for airborne radar platform is proposed.

ii) In the proposed scheme, a MPB framework is introduced.

For each branch, the interpolator and reduced-rank fil-

ters are jointly optimized by minimizing the modified

minimum variance (MV) cost function with a set of

constraints.

iii) Two efficient adaptive implementations using the RLS

and the CCG algorithms are developed for the proposed

STAP scheme and a detailed study of their computational

complexity requirements is provided.

iv) Algorithms for automatically adjusting the rank of the

proposed SJIDF scheme are developed.

v) A study and comparative analysis of reduced-rank STAP

techniques for radar systems is carried out.

This paper is organized as follows. Section II states the

signal model, the optimum full-rank STAP algorithm and the

fundamentals of reduced-rank signal processing. Section III

presents the proposed reduced-rank STAP scheme, describes

the proposed joint iterative optimization of the interpolation,

decimation and filtering tasks, and details the proposed dec-

imation schemes. In Section IV, we develop two adaptive

implementations using the RLS and the CCG algorithms and

algorithms for automatically adjusting the rank of the proposed

scheme. In Section V, we discuss the convergence properties

of the optimization of the proposed scheme. The performance

assessment of the proposed reduced-rank STAP scheme is

provided in Section VI using simulated radar data. Finally,

conclusions are given in Section VII.

II. SIGNAL MODEL, RADAR SIGNAL PROCESSING AND

PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar

residing on an airborne platform. The radar antenna is a uni-

formly spaced linear array antenna consisting of N elements.

H0: Target Absent

H1: Target Present
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Fig. 1. (a) The Radar CPI datacube. (b) The STAP schematic.

Radar returns are collected in a coherent processing interval

(CPI), which is referred to as the 3-D radar datacube shown in

Fig. 1(a), where K denotes the number of samples collected

to cover the range interval. The data is then processed at one

range of interest, which corresponds to a slice of the CPI

datacube. This slice is a J × N matrix which consists of

N × 1 spatial snapshots for J pulses at the range of interest.

It is convenient to stack the matrix column-wise to form the

M×1, M = JN vector r(i), termed the i-th range gate space-

time snapshot, 1 ≤ i ≤ K [1].

A. Signal Model

The objective of a radar is to ascertain whether targets are

present in the data. Thus, given a space-time snapshot, radar

detection is a binary hypothesis problem, where hypothesis H0

corresponds to target absence and hypothesis H1 corresponds

to target presence. The radar space-time snapshot is then

expressed for each of the two hypotheses in the following

form,

H0 : r(i) = v(i),

H1 : r(i) = as + v(i),
(1)

where a is a zero-mean complex Gaussian random variable

with variance σ2
s , v(i) denotes the input interference-plus-

noise vector which consists of clutter rc(i), jamming rj(i) and

the white noise rn(i). These three components are assumed to

be mutually uncorrelated. Thus, the M×M covariance matrix

R of the undesired clutter-plus-jammer-plus-noise component

can be modelled as

R = E{v(i)vH(i)} = Rc + Rj + Rn, (2)

where H represents Hermitian transpose and E denotes ex-

pectation. According to [6], the noise covariance noise matrix

Rn = E{rn(i)rH
n (i)} can be written as a scaled identity

matrix σ2
nIM , where σ2

n is the noise power. The clutter signal

can be modeled as the superposition of a large number of

independent clutter patches with evenly distributed in azimuth

about the receiver. Thus, the clutter covariance matrix can be

expressed as

Rc = E{rc(i)r
H
c (i)}

=

Nr∑

k=1

Nc∑

l=1

ξc
kl

[
b(ϑc

kl)b(ϑc
kl)

H
]
⊗

[
a(̟c

kl)a(̟c
kl)

H
]
,

(3)

where Nr denotes the number of range ambiguities and Nc

denotes the number of the clutter patches. ξc
kl is the power

Page 32 of 42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r R

eview
 O

n
ly

3

of reflected signal by the kl-th clutter patch. The notation ⊗
denotes Kronecker product. b(ϑc

kl) and a(̟c
kl), respectively,

denote the spatial steering vector with the spatial frequency

ϑc
kl and the temporal steering vector with the normalized

Doppler frequency ̟c
kl for the kl-th clutter patch, which can

be expressed as follows

b(ϑ) =










1
e−j2πϑ

e−j2π2ϑ

...

e−j2π(N−1)ϑ










, a(̟) =










1
e−j2π̟

e−j2π2̟

...

e−j2π(K−1)̟










, (4)

where ϑ = d
λ

cos(φ) sin(θ) and ̟ = fd/fr, where λ is

wavelength; d is interelement spacing which is normally

set to half wavelength; φ and θ are elevation and azimuth,

respectively; fd and fr are Doppler frequency and pulse

repetition frequency, respectively. The jamming covariance

matrix Rj = E{rj(i)r
H
j (i)} can be written as

Nj∑

q=1

ξj
q

[
b(ϑj

q)b(ϑj
q)

H
]
⊗ IK ,

where ξj
q is the power of the q-th jammer. b(ϑj

q) is the

spatial steering vector with the spatial frequency ϑj
q of the

q-th jammer and Nj is the number of jammers. The vector s,

which is the M × 1 normalized space-time steering vector in

the space-time look-direction, can be defined as:

s =
√

ξtb(ϑt) ⊗ a(̟t), (5)

where a(̟t) is the K×1 normalized temporal steering vector

at the target Doppler frequency ̟t and b(ϑt) is the N × 1
normalized spatial steering vector in the direction provided by

the target spatial frequency ϑt and ξt denotes the power of the

target.

B. Optimum Radar Signal Processing

To detect the presence of targets, each range bin is processed

by an adaptive 2D beamformer (to achieve maximum output

SINR) followed by a hypothesis test to determine the target

presence or absence. Here, we assume that the secondary data

{r(i)}K
i=1 are i.i.d training samples. The optimum full-rank

STAP [1] obtained by an unconstrained optimization of the

SINR is given as follows:

ωopt = kR−1s, (6)

where k is an arbitrary nonzero complex number. By solving

the LCMV problem as [37]

ωopt = arg min
ω(i)

ωH(i)Rω(i) s. t. sHω(i) = 1, (7)

the optimal constrained weight vector for maximizing the

output SINR, while maintaining a normalized response in the

target spatial-Doppler look-direction was originally given in

[29] by

ωopt =
R−1s

sHR−1s
. (8)

The solution in (8) is also known as the minimum variance

distortionless response (MVDR) solution.

