
This is a repository copy of Blind Pilot Decontamination.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95093/

Version: Accepted Version

Article:

Mueller, R.R., Cottatellucci, L. and Vehkapera, M. orcid.org/0000-0002-3085-538X (2014) 
Blind Pilot Decontamination. IEEE Journal of Selected Topics in Signal Processing, 8 (5). 
pp. 773-786. ISSN 1932-4553 

https://doi.org/10.1109/JSTSP.2014.2310053

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 1

Blind Pilot Decontamination

Ralf R. Müller∗, Senior Member, IEEE and Laura Cottatellucci and Mikko Vehkaperä

Abstract

A subspace projection to improve channel estimation in massive multi-antenna systems is proposed

and analyzed. Together with power-controlled hand-off, it can mitigate the pilot contamination problem

without the need for coordination among cells. The proposed method is blind in the sense that it does not

require pilot data to find the appropriate subspace. It is based on the theory of large random matrices that

predicts that the eigenvalue spectra of large sample covariance matrices can asymptotically decompose

into disjoint bulks as the matrix size grows large. Random matrix and free probability theory are utilized

to predict under which system parameters such a bulk decomposition takes place. Simulation results are

provided to confirm that the proposed method outperforms conventional linear channel estimation if bulk

separation occurs.

Index Terms

Multiple antennas, multiple-input multiple-output (MIMO) systems, massive MIMO, spread-spectrum,

channel estimation, principal component analysis, random matrices, free probability.

I. INTRODUCTION

In [1], a multiple antenna system was proposed that mimics the idea of spread-spectrum. Like a large

processing gain can be realized in a spread-spectrum system by massive use of radio spectrum, a large

array gain is realized by a massive use of antennas elements. This system design has attracted considerable
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attention recently, see e.g. [2] for a survey. It is commonly referred to as massive MIMO. Its advantage

over the old spread-spectrum idea lies in the fact that antennas can be manufactured in arbitrarily high

numbers, while radio spectrum is limited.

Given perfect channel state information, the signals received at all antenna elements can be combined

coherently. The array gain grows unboundedly with the number of antenna elements at the access point.

Therefore, massive use of antennas elements can overcome both multiuser interference and thermal noise

for any given number of users and any given powers of the interfering users.

Given a rich scattering environment, the access point is able to concentrate the radiated energy within

an area around the designated receiver that is only a fraction of a squared wavelength [2]. This is in

contrast to earlier methods of array processing in wireless communications based upon angles of arrival

and departure which are limited to concentrate their energy into a certain direction rather than an area

limited in both angular and radial domain.

Since power in the far-field can be amplified (in theory) beyond limits by means of array gains, the

ultimate limit of a single-cell massive MIMO system is only constrained by the coherence time of the

channel [3]. The number of terminals needs to stay below the coherence time to have sufficient degrees

of freedom for channel estimation. In practice, the coherence time needs to be significantly larger than

the number of terminals to also allow for data transmission in addition to pilot symbols for channel

estimation.

In [3], however, a pessimistic conclusion about the performance of massive MIMO in multi-cellular

systems was reached. Based on the explicit assumption of no coordination among cells and on the implicit

assumption of linear channel estimation [3, Eq. (5)], it was concluded that the array gain can be achieved

only for data detection, but not for channel estimation. The author argued that channel state information,

though not required to be perfect, must have at least a certain quality in order to utilize unlimited array

gains. As a result, pilot interference from neighboring cells would limit the ability to obtain sufficiently

accurate channel estimates and be the new bottleneck of the system. This effect, commonly referred to

as pilot contamination [4], is treated as a fundamental effect in many works, e.g. [3]–[8].

Recent works have indicated that pilot contamination may not be as fundamental as it was thought

to be: Using Bayesian channel estimation, [9] found that pilot contamination can vanish under certain

conditions on the channel covariance matrix if some cooperation among cells is allowed for. Using an

eigenvalue decomposition of the sample covariance matrix of the received signal, [10] found that for a

wide range of system parameters, the channel can be estimated with greater accuracy than with linear

methods.
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In early conference versions of this work [11], [12], we showed that pilot contamination is not a

fundamental limitation for massive MIMO systems, if the coherence time is not smaller than the number

of antennas at the base station and a power margin between users of interest and interfering users can

be provided, e.g. by means of path loss. In that case the array gain can be utilized to have the accuracy

of channel estimation growing unboundedly with the number of antennas at polynomial complexity. As

in [10], the approach in [11], [12] starts with an eigenvalue decomposition of the sample covariance

matrix (or equivalently a singular value decomposition of the received signal matrix). Unlike [10], it

does not aim to subsequently estimate the channel matrix before performing data detection. It projects

the received signal onto an (almost) interference-free subspace where communication is governed by a

non-linear compound channel that can be estimated more easily.

The work in [11], [12] has received criticism for the assumption that the coherence time is assumed

to be larger than the number of base station antennas. In this journal version of our work, we remove

this assumption and also allow for coherence times shorter than the number of base station antennas. We

find that the main conclusions of [11], [12] remain valid and show that our proposed method of channel

estimation based on subspace projection still outperforms linear channel estimation, though by a smaller

margin. In this journal version of our work, we also include proofs and derivations that were omitted

in the conference proceedings due to space limitations. For sake of readability and convenience to the

reader, we repeat parts of the material presented in [11], [12].

The paper is organized as follows: In Section II, we introduce the system model. In Section III, we

introduce the algorithm for nonlinear channel estimation utilizing the array gain. In Section IV, we analyze

the performance of the algorithm by means of random matrix theory in the limit of large number of base

station antennas. In Section V, we investigate the performance of the algorithm for a finite number of

antennas by simulative means. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a wireless communication channel. In order to ease notation and for sake of conciseness,

let the channel bandwidth be equal to the coherence bandwidth. Channels whose physical bandwidth is

wider than the coherence bandwidth can be decomposed into equivalent parallel narrowband channels by

means of orthogonal frequency division multiplexing or related techniques. The coherence time of the

channel measured in symbol intervals is thus given by [13]

C =
3

4
√
πf0τ

c

v
(1)

February 19, 2014 DRAFT



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 4

with f0, τ , v, and c denoting carrier frequency, delay spread, mobile speed, and the speed of light,

respectively. Considering extreme values for these parameters, e.g. bullet train speed of v = 350 km/h

and very high delay spread τ = 5 µs (which corresponds to an excess distance of 1.5 km) the coherence

time at f0 = 2.6 GHz is 99 symbols. For more typical speeds of mobile terminals and/or smaller cells,

the coherence time can be one or several orders of magnitude larger.