C. Reduced-Rank Signal Processing

The basic idea of reduced-rank algorithms is to reduce the

number of adaptive coefficients by projecting the received

vectors onto a lower dimensional subspace as illuminated in

the figure. Let SD denote the M × D projection matrix with

column vectors which are an M×1 basis for a D-dimensional

subspace, where D < M . Thus, the received signal r(i) is

transformed into its reduced-rank version r̄(i) given by

r̄(i) = SH
Dr(i). (9)

The reduced-rank signal is processed by an adaptive reduced-

rank filter ω̄(i) ∈ CD×1. Subsequently, the decision is made

based on the filter output y(i) = ω̄H(i)r̄(i). By solving the

optimization problem as below

ω̄opt = arg min
ω̄(i)

ω̄H(i)R̄ω̄(i), subject to ω̄H(i)s̄ = 1,

(10)

the optimum MVDR solution for the reduced-rank weight

vector ω̄opt is obtained [26]

ω̄opt =
R̄−1s̄

s̄HR̄−1s̄
, (11)

where R̄ = SH
DRSD denotes the reduced-rank covariance

matrix and s̄ = SH
Ds denotes the reduced-rank steering vector.

The challenge left to us is how to efficiently design and

optimize the projection matrix SD. The PC method which is

also known as the eigencanceller method [4] suggested to form

the projection matrix using the eigenvectors of the covariance

matrix R corresponding to the eigenvalues with significant

magnitude. The CSM method, a counterpart of the PC method

belonging to the eigen-decomposition algorithm family, out-

performs the PC method because it employs the projection

matrix which contains the eigenvectors which contribute the

most towards maximizing the SINR [17]. A family of closely

related reduced-rank adaptive filters, such as the MSWF [18]

and the AVF [19], employs a set of basis vectors as the

projection matrix which spans the same subspace, known as

the Krylov subspace. The Krylov subspace is generated by

taking the powers of the covariance matrix of observations on

a cross-correlation (or steering) vector. Despite the improved

convergence and tracking performance achieved with these

methods, the remaining problems are their high complexity

and the existence of numerical problems for implementa-

tion. The joint domain localized (JDL) approach, which is

a beamspace reduced-dimension algorithm, was proposed by

Wang and Cai [22] and investigated in both homogeneous

and nonhomogeneous environments in [23], [24], respectively.

Recently, reduced-rank filtering algorithms based on joint

iterative optimization of adaptive filters [25], [26] and based on

an adaptive diversity-combined decimation and interpolation

scheme [27], [28] were proposed, respectively.

III. PROPOSED RR-SJIDF SCHEME

In this section, we detail the proposed adaptive reduced-

rank filtering scheme based on the switched joint interpo-

lation, decimation and filtering (RR-SJIDF). The reduced-

rank adaptive filtering scheme based on combined decimation
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Fig. 2. Proposed Adaptive Reduced-Rank Filtering Scheme (RR-SJIDF).

and interpolation filtering was presented in [27], [28]. In

this work, we develop a reduced-rank STAP algorithm based

on the SJIDF scheme for airborne radar applications, whose

schematic is shown in Fig. 2. The motivation for designing a

projection matrix based on interpolation and decimation comes

from two observations. The first is that rank reduction can

be performed by constructing new samples with interpolators

and eliminating (decimating) samples that are not useful in

the STAP design. The second comes from the structure of the

projection matrix, whose columns are a set of vectors formed

by the interpolators and the decimators.

A. Overview of the RR-SJIDF Scheme

Here, we explain how the proposed RR-SJIDF scheme

works and its main building blocks. In this scheme, the number

of elements for adaptive processing is substantially reduced,

resulting in considerable computational savings and very fast

convergence performance for the radar applications. The pro-

posed approach obtains the subspace of interest via a multiple

processing branch (MPB) framework. The M × 1 received

vector r(i) = [r0(i), r1(i), · · · , rM−1(i)]
T is processed by a

MPB framework with B branches, where each spatio-temporal

processing branch contains an interpolator filter, a decimation

unit and a reduced-rank filter. In the b-th branch b ∈ [1, B],
the received vector r(i) is filtered by the interpolator filter

ῡb(i) = [υ0,b(i), υ1,b(i), · · · , υI−1,b(i)]
T with filter length

I , yielding the interpolated received vector r′b(i) with M
samples, which is expressed by

r′b(i) = Vb(i)r(i), (12)

where the M ×M Toeplitz convolution matrix Vb(i) is given

by

Vb(i) =

















υ0,b(i) 0 . . . 0
... υ0,b(i) . . . 0

υI−1,b(i)
... . . . 0

0 υI−1,b(i) . . . 0

0 0
. . . 0

...
...

. . .
...

0 0 . . . υ0,b(i)

















. (13)

In order to facilitate the description of the scheme, let us

express the vector r′b(i) in an alternative way which will be

useful in the following through the equivalence:

r′b(i) = Vb(i)r(i) = R0(i)ῡb(i), (14)

where the M × I matrix R0(i) with the samples of r(i) has

a Hankel structure [30] and is described by

R0(i) =


















r0(i) r1(i) . . . rI−1(i)
r1(i) r2(i) . . . rI(i)

...
... . . .

...

rM−I(i) rM−I+1(i) . . . rM−1(i)

rM−I+1(i) rM−I+2(i)
. . . 0

...
...

. . .
...

rM−2(i) rM−1(i) 0 0
rM−1(i) 0 0 0


















. (15)

The dimensionality reduction is performed by a decimation

unit with D × M decimation matrices Tb that projects rI(i)
onto D×1 vectors r̄b(i) with b = 1, . . . , B, where D = M/L
is the rank and L is the decimation factor. The D × 1 vector

r̄b(i) for branch b is expressed by

r̄b(i) = TbVb(i)
︸ ︷︷ ︸

SD,b(i)

r(i) = Tbr
′
b(i) = TbR0(i)ῡb(i), (16)

where SD,b(i) is the equivalent projection matrix and the

vector r̄b(i) for branch b is used in the minimization of the

output power for branch b, which is given by

|yb(i)|
2 = |ω̄H

b (i)r̄b(i)|
2.

The output at the end of the MPB framework y(i) is selected

according to:

y(i) = ybs
(i) when bs = arg min

1≤b≤B
|yb(i)|

2, (17)

where B is a parameter to be set by the designer.Essential to

the derivation of the joint iterative optimization that follows

is to express the output of the RR-SJIDF STAP yb(i) =
ω̄H

b (i)r̄b(i) as a function of ῡb(i), the decimation matrix Tb

and ω̄H
b (i) as follows:

yb(i) = ω̄H
b (i)SD,b(i)r(i)

= ω̄H
b (i)TbR0(i)ῡb(i) = ω̄H

b (i)r̄ω̄,b(i)

= [ῡH
b (i)RH

0 (i)TH
b ω̄b(i)]

∗ = [ῡH
b (i)r̄ῡ,b(i)]

∗.

(18)

where r̄ω̄,b(i) = TbR0(i)ῡb(i) denotes the reduced-rank

signal with respect to ω̄b(i) and r̄ῡ,b(i) = R
H
0 (i)TH

b ω̄b(i)
denotes the reduced-rank signal with respect to ῡb(i), (·)∗

denotes the conjugate operation. The expression (18) indicates

that the dimensionality reduction carried out by the proposed

scheme depends on finding appropriate ῡb(i), ω̄b(i) and

Tb. In the following subsections we will derive the joint

optimizations of ῡb(i) and ω̄b(i) and design the decimation

unit Tb.
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B. Optimization of the Filters

In this part, we describe the proposed joint and iterative

optimization algorithm that adjusts the parameters of the

interpolator filter ῡb(i) and the reduced-rank filter ω̄b(i) with

the given decimation pattern Tb. According to the LCMV

criterion, the optimization problem is given by

min E

[∣
∣
∣ω̄

H
b (i)TbR0(i)ῡb(i)

∣
∣
∣

2]

subject to ω̄H
b (i)TbS0ῡb(i) = 1, b = [1, · · · , B],

(19)

where S0 is M × I steering matrix with a Hankel structure,

which has the same form as R0(i)

S0 =


















s0 s1 . . . sI−1

s1 s2 . . . sI

...
... . . .

...

sM−I sM−I+1 . . . sM−1

sM−I+1 sM−I+2
. . . 0

...
...

. . .
...

sM−2 sM−1 0 0
sM−1 0 0 0


















. (20)

The constrained cost function in (19) can be transformed

into unconstrained one by introducing a Lagrangian multiplier,

which is given as

L(ω̄b(i), ῡb(i)) = E

[∣
∣ω̄H

b (i)TbR0(i)ῡb(i)
∣
∣
2
]

+ 2ℜ
{
λ

[
ω̄H

b (i)TbS0ῡb(i) − 1
]}

,
(21)

where λ is the Lagrangian multiplier. By fixing ω̄(i) and ῡ(i),
respectively, (21) can be rewritten into two equations as

L(ῡb(i)) = E

[∣
∣ῡH

b (i)r̄ῡ,b(i)
∣
∣
2
]

+ 2ℜ
{
λῡ,b

[
ῡH

b (i)s̄ῡ,b(i) − 1
]}

,

L(ω̄b(i)) = E

[∣
∣ω̄H

b (i)r̄ω̄,b(i)
∣
∣
2
]

+ 2ℜ
{
λω̄,b

[
ω̄H

b (i)s̄ω̄,b(i) − 1
]}

,

where s̄ῡ,b(i) = TH
b (i)SH

0 ω̄b(i) and s̄ω̄,b(i) = TbS0ῡb(i)
denote the reduced-rank steering vectors with respect to ῡ(i)
and ω̄(i), respectively. λῡ,b and λω̄,b are the Lagrangian

multipliers for ῡ(i) and ω̄(i), respectively. By minimizing

L(ῡb(i)) and solving for λῡ,b, we get

ῡb(i) =
R̄−1

ῡ,bs̄ῡ,b(i)

s̄H
ῡ,b(i)R̄

−1
ῡ,bs̄ῡ,b(i)

, (22)

where R̄ῡ,b = E

[

r̄ῡ,b(i)r̄
H
ῡ,b(i)

]

. By minimizing L(ω̄b(i)) and

solving for λω̄,b, we get

ω̄b(i) =
R̄−1

ω̄,bs̄ω̄,b(i)

s̄H
ω̄,b(i)R̄

−1
ω̄,bs̄ω̄,b(i)

, (23)

where R̄ω̄,b = E

[

r̄ω̄,b(i)r̄
H
ω̄,b(i)

]

. Note that the joint iterative

optimization of the interpolation filters {ῡb(i)|b = 1, ..., B}
and the reduced-rank filters {ω̄b(i)|b = 1, ..., B} are per-

formed separately in all the processing branches.

C. Design of the Decimation Unit

Here, we consider two strategies for the design of the

decimation unit Tb(i). We constrain the design of Tb(i) so

that the elements of the matrix only take the value 0 or 1.

This corresponds to the decimation unit simply keeping or

discarding the samples. The first strategy exhaustively explores

all possible decimation patterns which select D samples out

of M samples, this is therefore the optimal approach. In this

case, the scheme can be viewed as a combinatorial problem

and the total number of patterns B, equal to

B = M · (M − 1) · · · (M − D + 1) =

(
M
D

)

. (24)

However, the optimal decimation scheme described above is

too complex for practical use since it needs D permutations

of M samples for each snapshot and carries out an exhaustive

search over all possible patterns. Therefore, an alternative

decimation scheme with low-complexity that renders itself to

practical use is of great interest. To this end, we consider

the second decimation scheme which we call pre-stored deci-

mation unit (PSDU). The PSDU scheme employs a structure

formed in the following way

Tb = [φb,1 φb,2 ... φb,D], (25)

where the M × 1 vector φb,d denotes the dth basis vector

of the bth decimation unit, d = 1, ..., D, b = 1, ..., B, and

is composed of a single 1 and (M − 1) 0s, according to the

following

φb,d = [0, ... , 0
︸ ︷︷ ︸

zb,d

, 1, 0, ... , 0
︸ ︷︷ ︸

M−zb,d−1

], (26)

where zb,d is the number of zeros before the only element

equal to one. We set the value of zb,d in a deterministic way

which can be expressed as

zb,d =
M

D
× (d − 1) + (b − 1). (27)

It should be remarked that other designs have been investigated

and this structure has been adopted due to an excellent trade-

off between performance and complexity.