In the following, we consider the uplink (reverse link) of a cellular massive MIMO system. Therefore,

the number of receive antennas R is much larger than the number of transmit antennas T . The number

of transmit antennas is limited by the richness of the propagation channel. Measurements in Manhattan

[14, Fig. 5] show that the richness is limited to around 10 to 13 degrees of freedom. In more typical

outdoor environments with fewer high buildings, the scattering richness will be even lower. It is therefore

sensible to assume that the number of transmit antennas is small compared to both the number of receive

antennas and the coherence time

R ≫ T ≪ C. (2)

The number of receive antennas is constrained by their physical size. At 2.6 GHz, a uniform linear array

spaced in half wavelengths reaches the length of d = 6 m for 104 elements. Spacing the elements on

a two-dimensional grid, the number of receive antennas can be even larger. Obviously, the number of

receive antennas can be larger, equal or smaller than the coherence time. We will therefore, introduce

the normalized coherence time

κ =
C

R
(3)

which is assumed to be a finite, non-zero constant throughout this paper.

Let the frequency-flat, block-fading propagation channel be described by the matrix equation

Y = HX +Z, (4)

where X ∈ CT×C is the transmitted data (eventually multiplexed with pilot symbols), H ∈ CR×T is the

channel matrix of unknown propagation coefficients, Y ∈ CR×C is the received signal, and Z ∈ CR×C

is the total impairment. Furthermore, we assume that channel, data, and impairment have zero mean, i.e.

EX = EH = EZ = 0. The impairment includes both thermal noise and interference from other cells

and is, in general, neither white nor Gaussian.

Note that (4), can also be understood as a code-division multiple-access (CDMA) system with the

columns of H denoting the spreading sequences and R denoting the processing gain. It is well-known

that CDMA can be demodulated without knowledge of the spreading sequences by means of blind
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algorithms, see e.g. [15]. Many of those algorithms can also be applied in massive MIMO systems.

In the following section, we introduce an algorithm, which we consider particularly suited for cellular

massive MIMO.

III. PROPOSED ALGORITHM

A. General Idea

Before going into the details of the proposed algorithm, we start with the idea behind the proposed

procedure. Consider the channel model (4) for a single active transmit antenna, i.e. T = 1 and look for

the matched filter m† such that the signal-to-noise ratio (SNR) at its output is maximum. In white noise,

maximizing the SNR is equivalent to maximizing the total received power normalized by the power gain

of the filter. Thus, the optimum filter is given by

m
◦ = argmax

m

m†Jm
m†m

(5)

with

J = E
X,Z|H

{
Y Y

†
}
. (6)

It is a well-known result of linear algebra that the vector m◦ maximizing the right hand side of (5),

commonly referred to as the Rayleigh quotient, is that eigenvector of J that corresponds to the largest

eigenvalue of J . Since we do not know the matrix J , we have to cope with the approximate solution

m
∗ = argmax

m

m†Y Y
†
m

m†m
. (7)

This approximation is tight for large number of antenna elements, i.e. we have the almost sure convergence

of the inner product

|〈m◦;m∗〉| → ||m◦|| · ||m∗|| (8)

as R → ∞, if the largest eigenvalue of the noise is negligible against the largest eigenvalue of the signal,

i.e.

lim
R→∞

max
m

m†ZZ
†
m

m†m

max
m

m†HXX
†
H

†
m

m†m

= 0. (9)

Note that the limit R → ∞ implies C → ∞ due to (3). For finite number of antennas, there are better

approximations for J than Y Y
†, e.g. G-estimation [16]. However, such methods exceed the scope of

the present work and are left for future research. G-estimation will further improve the performance of

the proposed subspace projection method, in practice.
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The limit condition (9) is not hard to fulfill. In fact, it holds true for independent constant variance

entries in Z, H , and X . To see this note that the largest eigenvalue of ZZ
† scales linearly with R,

as the number of entries in Z ∈ CR×C grows quadratically, but the number of non-zero eigenvalues

grows linearly. At the same time the largest eigenvalue of HXX
†
H

† grows quadratically with R, as

the number of entries in H ∈ CR×T grows linearly, the number of entries in X ∈ CT×C grows linearly,

but the number of non-zero eigenvalues is T and thus constant.

B. Detailed Algorithm

Having found an algorithm for a single transmitter and white noise, we now apply this idea to multiple

transmit antennas and analyze its performance in colored noise. Consider the singular value decomposition

Y = UΣV
† (10)

with unitary matrices U ∈ CR×R and V ∈ CC×C and the R × C diagonal matrix Σ with diagonal

entries σ1 ≥ σ2 ≥ · · · ≥ σmin{R,C} sorted in non-increasing order. As shown in [10], the columns of U

are highly correlated with the columns of H . Based on this observation, [10] proposes two algorithms

for improved nonlinear estimation of the channel matrix H .

In the sequel, we pursue a strategy different from the one in [10]. We decompose the matrix of left

singular vectors

U = [S|N ] (11)

into the signal space basis S ∈ CR×T and the null space basis N ∈ CR×(R−T ). Now, we project the

received signal onto the signal subspace and get

Ỹ = S
†
Y . (12)

The null space basis N is not required in the sequel. In fact, there is no need to compute the full

singular value decomposition (10). Only the basis of the signal subspace S is needed and there are

efficient algorithms available to exclusively calculate S.

Consider now the massive MIMO case, i.e. R ≫ T : The T -dimensional signal subspace is much

smaller than the R-dimensional full space, which the noise lives in. White noise is evenly distributed in

all dimensions of the full space. Thus, the influence of white noise onto the signal subspace becomes

negligible as R → ∞. In other words: The considerations for the largest eigenvalue in (9) and its

corresponding eigenvector in (8) are equally valid for the T largest eigenvalues and their corresponding

eigenvectors, as long as T is finite.
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Using the algorithm above, we can achieve an array gain even without the need for estimating the

channel coefficients. In fact, channel estimation can be delayed until the received signal has been projected

onto the signal subspace and the dominant part of the white noise has already been suppressed.