IV. ADAPTIVE ALGORITHMS

Adaptive implementations of the LCMV beamformer were

subsequently reported with the RLS and the CG algorithms

[16], [31]–[33]. Here, we develop the RLS and the CCG

algorithms that adjust the parameters of the interpolation filters

and the reduced-rank filters for the MPB structure based on

the minimization of the CMV cost function. Furthermore, we

compare the complexity of the proposed RR-SJIDF algorithms

with other existing algorithms, namely, the full-rank RLS filter,

the JDL, the MSWF and the AVF algorithms, in terms of

multiplications and additions per snapshot.
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A. Recursive Least Squares (RLS) algorithm

Here, we describe an RLS algorithm that adaptively adjusts

the coefficients of the interpolation filters {ῡb(i)|b = 1, ..., B}
and the reduced-rank filters {ω̄b(i)|b = 1, ..., B} based on the

least squares (LS) cost functions, which are shown as below:

LLS(ῡb(i)) =

i∑

n=1

αi−n
∣
∣ῡH

b (n)r̄ῡ,b(n)
∣
∣
2

+ 2ℜ
{
λῡ,b

[
ῡH

b (i)s̄ῡ,b(i) − 1
]}

,

LLS(ω̄b(i)) =
i∑

n=1

αi−n
∣
∣ω̄H

b (n)r̄ω̄,b(n)
∣
∣
2

+ 2ℜ
{
λω̄,b

[
ω̄H

b (i)s̄ω̄,b(i) − 1
]}

,

(28)

where α is the forgetting factor. By computing the gradients

of LLS(ῡb(i)) and LLS(ω̄b(i)), and equating them to zero

and solving for λῡ,b and λω̄,b, respectively, we obtain

ῡb(i) =
ˆ̄R−1

ῡ,b(i)s̄ῡ,b(i)

s̄H
ῡ,b(i)

ˆ̄R−1
ῡ,b(i)s̄ῡ,b(i)

,

ω̄b(i) =
ˆ̄R−1

ω̄,b(i)s̄ω̄,b(i)

s̄H
ω̄,b(i)

ˆ̄R−1
ω̄,b(i)s̄ω̄,b(i)

,

(29)

where ˆ̄Rῡ,b(i) =
∑i

n=1 αi−nr̄ῡ,b(n)r̄H
ῡ,b(n) and ˆ̄Rω̄,b(i) =

∑i

n=1 αi−nr̄ω̄,b(n)r̄H
ω̄,b(n) denote the time averaged correla-

tion matrices with respect to ω̄b(i) and ῡb(i), respectively. By

employing the matrix inversion lemma, and defining Pῡ,b(i) =
ˆ̄R−1

ῡ,b(i) and Pω̄,b(i) = ˆ̄R−1
ω̄,b(i),respectively, and the gain

vectors k̄ῡ,b(i) and k̄ω̄,b(i) are expressed, respectively, as

follows

k̄ῡ,b(i) =
Pῡ,b(i − 1)r̄ῡ,b(i)

α + r̄H
ῡ,b(i)Pῡ,b(i − 1)r̄ῡ,b(i)

,

k̄ω̄,b(i) =
Pω̄,b(i − 1)r̄ω̄,b(i)

α + r̄H
ω̄,b(i)Pω̄,b(i − 1)r̄ω̄,b(i)

,

(30)

and thus we can rewrite Pῡ,b(i) and Pω̄,b(i) recursively as

Pῡ,b(i) = α−1Pῡ,b(i − 1) − α−1k̄ῡ,b(i)r̄
H
ῡ,b(i)Pῡ,b(i − 1),

Pω̄,b(i) = α−1Pω̄,b(i − 1) − α−1k̄ω̄,b(i)r̄
H
ω̄,b(i)Pω̄,b(i − 1),

(31)

where Pῡ,b(0) and Pω̄,b(0) are initialized to δ−1I, where δ is a

small positive constant and I is the identity matrix. It is worth

remarking that r̄H
ω̄,b(i), r̄H

ῡ,b(i),s̄
H
ω̄,b(i) and s̄H

ῡ,b(i) have to be

updated as soon as ῡb(i) and ω̄b(i) are updated since they are

dependent on ω̄b(i) and ῡb(i), respectively. The output at the

end of the MPB framework y(i) is selected according to:

y(i) = ybs
(i) when bs = arg min

1≤b≤B
|yb(i)|

2, (32)

where

yb(i) = ω̄H
b (i)TbR0(i)ῡb(i). (33)

The algorithm is summaried in Table I.

TABLE I

THE SJIDF SCHEME USING THE RLS ALGORITHM

Initialisation: for each branch b = 1, · · · , B

Pῡ,b(0) = δ−1I and Pω̄,b(0) = δ−1I,

ω̄b(0) = [1, 0, · · · , 0]T and ῡb(0) = [1, 0, · · · , 0]T ,

s̄ῡ,b(1) = TH
b

S
H
0 ω̄b(0),

s̄ω̄,b(1) = TbS0ῡb(0),

Recursion: for each branch b = 1, · · · , B

and each time instant i = 1, · · · , K

STEP 1: updating ῡb(i)

r̄ῡ,b(i) = TH
b

R
H
0 ω̄b(i − 1),

k̄ῡ,b(i) =
Pῡ,b(i−1)r̄ῡ,b(i)

α+r̄H
ῡ,b

(i)Pῡ,b(i−1)r̄ῡ,b(i)
,

Pῡ,b(i) = α−1Pῡ,b(i − 1) − α−1k̄ῡ,b(i)r̄
H
ῡ,b

(i)Pῡ,b(i − 1),

ῡb(i) =
Pῡ,b(i)s̄ῡ,b(i)

s̄H
ῡ,b

(i)Pῡ,b(i)s̄ῡ,b(i)
,

s̄ω̄,b(i) = TbS0ῡb(i),

STEP 2: updating ω̄b(i)

r̄ω̄,b(i) = TbR0ῡb(i),

k̄ω̄,b(i) =
Pω̄,b(i−1)r̄ω̄,b(i)

α+r̄H
ω̄,b

(i)Pω̄,b(i−1)r̄ω̄,b(i)
,

Pω̄,b(i) = α−1Pω̄,b(i − 1) − α−1k̄ω̄,b(i)r̄
H
ω̄,b

(i)Pω̄,b(i − 1),

ω̄b(i) =
Pω̄,b(i)s̄ω̄,b(i)

s̄ω̄,b(i)HPω̄,b(i)s̄ω̄,b(i)
,

s̄ῡ,b(i + 1) = TH
b

S
H
0 ω̄b(i),

STEP 3: Calculating the output of b-th branch

yb(i) = ω̄H
b

(i)TbR0(i)ῡb(i),

Output:

y(i) = ybs
(i) when bs = arg min1≤b≤B |yb(i)|

2.

B. Constrained Conjugate Gradient (CCG) Algorithm

In this subsection, we develop a CCG algorithm to imple-

ment the proposed RR-SJIDF STAP. According to (22) and

(23) which were derived in the previous section based on CMV

criterion, let us define two intermediate vectors, CG-based

weight vectors, ˜̄υb(i) = R̄−1
ῡ,bs̄ῡ,b(i) and ˜̄ωb(i) = R̄−1

ω̄,bs̄ω̄,b(i),
respectively, to solve the equations and save the computations.

Thus, we may obtain ῡb(i) = ˜̄υb(i)/(s̄H
ῡ,b(i)˜̄υb(i)) and

ω̄b(i) = ˜̄ωb(i)/(s̄H
ω̄,b(i)˜̄ωb(i)). The solutions to R̄ῡ,b ˜̄υb(i) =

s̄ῡ,b(i) and R̄ω̄,b ˜̄ωb(i) = s̄ω̄,b(i), ˜̄υb(i) and ˜̄ωb(i), respec-

tively, are given by solving two optimization problems as

follows [33]–[35]

Φ(˜̄υb) = ˜̄υH
b (i)R̄ῡ,b ˜̄υb(i) + 2ℜ

{
s̄H
ῡ,b(i)˜̄υb(i)

}
,

˜̄υb(i) = arg min
˜̄υb(i)∈CI×1

Φ(˜̄υb),
(34)

and

Φ(˜̄ωb) = ˜̄ωH
b (i)R̄ω̄,b ˜̄ωb(i) + 2ℜ

{
s̄H
ω̄,b(i)˜̄ωb(i)

}
,

˜̄ωb(i) = arg min
˜̄υb(i)∈CD×1

Φ(˜̄ωb),
(35)

where Φ(˜̄υb) and Φ(˜̄ωb) are cost functions with respect to
˜̄υb(i) and ˜̄ωb(i), respectively. The correlation matrices R̄ῡ,b

and R̄ω̄,b, respectively, are estimated by

ˆ̄Rῡ,b(i) = λf
ˆ̄Rῡ,b(i) + r̄ῡ,b(i)r̄

H
ῡ,b(i),

ˆ̄Rω̄,b(i) = λf
ˆ̄Rω̄,b(i) + r̄ω̄,b(i)r̄

H
ω̄,b(i),

(36)
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where λf is the forgetting factor. Let us define gῡ,b(i) and

gω̄,b(i) as residual vectors which are expressed, respectively,

as follows

gῡ,b(i) = −▽˜̄υb
Φ(˜̄υb)

= s̄ῡ,b(i) −
ˆ̄Rῡ,b(i)˜̄υb(i),

(37)

and

gω̄,b(i) = −▽ ˜̄ωb
Φ(˜̄ωb)

= s̄ω̄,b(i) −
ˆ̄Rω̄,b(i)˜̄ωb(i).

(38)

Thus, the CG-based weight vectors ˜̄υb(i) and ˜̄ωb can be

recursively written as [36]

˜̄υb(i) = ˜̄υb(i − 1) + αῡ,b(i)pῡ,b(i),

˜̄ωb(i) = ˜̄ωb(i − 1) + αω̄,b(i)pω̄,b(i),
(39)

where αῡ,b(i) and αω̄,b(i) denote the step sizes. pῡ,b(i)
and pω̄,b(i) denote the direction vectors. According to [36],

αῡ,b(i), αω̄,b(i), pῡ,b(i) and pω̄,b(i) can, respectively, be given

by

αῡ,b(i) =
{

λf

[
pH

ῡ,b(i)gῡ,b(i − 1) − pH
ῡ,b(i)s̄ῡ,b(i)

]

− ηῡp
H
ῡ,b(i)gῡ,b(i − 1)

} [

pH
ῡ,b(i)

ˆ̄Rῡ,b(i)pῡ,b(i)
]−1

,

αω̄,b(i) =
{

λf

[
pH

ω̄,b(i)gω̄,b(i − 1) − pH
ω̄,b(i)s̄ω̄,b(i)

]

− ηω̄pH
ω̄,b(i)gω̄,b(i − 1)

}[

pH
ω̄,b(i)

ˆ̄Rω̄,b(i)pω̄,b(i)
]−1

,

pῡ,b(i) = gῡ,b(i − 1) + βῡ,b(i)pῡ,b(i),

pω̄,b(i) = gω̄,b(i − 1) + βω̄,b(i)pω̄,b(i),
(40)

where 0 ≤ ηῡ, ηω̄ ≤ 0.5, βῡ,b(i) and βω̄,b(i) can be computed

as

βῡ,b(i) =
gH

ῡ,b(i) [gῡ,b(i) + λf s̄ῡ,b(i) − gῡ,b(i − 1)]

gH
ῡ,b(i − 1)gῡ,b(i − 1)

,

βω̄,b(i) =
gH

ω̄,b(i) [gω̄,b(i) + λf s̄ω̄,b(i) − gω̄,b(i − 1)]

gH
ω̄,b(i − 1)gω̄,b(i − 1)

.

(41)

Thus, the interpolation filters ῡb(i) and the reduced-rank

filters ω̄b(i) can be written as ῡb(i) = ˜̄υb(i)/(s̄H
ῡ,b(i)˜̄υb(i))