In order to save complexity it is sensible not to estimate the channel matrix H , at all. Instead, we

directly consider the subspace channel

Ỹ = H̃X + Z̃ (13)

and estimate the much smaller subspace channel matrix H̃ ∈ CT×T by standard methods of linear channel

estimation based on pilot symbols. Hereby, we have transformed the problem of channel estimation for

highly asymmetric massive MIMO systems into the well-explored problem of channel estimation for

classical symmetric MIMO systems. Although the data dependent projection (12) implies that the noise

Z̃ = S
†
Z ∈ CT×C is not independent from the data X , neglecting this dependence is an admissible

approximation that becomes exact due to (8), as the number of receive antennas R grows large.

In addition to white noise, there is co-channel interference from L neighboring cells. For sake of

notational convenience, we assume that the number of transmit antennas is identical in all cells and equal

to T . The interference from neighboring cells is anything but white. It is the more colored, the smaller

the ratio

α =
T

R
(14)

which will be called load in the following. Any R-dimensional channel vector is orthogonal to any other

channel vector in the limit R → ∞ [3]. This holds regardless whether the two channel vectors correspond

to transmitters in the same cell or in different cells. In the limit of zero load, i.e. α → 0, we have an

even stronger result: the subspace spanned by the co-channel interference is orthogonal to the signal

subspace.1 That means that in the limit R/T → ∞, the (L+ 1)T largest singular values of the received

signal matrix Y become identical to the Euclidean norms of the (L + 1)T channel vectors. We only

need to identify which singular values correspond to channel vectors from inside the cell as opposed

to channel vectors from transmitters in neighboring cells. Then, we can remove the interference from

neighboring cells by subspace projection.

1Note that the pairwise orthogonality of channel vectors holds for R → ∞, in general, and does not require α → 0. However,

the orthogonality of subspaces requires α → 0 in addition to R → ∞, as the accumulation of T = αR vanishing pairwise

correlations is not vanishing, in general.
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C. Identifying Signals of Interest

Note that for R → ∞, the system has infinite diversity and the effect of short-term fading (Rayleigh

fading) vanishes. Thus, the norm of a channel vector is solely determined by path loss and long-term

fading (shadowing). In a cellular system with perfect received power control and a power-controlled

handoff strategy, the norm of channel vectors from neighboring cells can never be greater than the

norm of channel vectors from the cell of interest. We conclude that the identification of singular values

belonging to transmitters within the cell of interest is possible by means of ordering them by magnitude

in the limit (R,α) → (∞, 0), i.e. the number of receive antennas grows large while the number of

transmit antennas does not.

For practical systems with small, but nonzero load, i.e. 0 < α ≪ 1, a certain power margin is required

between signals of interest and interfering signals. For most interfering users, such a power margin is

created for free by shadowing and path loss. However, there might be few users close to cell boundaries

who lack such a power margin. As a kind of countermeasure, a power margin has to be engineered for

them. There are various ways to do so. In the sequel, we will exemplarily list two such potential methods.

One way to create an additional power margin is a smart choice of frequency or time re-use patterns.

However, this requires coordination among cells. Another way to create an additional power margin is

to equip each user with at least two transmit antennas. Then, the few users who suffer from insufficient

power margin can form beams that favor one of the base stations or access points over others2. This will

noticeable increase their power margins. The majority of users will not need to employ such methods

and can use the two antennas for spatial multiplexing.

IV. PERFORMANCE ANALYSIS

We have demonstrated above, that the proposed algorithm works in principle in massive MIMO systems

if the number of receive antennas is much larger than the product of transmit antennas and neighboring

cells. In practical systems, the number of transmit and receive antennas is finite and the load α can

be made very small but not arbitrarily small. The standard assumption of massive MIMO systems, i.e.

R → ∞, while T staying finite, gives overoptimistic results for finite systems of practical interest. In

order to find the limits of the subspace projection method, we need to consider a more refined limit in the

number of antennas. For that purpose, we utilized the asymptotic scale invariance of the eigenvalue spectra

2Note that such beam forming does not require channel state information. One can keep on forming random beams until a

sufficient power margin is reached.
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of large random matrices: For appropriate normalization of the entries, the spectra of random matrices

are hardly affected (asymptotically invariant) if all matrix dimensions scale proportionally. Thus, a useful

and insightful approach to understand the behavior of a real cellular massive MIMO network consists

in assuming that both T and R grow large with a small, but fixed ratio α. This approach is tantamount

to studying a system with T = 5n transmit antennas, R = 300n receive antennas and coherence time

C = 100n for n → ∞ and assume that the result for a system with T = 5, R = 300 and C = 100

hardly differs.

We decompose the impairment process

Z = W +HIXI (15)

into white noise W and interference from L neighboring cells where interfering data XI ∈ CLT×R is

transmitted in neighboring cells and received in the cell of interest through the channel HI ∈ CR×LT .

Combining (4) and (15), we get

Y = HX +HIXI +W . (16)

Let the entries of the data signal X be iid with zero mean and variance P . Let the entries of the

channel matrix H be also iid with zero mean, but have unit variance. Let the entries of the matrix of

interfering signals XI be iid with zero mean and variance P and let the entries of the kth column of

the matrix of interfering channels HI be independent with zero mean and variance Ik/P such that the

ratio Ik/P accounts for the relative attenuation between out-of-cell user k and the intracell users. Let

the empirical distribution of Ik converge to a limit distribution as LT → ∞ which is denoted by PI(·).
Furthermore, we assume that the elements of the noise W are independent and identically distributed

(iid) with zero-mean and variance W . Let us denote the asymptotic eigenvalue distribution of Y Y
† as

PY Y
†(x). In Appendix A, we show that this asymptotic eigenvalue distribution obeys

sGY Y
† (s) + 1 =− PTCα (sGY Y

† (s) + 1− κ)GY Y
†(s)

ακ− PTC (sGY Y
† (s) + 1− κ)GY Y

†(s)

−
∫

xLTCα (sGY Y
† (s) + 1− κ)GY Y

†(s)dPI(x)

ακ− xTC (sGY Y
† (s) + 1− κ)GY Y

†(s)

− WC (sGY Y
† (s) + 1− κ)GY Y

†(s)

κ
(17)

with

GY Y
†(s) =

∫
dPY Y

†(x)

x− s
(18)

denoting its Stieltjes transform. By means of the Stieltjes inversion formula

p(x) =
1

π
lim
y→0+

ℑG(x+ jy) (19)
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Fig. 1. Asymptotic eigenvalue density of the matrix Y Y
†/R in solid red line for α

κ
= 1

10
, P = −10 dB, Ik = P (kmodT )

4T
∀k =

1 . . . LT , L = 2, W = 0 dB. The asymptotic eigenvalue distribution is compared to the empirical eigenvalue density for T = 10,

C = 100, and various value of R given by the histograms in blue.

the asymptotic eigenvalue density is obtained.