and ω̄b(i) = ˜̄ωb(i)/(s̄H
ω̄,b(i)˜̄ωb(i)) based on the CG-based

weight vectors, respectively. The adaptive implementation of

the proposed RR-SJIDF STAP using the CCG algorithm is

summarised in Table II

C. Branch and Rank Selection

The performance of the algorithms described in the previous

subsections highly depends on the parameters including the

ranks D, I and the number of branches B. In this subsection,

we discuss the parameter settings to meet the best trade-

off between the performance and the complexity. We have

mentioned that in the previous section that the optimal number

of branches is in (24), which is quite large. Within such

range, we can claim that more branches, better performance for

the proposed algorithm. However, considering the affordable

complexity, we have to configure the algorithm with the

TABLE II

THE SJIDF SCHEME USING THE CCG ALGORITHM

Initialisation: for each branch b = 1, · · · , B

˜̄ωb(0) = [1, 0, · · · , 0]T and ˜̄υb(0) = [1, 0, · · · , 0]T ,

s̄ῡ,b(1) = TH
b

S
H
0 ω̄b(0) and s̄ω̄,b(1) = TbS0ῡb(0),

gῡ,b(0) = s̄ῡ,b(1) and pῡ,b(1) = gῡ,b(0),

gω̄,b(0) = s̄ω̄,b(1) and pω̄,b(1) = gω̄,b(0),

R̂ῡ,b(0) = δ−1I and R̂ω̄,b(0) = δ−1I,

ῡb(0) = ˜̄υb(0)/(s̄H
ῡ,b

(1)˜̄υb(0)),

ω̄b(0) = ˜̄ωb(0)/(s̄H
ω̄,b

(1)˜̄ωb(0)),

Recursion: for each branch b = 1, · · · , B

and each time instant i = 1, · · · , K

STEP 1: updating ῡb(i)

r̄ῡ,b(i) = TH
b

R
H
0 ω̄b(i − 1),

ˆ̄Rῡ,b(i) = λf
ˆ̄Rῡ,b(i) + r̄ῡ,b(i)r̄

H
ῡ,b

(i),

αῡ,b(i) =
{

λf

[

pH
ῡ,b

(i)gῡ,b(i − 1) − pH
ῡ,b

(i)s̄ῡ,b(i)
]

−ηῡpH
ῡ,b

(i)gῡ,b(i − 1)
} [

pH
ῡ,b

(i) ˆ̄Rῡ,b(i)pῡ,b(i)
]−1

,

gῡ,b(i) = λfgῡ,b(i − 1) − αῡ,b(i)
ˆ̄Rῡ,b(i)pῡ,b(i),

˜̄υb(i) = ˜̄υb(i − 1) + αῡ,b(i)pῡ,b(i),

βῡ,b(i) =
gH

ῡ,b(i)[gῡ,b(i)+λf s̄ῡ,b(i)−gῡ,b(i−1)]
gH

ῡ,b
(i−1)gῡ,b(i−1)

,

pῡ,b(i) = gῡ,b(i − 1) + βῡ,b(i)pῡ,b(i),

ῡb(i) = ˜̄υb(i)/(s̄H
ῡ,b

(i)˜̄υb(i)),

s̄ω̄,b(i) = TbS0ῡb(i),

STEP 2: updating ω̄b(i)

r̄ω̄,b(i) = TbR0ῡb(i),

ˆ̄Rω̄,b(i) = λf
ˆ̄Rω̄,b(i) + r̄ω̄,b(i)r̄

H
ω̄,b

(i)

αω̄,b(i) =
{

λf

[

pH
ω̄,b

(i)gω̄,b(i − 1) − pH
ω̄,b

(i)s̄ω̄,b(i)
]

−ηω̄pH
ω̄,b

(i)gω̄,b(i − 1)
} [

pH
ω̄,b

(i) ˆ̄Rω̄,b(i)pω̄,b(i)
]−1

,

gω̄,b(i) = λfgω̄,b(i − 1) − αω̄,b(i)
ˆ̄Rω̄,b(i)pω̄,b(i),

˜̄ωb(i) = ˜̄ωb(i − 1) + αω̄,b(i)pω̄,b(i),

βω̄,b(i) =
gH

ω̄,b(i)[gω̄,b(i)+λf s̄ω̄,b(i)−gω̄,b(i−1)]
gH

ω̄,b
(i−1)gω̄,b(i−1)

,

pω̄,b(i) = gω̄,b(i − 1) + βω̄,b(i)pω̄,b(i),

ω̄b(i) = ˜̄ωb(i)/(s̄H
ω̄,b

(i)˜̄ωb(i)),

s̄ῡ,b(i + 1) = TH
b

S
H
0 ω̄b(i),

STEP 3: Calculating the output of b-th branch

yb(i) = ω̄H
b

(i)TbR0(i)ῡb(i),

Output:

y(i) = ybs
(i) when bs = arg min1≤b≤B |yb(i)|

2.

number of branches as small as possible and meanwhile

achieving competitive performance. As will be shown in the

simulation results, the proposed algorithms with the number

of branches B equal to 4 or 5 have good trade-offs between

the performance and the complexity. Since the performance of

the proposed RR-SJIDF algorithm is also sensitive to the ranks

D and I , we present adaptation methods for automatically se-

lecting the ranks of the algorithms based on the exponentially
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weighted a posteriori LS type cost function described by

C(ω̄
(D)
b , ῡ

(I)
b ) =

i∑

l=1

αi−l
∣
∣
∣ω̄

H,(D)
b (l)TbR0(l)ῡ

(I)
b (l)

∣
∣
∣

2

(42)

where α is the forgetting factor, ω̄
(D)
b (i) is the reduced-

rank filter with rank D and ῡ
(I)
b (i) is the interpolator filter

with rank I . For each time instant i and a given decimation

pattern Tb and B, we select the ranks D and I to minimize

C(ω̄
(D)
b , ῡ

(I)
b ). The proposed rank adaptation algorithm that

chooses the best ranks Dopt and Iopt for the filters ω̄b(i) and

ῡb(i), respectively, is given by

{Dopt, Iopt} = arg min
Imin ≤ I ≤ Imax

Dmin ≤ D ≤ Dmax

C(ω̄
(D)
b , ῡ

(I)
b ), (43)

where Dmin and Dmax, Imin and Imax are the minimum,

maximum ranks allowed for the reduced-rank filters and in-

terpolators, respectively. Note that a smaller rank may produce

faster adaptation during the initial stages of estimation proce-

dure and a slightly greater rank usually yields a better steady-

state performance. Although the rank adaptation increases the

computational complexity, two benefits can be achieved: one is

that the ranks, which are crucial to the proposed algorithm, can

be selected automatically, and the other is that the performance

is much enhanced, which will be shown in the simulation

results.

D. Complexity Analysis

We detail the computational complexity in terms of addi-

tions and multiplications of the proposed schemes with the

RLS and the CCG algorithms, and other existing algorithms,

namely the full-rank RLS filter, the JDL, the MSWF-RLS

and the AVF algorithms as shown in Table III. Note that the

complexity of our proposed SJIDF scheme is dependent on

the size of the interpolator and the reduced-rank filter(I and

D) and the number of branches B, rather than the system size

M . There is a tradeoff between complexity and performance

when we set the parameters I , D and B. We found that the

proposed scheme with B = 4, D = 4 and I = 16 works well,

as will be verified in the simulation results. The computational

complexity of all algorithms is shown in Fig. 3, where we

can find that the proposed schemes using both the RLS and

the CCG algorithms have significantly lower complexity than

other algorithms, expect the JDL algorithm. As will be seen

in the simulation results, the JDL algorithm performs poorly

in steady state and our proposed algorithms outperform the

JDL algorithm in both convergence speed and steady-state

performance.

V. ANALYSIS OF THE OPTIMIZATION PROBLEM

Let us now study the convergence properties of the proposed

scheme. With respect to global convergence, a sufficient but

not necessary condition is the convexity of the cost function,

which is verified if its Hessian matrix is positive semi-

definite. The method leads to an optimization problem with

multiple solutions due to the discrete nature of Tb and the

switching between branches. Therefore, the convergence of the

TABLE III

COMPARISON OF THE COMPUTATIONAL COMPLEXITY.

Algorithm

Number of operations per snapshot

Additions Multiplications

Full-Rank-RLS 6M2 − 8M + 3 6M2 + 2M + 2

JDL-RLS DM + 4D2 − D − 2 DM + 5D2 + 5D

MSWF-RLS
(D + 1)M2 + 6D2 (D + 1)M2 + 2DM

−8D + 2 +3D + 2

AVF
D(M2 + 3(M − 1)2) − 1 D(4M2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2

SJIDF-RLS
5D2B + 5DIB + 4DB 4D2B + 5DIB − 3DB

+5I2B + 3IB + 2B +4I2B − 3IB − 3B

SJIDF-CCG
4DIB + 3D2B + 12DB 4DIB + D2B + 5DB

+3I2B + 12IB + 6B +I2B + 5IB − 6B
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Fig. 3. The computational complexity analysis.

algorithms is not guaranteed to the global minimum since local

minima may be encountered by the proposed RLS and CCG

algorithms. It should be mentioned, however, that the proposed

scheme is composed of several independent branches, and

independent optimization problems, which are considerd to

minimize the output energy with constraint for each single

branch. Firstly, we consider an analysis of the optimization

problem of single branch of joint interpolation, decimation and

filtering method from the point of view of the cost function and

constraints. We examine three cases of adaptation and discuss

the nature of the optimization problem. Let us drop the time

index (i) and the branch index b for simplicity, thus, the cost

function in (21) can be rewritten as

L(ῡ, ω̄) = E

[∣
∣ω̄HTR0ῡ

∣
∣
2
]

+ 2ℜ
{
λ

[
ω̄HTS0ῡ − 1

]}
.

(44)

We will consider three cases of interest for our analysis as

follows:

For case 1), we assume ω̄ is fixed and ῡ is time-variant.

The cost function in (44) can be rewritten as

L(ῡ) = E

[∣
∣ῡH r̄ῡ

∣
∣
2
]

+ 2ℜ
{
λ

[
ῡH s̄ῡ − 1

]}
, (45)

where r̄ῡ = R
H
0 THω̄ and s̄ῡ = S

H
0 THω̄. The Hessian
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matrix respect to ῡ is given by

Hῡ =
∂∂L(ῡ)

∂ῡH∂ῡ
= E{r̄ῡ r̄H

ῡ } = R̄ῡ, (46)

where R̄ῡ is a positive semi-definite matrix, which means that

L(ῡ, ω̄) is a convex function of ῡ conditioned on the fixed

ω̄.

For case 2), we suppose ω̄ is time-variant and ῡ is fixed.

Using the same procedure of case 1), we may obtain the

Hessian matrix respect to ω̄ as

Hω̄ = E{r̄ω̄ r̄H
ω̄ } = R̄ω̄, (47)

where r̄ω̄ = TR0ῡ and R̄ω̄ is a positive semi-definite matrix.

In this case, L(ῡ, ω̄) is a convex function of ω̄ conditioned

on the fixed ῡ.

For case 3): we consider that both ω̄ and ῡ are time-variant

and the problem is to jointly optimize the two adaptive filters.

The cost function in (44) is rewritten as

L(ζ) = E

[∣
∣
∣ζ

HAζ

∣
∣
∣

2]

+2λℜ
[

ζHBζ − 1
]

, (48)

where ζ = [ῡT ω̄T ]T is (I +D)×1 vector, A0(i) and B0(i)
are (I + D) × (I + D) matrices written by

A0 =

[
0 0

TR0 0

]

and B0 =

[
0 0

TS0 0

]

,

respectively. Thus, the Hessian matrix is given by

Hζ =
∂∂L(ζ)

∂ζH∂ζ

= 2E

{

A0ζζHAH
0

}

+ 2E

{

ζHAH
0 ζA0

}

+ 2λB0(i).

(49)

In this case, the optimization problem depends on the pa-

rameters ω̄, ῡ and λ, which suggests a nonconvex problem.

However, convexity is a sufficient, but not necessary condition

for the property that the cost function has no points of local

minima. In our case, we conjecture that every point is possibly

a point of global minima. To verify that, we carried out a

number of studies and find that for a given decimation unit, the

algorithms always converge to the same minima regardless of

the initialization, provided ω̄, ῡ are not all-zero quantities. An

analysis of this problem remains an interesting open problem.

Based on the discussion above, a single branch global
minima ζ

⋆

b can be provided by each branch. Thus, we can

obtain a set of such minimas, which actually are local minimas

relative to the overall optimization problem. Therefore the

overall global minima can be obtained by

ζ⋆
o = arg min

ζ⋆∈{ζ
⋆

b
|b=1,··· ,B}

L(ζ⋆). (50)

Note that the overall global minima can be found when B and

the decimation units are properly selected.

TABLE IV

RADAR SYSTEM PARAMETERS

Parameter Value

Antenna array Sideway-looking array (SLA)
Carrier frequency (fc) 450 MHz
Transmit pattern Uniform
PRF (fr) 300 Hz
Platform velocity (v) 50 m/s
Platform height (h) 9000 m
Clutter-to-Noise ratio (CNR) 40 dB
Jammer-to-Noise ratio (JNR) 40 dB

Antenna setting I:
Elements of sensors (N ) 10
Number of Pulses (J) 8

Antenna setting II:
Elements of sensors (N ) 8
Number of Pulses (J) 10

VI. PERFORMANCE ASSESSMENT

In this section, we assess the proposed RR-SJIDF STAP

algorithm using simulated radar data. The parameters of the

simulated radar platform are shown in Table IV. For all

simulations, we assume the presence of a mixture of two

broadband jammers at −45◦ and 60◦ with jammer-to-noise-

ratio (JNR) equal to 40 dB. The clutter-to-noise-ratio (CNR)

is fixed at 40 dB. All presented results are averages over 1000

independent Monte-Carlo runs.