In Figure 1, the solid lines in red shows the asymptotic eigenvalue distribution of Y Y
†/R obtained

by (17)-(19). The histograms in blue show the empirical eigenvalue distributions of Y Y
†/R for T = 10,

C = 100, and various values of R. We observe that for sufficiently large number of receive antennas R,

the distribution decomposes into two disjunct bulks: A noise and interference bulk to the left and a bulk

of the signal of interest to the right. If the bulks do not overlap, we can blindly separate the signals of

interest from interference and noise as discussed in Section III-C.

The bulks are not disjunct in general, but only for certain values of the involved system parameters. It is

therefore of utmost importance for practical design of blind pilot decontamination to know which system

parameters do lead to bulk separation. The extremely good match between the asymptotic distribution

and the empirical distribution for finite matrices corroborate the usefulness to study the support of the

asymptotic eigenvalue distribution of Y Y
† and the asymptotic conditions of bulk separability. We remark
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that, in principle, the common interference and noise bulk could also separate into two separate bulks for

noise and interference. However, this happens only if the weakest interfering signal is sufficiently strong

in comparison to the noise power.

A. Unilateral Approximation

The general result for the asymptotic eigenvalue distribution (17) is implicit and not very intuitive. In

the following, we develop an approximate analysis for small, but not vanishing loads α. It is based upon

the separate calculation of each bulk and subsequent rescaling of the bulks due to pairwise bulk-to-bulk

repulsion. We will see that it leads to explicit and intuitive design guidelines.

In the large antenna limit R = C/κ → ∞, the singular values of W /
√
CW follow the Marchenko-

Pastur law, i.e.

pW (x) =

√
4
κ − (x− 1− 1

κ)
2

πx
(20)

for 1/
√
κ − 1 < x < 1/

√
κ + 1. In the worst case, the T largest singular values of the noise affect the

signal of interest. The power of white noise being present in Ỹ is thus at most

TCW

(
1 +

1√
κ

)2

. (21)

The total power of the signal of interest at the receiver is TRCP and the signal-to-noise ratio in Ỹ

is lower bounded by

SNR ≥ P

W

R
(
1 + 1√

κ

)2 ≥ P

W
· min{R,C}

4
(22)

For fixed normalized coherence time, the first lower bound on the signal-to-noise ratio scales linearly

with the number of receive antennas R. For fixed absolute coherence time, second lower bound scales

with the minimum of the coherence time and the number of receive antennas. Note, however, that the

two lower bounds can be quite loose and the actual SNR might be considerably larger.

In addition to white noise, there is co-channel interference from neighboring cells. The co-channel

interference is not white but, like the signal of interest, highly concentrated in certain subspaces. The

empirical distribution of the squared singular values of the normalized signal of interest, i.e. HX/
√
TR,

is shown in [11] to converge, as R → ∞, to a limit distribution which for α ≪ 1 is supported in the

interval

P =

[
κP

α
− 2P

√
κ2 + κ

α
;
κP

α
+ 2P

√
κ2 + κ

α

]
. (23)
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The empirical distribution of the squared singular values of the normalized co-channel interference, i.e.

HIXI/
√
TR, also converges to a limit distribution. For α ≪ 1, it is supported in the interval

I =

[
κI

α
− 2I

√
L
κ2 + κ

α
;
κI

α
+ 2I

√
L
κ2 + κ

α

]
(24)

for Ik = I ∀k. We remark that the condition Ik = I ∀k is unrealistic, in practice. However, the general

case is not tractable by analytic means. We note, however, that setting all interference powers to the

maximum interference power among the users is a worst case scenario.

When separately calculating the eigenvalue spectra of the signal-of-interest, the interference and the

noise, the accuracy of the results suffers from the eigenvalues in different bulks repelling each other. In

the following, we will correct for this effect up to first order. We decompose one bulk of eigenvalues into

single eigenvalues. Then, we introduce correction factors that account for the scaling of one of the single

eigenvalues due to the presence of one other bulk of eigenvalues. We will then approximate the influence

of several other bulks, e.g. noise bulk and interference bulk, by multiplying the correction factors. This

procedure is an approximation, since we neglect the fact that also the scaled bulk of eigenvalues repels

the scaling bulk and that the two scaling bulks repel each other.3

The presence of additive noise scales the eigenvalues of both the signal of interest and the interference.

As shown in Appendix B, the scale factors are given for R ≫ T by

nP =

(
1 +

W

PR

)(
1 +

W

PC

)
(25)

and

nI =

(
1 +

W

IR

)(
1 +

W

IC

)
, (26)

respectively. Note that the two scale factors converge to 1 in the large system limit irrespective of the

load α, if the noise power W does not scale with the system size.

The presence of interference scales the eigenvalues of the signal of interest and vice versa. As shown

in Appendix B, the scale factors for non-overlapping bulks are given for R ≫ T by

iP =

(
1 +

Lα/κ
P
I − 1

)(
1 +

Lα
P
I − 1

)
(27)

3To better understand this procedure consider a system with sun (noise bulk), earth (interference bulk) and moon (bulk of

signal of interest) which mutually affect each other by gravity. We decompose the moon into single atoms. These atoms are

too small to affect the path of the earth. So we can calculate the position of the moon atoms without accounting for the force

the moon enacts onto the earth. Then, we apply the same procedure for the interaction between moon atoms and the sun and

superimpose the results of the earth-moon and sun-moon interactions. The fact, that sun and earth influence each other is also

ignored.
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and

iI =

(
1 +

α/κ
I
P − 1

)(
1 +

α
I
P − 1

)
, (28)

respectively. Note, however, that these scale factors are only accurate if P ≫ I . This somehow limits

their usefulness, in practice.

If the two supporting intervals do not overlap, i.e.

nPiPP ∩ nIiII = ∅ (29)

or equivalently

P

I
>

nIiI
nPiP

·
1 + 2

√
αL
(
1 + 1

κ

)

1− 2
√

α
(
1 + 1

κ

) , (30)

the singular value distribution of the sum of the signal of interest and the interference converges, as

R → ∞, to a limit distribution that is composed of two separate non-overlapping bulks [17]. Note that

in the limit α → 0, the signal bulk always separates from the interference bulk as long as P/I > 1.

Therefore, the signal subspace and the interference subspace can be identified blindly. The interference

can be nulled out and pilot contamination does not happen.

B. Bilateral Approximation at High SNR

The previous approximation was intuitive, but its accuracy is limited. In this subsection, we use

perturbation theory for a more precise approximation for small load α ≪ 1 and Ik = I , where we

account for the mutual interaction between the interference bulk and the bulk of the signal of interest.

Let us denote by PW and IW the eigenvalue bulks corresponding to the signal subspace and the

interference subspaces, respectively, when the white noise variance is W . Additionally, let us assume

that P > I as in systems of practical interest. Finally, let us define

r =
α

PTC
=

1

PRC
(31)

t =
α

ITC
=

1

IRC
(32)

ζ = WC. (33)

The following results are shown in Appendix C: In the high SNR regime, i.e. for W = 0, the inverse of

the Stieltjes transform is well approximated by the rational function

s(1)(G) =
((L+ 1)(κ− 2)α− κ)G2 + ((Lr + t)(κ− 1)α− κ(r + t))G− κrt

G((κ+ 2(L+ 1)α)G2 + ((Lr + t)α+ κ(r + t))G+ κrt)
. (34)
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The extremes of the function s(1)(G) are the solutions G1, G2, G3, G4 to the quartic equation

(2(L+ 1)2(κ− 2)α2 + (L+ 1)(κ− 4)κα− κ2)G4

+ (2((2(Lr + t))(L+ 1)(κ− 1)α2 + ((Lr + t)(κ− 1)− (2(L+ 1))(t+ r))ακ− (t+ r)κ2))G3

+ ((Lr + t)2(κ− 1)α2 + (t2 + Lr2)(κ− 2)κα− (6(L+ 1))rtκα− ((t+ r)2 + 2rt)κ2)G2

− 2rtκ((Lr + t)α+ (t+ r)κ)G− κ2r2t2 = 0. (35)

If Gi, for i = 1, 2, 3, 4, are all real with G1 < G2 < G3 < G4 and s(1)(G2) < s(1)(G3) then an

approximation of P0 and I0 is given by

P0 ≈ [s(1)(G3), s
(1)(G4)] (36)

I0 ≈ [s(1)(G1), s
(1)(G2)]

and the two intervals [s(1)(G3), s
(1)(G4)] and [s(1)(G1), s

(1)(G2)] are disjoint.

Different approximations of P0 and I0 can be obtained by approximating s(G) by the function

s
(2)
0 (G) =





φ0(G) + ρ0(G), G ∈ [G∞
− , G∞

+ ]

φ0(G)− ρ0(G), elsewhere.
(37)

where G∞
− and G∞

+ are the instances of

G∞ =
κ(r + t) + α(t+ Lr)

−2κ− 4α− 4Lα
±
√

κ2(r − t)2 + 2ακ(Lr2 + t2 − 3rt− 3Ltr) + α2(t+ Lr)2

−2κ− 4α− 4Lα
(38)

with minus and plus sign, respectively,

φ0(G) =
(2α(L+ 1)(κ− 1) + κ(κ− 4))G2 + κ(α(t+ Lr) + (κ− 2)(t+ r))G+ κ2rt

2G2 ((2κ+ (L+ 1)α)G+ κ(t+ r))
, (39)

ρ0(G) =κ
[
κ(κ− 4α(L+ 1))G4 + 2κ(κ(t+ r) − 3α(Lr + t))G3 + ((t2 + 4rt+ r2)κ2

− 2ακ(Lr − t)(r − t) + α2(t+ Lr)2)G2 2κrt(κ(t+ r) + α(t+ Lr))G+ κ2t2r2
]1/2

× 1

2G2 ((2κ+ (L+ 1)α)G+ κ(t+ r))
. (40)

This approximation of the inverse Stieltjes transform is derived in Appendix C. The extremes of this

function cannot be derived in close form. Then, we approximate them by the zeros of ρ0(G), G
(2)
1 , G

(2)
2 ,

G
(2)
3 , and G

(2)
4 . If G

(2)
1 < G

(2)
2 < G

(2)
3 < G

(2)
4 and s

(2)
0 (G

(2)
2 ) < s

(2)
0 (G

(2)
3 ), we obtain the approximations

P0 ≈ [s
(2)
0 (G

(2)
3 ), s

(2)
0 (G

(2)
4 )] = [φ0(G

(2)
3 ), φ0(G

(2)
4 )] (41)

I0 ≈ [s
(2)
0 (G

(2)
1 ), s

(2)
0 (G

(2)
2 )] = [φ0(G

(2)
1 ), φ0(G

(2)
2 )].
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[s(1)(G1), s
(1)(G2)] [s(1)(G3), s

(1)(G4)]

[ℜ(s
(2)
0 (G1)),ℜ(s

(2)
0 (G2))][ℜ(s

(2)
0 (G3)),ℜ(s

(2)
0 (G4))]

[s
(2)
0 (G

(2)
3 ), s

(2)
0 (G

(2)
4 )] [s

(2)
0 (G

(2)
3 ), s

(2)
0 (G

(2)
4 )]

Fig. 2. Bulk-support approximation of the asymptotic eigenvalue density of the matrix Y Y
†/R by (36) and (41) for α = 1

100
,

κ = 10
3
, P = −10 dB, Ik = P

4
∀k. A further approximation [ℜ(s

(2)
0 (G1)), ℜ(s

(2)
0 (G2))]

⋃
[ℜ(s

(2)
0 (G3)), ℜ(s

(2)
0 (G4))] is also

shown. The histogram in blue is the empirical eigenvalue density for T = 3, R = 300, and C = 1000 while the red line is the

asymptotic eigenvalue density.

which are motivated in Appendix C. The approximated intervals in (36) and (41) obtained by application of

perturbation theory are a very good approximation of P0 and I0 as shown in Figure 2. The approximation

obtained by (41) contains the support of the asymptotic eigenvalue distribution.

As well known, the quartic equations to determine Gi and G
(2)
i , i = 1, . . . 4, admit solutions in closed

form. However, they are not insightful and handy because of their complexity. Thus, in the following, we

propose looser approximations of the intervals P0 and I0 yielding handier conditions on bulk separation.