A. Setting of Parameters

In the first several experiments, we evaluate the SINR

performance of our proposed RR-SJIDF scheme with different

selections of B, I and D. We investigate RR-SJIDF scheme

with the RLS algorithm in two antenna settings with M = 80
for both. The first setting is to configure the number of

elements N = 10 and the number of pulses J = 8, and the

second is to configure N = 8 and J = 10. The evaluation of

the SINR performance against the number of branches B is

shown in Fig. 4. We consider the RR-SJIDF-RLS algorithm

with different values of I and D in both antenna settings.

The results indicate that the RR-SJIDF-RLS algorithm using

B = 4 can achieve approximately the same performance of

that using more than 4 branches. Thus, in our case, to meet

the best trade-off between the performance and the complexity,

we normally choose B = 4 in our simulations. In Fig. 5, the

SINR performance against the rank D is shown. We can find

that for the first antenna setting, the proposed scheme achieves

the best performance with D = 4 when I = 16 and B = 4,

while for the second antenna setting, the scheme achieves the

best performance with D = 5 when I = 13 and B = 4.

The results indicate an interesting fact that the selection of

ranks D and I is highly related to the antenna setting, in other

words, it is related to the structure of the received signal. That

means the performance of the reduced-rank STAP algorithms

can be improved if the structure of the received signal are well

explored.

In the next experiment, we evaluate the SINR performance

against the interpolator rank I for the proposed RR-SJIDF-

RLS algorithm with different B and D, which are shown in
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Fig. 4. SINR performance vs the number of branches B with different values
of I and D, M = 80, α = 0.9998, K = 100 snapshots. (1) N = 10 and J = 8
antenna setting, (2) N = 8 and J = 10 antenna setting.
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Fig. 5. SINR performance vs the rank D with M = 80, α = 0.9998, K
= 100 snapshots. (1) N = 10 and J = 8 antenna setting, (2) N = 8 and
J = 10 antenna setting.

Fig. 6. The proposed scheme can improve the performance and

converge fast if it is able to construct an appropriate subspace

projection with proper coefficients in ω̄b(i) and ῡb(i). Thus,

for this reason and to keep a low complexity we adopt I = 16
and D = 4 for the first antenna setting and I = 13 and D = 5
for the second antenna setting since these values yield the best

performance. In the folowing subsection, we will focus on the

performance assessment of the proposed STAP scheme with

B = 4, I = 16 and D = 4 for the antenna setting I.

B. Comparison with Existing Algorithms

In this subsection, we compare both the SINR performance

against the number of snapshots and the PD performance

against the signal-to-noise-ratio (SNR) for the different designs

of linear receiver using the full-rank filter with the RLS

algorithm, the MSWF with the RLS algorithm, the AVF and

our proposed technique, where the reduced-rank filter ω̄(i)
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Interpolator Rank I

S
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RR−SJIDF(2), B=3,D=5

Fig. 6. SINR performance vs the interpolator rank I with M = 80, α =
0.9998, K = 100 snapshots. (1) N = 10 and J = 8 antenna setting, (2)
N = 8 and J = 10 antenna setting.
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Fig. 7. SINR performance against snapshot with M = 80, SNR = 0 dB, α =
0.9998. All algorithms are initialized to a scaled identity matrix δ−1I, where
δ is a small constant.

with D coefficients provides an estimate to determine whether

the target is present or not.

Firstly, as shown in Fig. 7, we evaluate the SINR against

the number of snapshots K performance of our proposed

algorithm with different setting parameters and compare with

the other schemes. The schemes are simulated over K = 500
snapshots and the SNR is set at 0 dB. The curves show an

excellent performance by the proposed algorithm, which also

converges much faster than other schemes. With the number of

branches B = 4, the proposed scheme approaches the optimal

MVDR performance after 50 snapshots. As one may expect,

with an increase in the number of branches, the steady SINR

performance improves.

In the second experiment, in Fig. 8, we present PD versus

SNR performance for all schemes using 50 snapshots as the

training data. The false alarm rate PFA is set to 10−6 and

we suppose the target is injected in the boresight (0◦) with

Doppler frequency 100Hz. The figure illustrates that the pro-
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Fig. 8. Probability of detection performance vs SNR with M = 80, α =
0.9998, K = 50 snapshots, PFA = 10−6.
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Fig. 9. SINR performance against Doppler frequency (FD) with M = 80,
α = 0.9998, K = 100 snapshots.

posed algorithm provides sub-optimal detection performance

using very short support data, but remarkably, obtains a 90

percent detection rate, beating 50 percent for the AVF, 40

percent for the MSWF with the RLS and 30 percent for the

full rank filter with the RLS at an SNR level of 15 dB.

We evaluate the SINR performance against the target

Doppler frequency at the main bean look angle for our

proposed algorithms and other existing algorithms, which are

illustrated in Fig. 9. The potential Doppler frequency space

form -150 to 150 Hz is examined and 100 snapshots are

used to train the filter. The plots show that our proposed

algorithms converge and approach the optimum in a short time,

and form a deep null to cancel the mainbeam clutter. Note

that the proposed RR-SJIDF-RLS algorithm outperforms other

algorithms in the most of Doppler bins, but performs slightly

worse than the AVF algorithm in the Doppler range of -50 to

50Hz.

VII. CONCLUSIONS

In this paper, we proposed an RR-SJIDF STAP scheme

for airborne radar systems. The proposed scheme performed

dimensionality reduction by employing a MPB framework,

which jointly optimizes interpolation, decimation and filtering

units. The output was switched to the branch with the best

performance according to the minimum variance criterion. In

order to design the decimation unit, we considered the optimal

decimation scheme and also a low-complexity pre-stored dec-

imation units scheme. Furthermore, we developed an adaptive

RLS algorithm for efficient implementation of the proposed

scheme. Simulations results showed that the proposed RR-

SJIDF STAP scheme converged at a very fast speed and

provided a considerable SINR improvement, outperforming

existing state-of-the-art reduced-rank schemes.
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