Further approximations yield

P0 ⊂
[
s
(2)
P (GPℓ

), s
(2)
P (GPu

)
]

(42)
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where

s
(2)
P (x) =

2ακ(L+ 1)− 2α(L+ 1) + 2κ(1− κ)

2((1 + L)α− κ)x+ 2κ(t− 2r)
+

κ(κ(t− 5r) + α(t+ Lr) + 4r − 2t)x+ κ2r(t− 3r)

2x2(((1 + L)α− κ)x+ κ(t− 2r))

(43)

and GPℓ
and GPu

equal the instances of

G
(2)
P = −κr(t− r)

κ(t− r) + α(t+ (L− 2)r)± 2
√

ακ(t− r)2 − α2r(t+ (L− 1)r)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)
(44)

which is obtained by selecting the plus and minus sign, respectively. Similarly, for the bulk associated

to the interference subspace,

I0 ⊂
[
s
(2)
I (GIℓ

), s
(2)
I (GIu

)
]

(45)

where

s
(2)
I (x) =

2ακ(L+ 1)− 2κ(κ− 1)− 2α(L+ 1)

2((α(L+ 1)− κ)x− κ(2t− r))
+

κ((4− 5κ)t+ (κ− 2)r + α(t+ Lr))x+ κ2t(r − 3t)

2x2((α(L+ 1)− κ)x− κ(2t− r))

(46)

and GIℓ
and GIu

are obtained by selecting the instance of

GI = −κt(t− r)
κ(t− r) + α((2L− 1)t− Lr)± 2

√
ακL(t− r)2 + α2Lt((L− 1)t− Lr)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)
(47)

with plus and minus sign, respectively. The derivation of the proposed approximations for P0 and I0 is

detailed in Appendix C.

By enforcing GIu
< GPℓ

we obtain a bound on the ratio α
κ as a decreasing function of the ratio

β = r
t =

I
P

α

κ
≤ (1− β)2(Lβ2 + 3(L+ 1)β + 1− 2(1 + β)

√
3Lβ)

(Lβ2 − 1)(Lβ2 + 6(L− 1)β − 1) + (9L2 − 2L+ 9)β2
. (48)

Figure 3 shows the region of parameters α
κ and β where the bulks of the eigenvalues for the signals of

interest and the one for interference do not overlap for various values of L. As expected, the separability

region shrinks when the interference from adjacent cells increases, i.e., L increases.

C. Bilateral Approximation for General SNR

An approach similar to the one proposed for the high SNR regime in Appendix C can be applied for

W > 0 to determine approximated supports of the bulks PW and IW . We propose the conclusive results

in the following while the derivations are detailed in Appendix D. Then,

PW ⊂
[
ς
(2)
P (ΓPℓ

), ς
(2)
P (ΓPu

)
]

(49)
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Fig. 3. Separability region obtained by (48) for L = 2, 4, and 7.

where

ς
(2)
P (x) =

ακ(L+ 1)− α(L+ 1) + κ(1− κ) + ζ(κ− 1)(t− 2r)

((1 + L)α− κ+ ζ(t− 2r))x+ κ(t− 2r)

+
κ

2x2
(κ(t− 5r) + α(t+ Lr) + 4r − 2t+ ζr(t− 3r))x+ κr(t− 3r)

((1 + L)α− κ+ ζ(t− 2r))x+ κ(t− 2r)
(50)

and ΓPℓ
and ΓPu

equal the instances of

Γ
(2)
P =

−κr(t− r)
[
ζr(t− r) + κ(t− r) + α(t+ (L− 2)r)± 2

√
ακ(t− r)2 − α2r(t+ (L− 1)r)

]

(r(t− r)ζ + (α− κ)t+ (αL+ κ)r)2 + 4rζ((α+ κ)r2 − (α+ 2κ)tr + κt2) + 4ακLr(t− r)
(51)

which are obtained by selecting the plus and minus sign, respectively. Similarly, for the bulk associated

to the interference subspace,

IW ⊂
[
ς
(2)
I (ΓIℓ

), ς
(2)
I (ΓIu

)
]

(52)
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where

ς
(2)
I (x) =

ακ(L+ 1)− κ(κ− 1)− α(L+ 1)− (κ− 1)(2t− r)ζ

(α(L+ 1)− κ− ζ(2t− r))x− κ(2t− r)

+
κ((4− 5κ)t+ (κ− 2)r + α(t+ Lr)− κζt(3t− r))x+ κ2t(r − 3t)

2x2((α(L+ 1)− κ− ζ(2t− r))x− κ(2t− r))
(53)

and ΓIℓ
and ΓIu

are obtained by selecting the instance of

ΓI =
−κt(t− r)

[
κ(t− r) + α(2L− 1)t− αLr + t(t− r)ζ ± 2

√
ακL(t− r)2 + α2Lt((L− 1)t− Lr)

]

(αt+ Lαr − tκ+ rκ+ t(t− r)ζ)2 + 4(t− r)(t[(κ+ αL− α)t− (αL+ κ)r]ζ + ακLr)
(54)

with plus and minus sign, respectively.

Interestingly, the separability condition obtained by enforcing ΓIu
< ΓPℓ

yields to condition (48) as

in the case of absence of noise. This is not as surprising as it may look at first sight, as it was already

observed from (25) and (26) that the noise does not affect the support in the large system limit.

The tightness of the proposed approximation is assessed by numerical simulations. In Figure 4 we con-

sider the same communication system as in Figure 1 but additionally impaired by Gaussian noise with vari-

ance equal to 0dB. Besides the histogram of the eigenvalues for a finite system and the asymptotic eigen-

value pdf drawn in solid line, we show the intervals
[
ς
(2)
I (ΓIℓ

), ς
(2)
I (ΓIu

)
]

and
[
ς
(2)
P (ΓPℓ

), ς
(2)
P (ΓPu

)
]
.

The vertical lines indicate the approximation of the boundaries of the asymptotic pdf obtained by

perturbation analysis. The approximations based on the second order Taylor expansion ς
(2)
P (x) and ς

(2)
I (x)

include the actual asymptotic support.

V. NUMERICAL RESULTS

In this section, we provide simulation results for the uncoded bit error rate (BER) and compare

the proposed SVD-based algorithm, with the conventional linear channel and data estimation scheme

considered in [3]. For all cases we set P/W = 0.1 (SNR is −10 dB), that is, assume that the system

operates in the low SNR region. An identical set of orthogonal pilot sequences of length T is adopted by

all the access points to facilitate channel estimation. We consider first the effect of increasing the number

of receive antennas while the rest of the parameters are fixed to T = 5, L = 6, and C = 100. As may

be observed from Fig. 5, the proposed algorithm (SVD) widely outperforms the receiver based on linear

channel estimation in [3] (conventional). Furthermore, it is evident that the proposed algorithm benefits

from increased number of receive antennas, irrespective of whether the number of receive antennas is

greater or smaller than the coherence time measured in symbol intervals.
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Fig. 4. Eigenvalue pdf of a network with T = 3, L = 2, R = 300, and W = 0 with approximation of its support boundaries

The effect of relative interference strength I/P and number of length-T pilot sequences τ is plotted in

Fig. 6. For τ = 1 the same orthogonal pilots are used for all access points. In the case τ = 5, 10,

random pilot sequences and zero-forcing channel estimation is employed. The RMT thresholds for

the given parameters are I/P = 0.61 and I/P = 0.78 according to (30) and (48), respectively. The

proposed algorithm achieves significant performance gains below the RMT thresholds when compared to

linear channel estimation. For very strong interference, however, the conventional receiver outperforms

the subspace approach. The reason is because we always select only the T strongest eigenvectors for

projection, but for finite system sizes and close to the RMT threshold this is suboptimal and we lose

a large amount of useful signal while projecting towards interference. This effect can be mitigated by

selecting more than T eigenvectors for subspace projection when I/P is expected to be close to the

threshold predicted by RMT.
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Fig. 5. BER vs. number of receive antennas with T = 5, C = 100, L = 6, P/W = 0.1 (SNR is −10 dB), and the interference

distribution Ik = P (kmodT )
δT

, ∀k = 1 . . . T for various values of the parameter δ incrementing from 2 to 6 in direction of arrow.

 

 

Fig. 6. BER vs. relative interference strength with T = 3, R = 300, C = 1000, L = 2, and P/W = 0.1 (SNR is −10 dB).

The number of length-T pilot blocks is τ = 1, 5, 10.
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VI. SUMMARY AND CONCLUSIONS

We proposed a practical algorithm with polynomial complexity to mitigate pilot contamination in

cellular systems with power controlled handoff. The dominant complexity of this algorithm is a singular

value decomposition of the received signal block. The algorithm was analyzed by means of random

matrix theory. It was found that the algorithm works well, if certain constraints relating the number of

antennas to the coherence time and the signal-to-interference ratio are fulfilled. Simulations show that

under that conditions, the algorithm significantly outperforms linear channel estimation.

This paper has focussed solely on the reverse link channel. For the forward link channel, one can exploit

channel reciprocity in time-division duplex systems. Similar to the reverse link channel, knowledge of

the full channel matrix is not required. Basic considerations of linear algebra show that it is sufficient to

know the subspace which the channel vectors of interest span in order to solely require accurate channel

estimates for the projected channel (13).

APPENDIX A

EIGENVALUE DISTRIBUTION

Consider the random matrix

D =

K∑

k=−1

akBkCk (55)

with ak ∈ R, Bk ∈ Cn×mk and Ck ∈ Cmk×n being random matrices with iid. zero-mean entries with

variance 1/mk and 1/n, respectively. From [11, Eq. (35)], we have

1

GDD
†(s)

= −s−
K∑

k=−1

a2kρksGDD
†(s)

ρk − a2ksG
2
DD

†(s)
(56)

with GDD
†(s) denoting the Stieltjes transform of the asymptotic eigenvalue distribution of DD

†.

Next we will distinguish two cases: β ≥ 1 and β ≤ 1 . For β ≤ 1, define the matrix E ∈ Cβn×n by

the decomposition

D =


 E

F


 . (57)

From [18, Theorem 14.10], we have

REE
†(w) = RDD

†(βw). (58)
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For β ≥ 1, define the matrix E ∈ Cβn×n as

E =




D

G0P

G1

...

G⌊β−1⌋




. (59)

with the family ({D}, {G0}, . . . , {G⌊β−1⌋}, {P }) being asymptotically free, Gi ∈ Cn×n and R
GiG

†
i
(w) =

RDD
†(w) for all i, and P ∈ {0, 1}n×(β−⌊β⌋) be diagonal with full rank. From [18, Theorem 14.10], we

have

RDD
†(w) = REE

†(w/β). (60)

Note that (60) is equivalent to (58). Thus, we can unify the two cases and continue with (58) for any β.

In the Stieltjes domain, (58) translates into

βGEE
†(s) = GDD

†

(
s+

β − 1

βGEE
†(s)

)
. (61)

Together with (56), we find an expression similar to [11, Eq. (39)] which simplifies to

sGEE
† (s) = −1−

K∑

k=−1

a2kρk

(
s+ β−1

βG
EE†(s)

)
βG2

EE
† (s)

ρk − a2k

(
s+ β−1

βG
EE†(s)

)
β2G2

EE
† (s)

. (62)

Now, we consider the matrix Y in (16) as a special case of E. This implies

K = LT (63)

β =
R

C
=

1

κ
(64)

ρ−1 =
T

C
=

α

κ
(65)

a2−1 = PTC (66)

ρ0 → ∞ (67)

a20 = WC (68)

ρk =
1

C
∀k > 0 (69)

a2k = IkC ∀k > 0 (70)

and (17) is obtained in the limit K → ∞. Note that the entries of B0C0 become iid. as ρ0 → ∞.
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APPENDIX B

EIGENVALUE REPULSION

In order to find the support of the asymptotic eigenvalue distributions we follow [19, Eq. (48)]. There

it is shown that the boundaries of the support of the asymptotic eigenvalue distribution are extrema of the

inverse of the Stieltjes transform. For a particular example different from ours, the procedure is explained

in greater detail in [20, Chapter 7].

Consider the random matrix

E =
(√

PAB +
√
ICD

)(√
PAB +

√
ICD

)†
(71)

where A ∈ CR×αR, B ∈ CαR×κR, C ∈ CR×βR, and D ∈ CβR×κR with iid. zero-mean unit-variance

entries. We have from (17) that the limiting Stieltjes transform of EE
† obeys

sαG+ 1 +
α(sαG+ 1− κ)G

rκ− (sαG+ 1− κ)G
+

β(sαG+ 1− κ)G

tκ− (sαG+ 1− κ)G
= 0 (72)

with

r =
α

PTC
=

1

PRC
(73)

t =
α

ITC
=

1

IRC
. (74)

Solving for sα leads to a cubic equation and is a tedious task. Nevertheless, Maple 16 can do it

symbolically. For α = 0, we get

s0 =
Gκ− 2G+Gβ + tκ

2G2
−
√

β2G2 + 2βGtκ− 2βG2κ+ κ2(G+ t)2

2G2
. (75)

At the interval boundaries,

∂sα
∂G

=
Z(G)

N(G)
(76)

with obvious definition of the enumerator Z(G) and the denominator N(G), must vanish. For α → 0,

one of the bulks will disappear. Thus, N(G) and Z(G) will have a common zero in the limit α → 0.

This common zero corresponds to the position of the vanishing bulk. Instead of inspecting the zeros of

Z(G) when searching for the interval boundary of the vanishing bulk, we can also look at the zeros of

N(G)4. We find that

lim
α→0

N(G) = 0 (77)

4This procedure is necessary since Z(G) fills many pages even in the limit of α → 0 and finding its zeros is intractable.

However, limα→0 N(G) only fills several lines and Maple can find its zeros in closed form.
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has the following four solutions

G1 =
−κt

(
√
κ+

√
β)2

(78)

G2 =
−κt

(
√
κ−√

β)2
(79)

G3 = 0 (80)

G4 =
rκ(t− r)

κ(r − t)− βr
. (81)

Obviously, G4 is the desired zero, since the other zeros do not depend on r. Plugging into (75) gives

s0(G4) =
(t− r + βr

κ )(t− r + βr)

r(t− r)2
. (82)

Thus, the presence of interference scales the signal of interest by a factor of

s0(G4)

s0(G4)
∣∣
β=0

=

(
1 +

β/κ

t/r − 1

)(
1 +

β

t/r − 1

)
. (83)

The scale factor of the interference is obtained by exchanging the role of signal and interference.

In order to obtain the scale factor for the white noise, we note that for infinite load the interference

becomes white. Thus, we take the limit t, β → ∞ with ζ = β
t in (83) and obtain

s∞0 (G4) =

(
ζ +

1

r

)(
1 +

rζ

κ

)
. (84)

Without noise, i.e. ζ = 0, the signal of interest would be positioned at 1/r. Thus, the presence of noise

scales the signals by a factor of

s∞0 (G4)

s∞0 (G4)
∣∣
ζ=0

= (1 + rζ)

(
1 +

rζ

κ

)
. (85)

APPENDIX C

THE NOISELESS SYSTEM

In this section we analyze the behaviour of the noiseless system when the number of interfering signals

and signals of interest are proportional and very small compared to the number of receive antennas but

not vanishing, i.e. α → 0. We still consider the random matrix in (71) but both the dimensions of the

interference and signal subspace grow proportionally, i.e., β = αL. Under these assumptions, (72) can

be written as

αG(sG+ 1− κ)(κ(t+ Lr)− (L+ 1)(sG+ 1− κ)G)

(rκ− (sG+ 1− κ)G)(tκ− (sG+ 1− κ)G)
+

(sG+ 1)(tκ− (sG+ 1− κ)G)(rκ− (sG+ 1− κ)G)

(rκ− (sG+ 1− κ)G)(tκ− (sG+ 1− κ)G)
= 0. (86)
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By simple inspection, we observe that the numerator N(s) of the l.h.s. in (86) is a function obtained by

perturbation of a cubic function in s

N0(s) = (sG+ 1)(tκ− (sG+ 1− κ)G)(rκ− (sG+ 1− κ)G) (87)

by a quadratic function in s proportional to α

Np(s) = G(sG+ 1− κ)(κ(t+ Lr)− (L+ 1)(sG+ 1− κ)G). (88)

Then, for small α the zeros of the original numerator N(s) = N0(s) + αNp(0) can be computed as a

perturbed version of the zeros in N0(s) given by

s0,0 = − 1

G
(89)

s0,P = −(1− κ)G− κr

G2
(90)

s0,I = −(1− κ)G− κt

G2
. (91)

Let us observe that (89) corresponds to the Stieltjes transform of a pdf p(x) = δ(x), i.e. the eigenvalue

distribution of a matrix with all zero eigenvalues and we are interested in its perturbed version by the

signal and interference subspaces. Then, we focus on the perturbation of this function to determine the

inverse Stieltjes transform. This initial observation will avoid further discussions on the selection of the

multiple zeros of N(s). Then, a first order Taylor expansion of N(s) in s0,0

N(s) ≈ Np(s0,0) +
∂N(s)

∂s

∣∣∣∣
s=s0,0

(s− s0,0) (92)

yields a linear equation in s to determine the approximation of the inverse Stieltjes transform s(1)(G)

s(1)(G) = s0,0 +
Np(s0,0)

∂N(s)
∂s

∣∣∣
s=s0,0

presented in (34). Note that s(1)(G) maintains the pole in G = 0 as the Stieltjes transform of p(x) = δ(x)

but also presents two additional poles in (38) as effect of the perturbation. In Figure 7 we show the

exact inverse Stieltjes transform in solid blue lines and compare it with s(1)(x), the approximation via

perturbation theory, and s = − 1
G . In Figure (7), the gaps of the solid blue lines correspond to regions

where s(G) assumes complex conjugate values for real values of G. The extremes of the function s(G)

determine the support P0 ∪ I0 of the asymptotic eigenvalue distribution of Y Y
† while the extremes of

s(1)(G) are related to the estimation [s(1)(G1), s
(1)(G2)]∪ [s(1)(G3), s

(1)(G4)]. The presence of poles in

s(1)(G) is an artefact of the first order Taylor expansion of the polynomial N(s) and corresponds to the

region where the N(s) has two complex conjugate solutions.
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Fig. 7. Analysis of the inverse Stieltjes transform s(G), its version without perturbation, i.e. s = −
1
G
, and its approximation

via perturbation theory s(1)(G). Eigenvalue pdf support of a noiseless system with L = 2, α = 1
100

, κ = 10
4
, P = 0.1 and

I = P

4
and its approximation by the estimation [s(1)(G1), s

(1)(G2)]
⋃
[s(1)(G3), s

(1)(G4)].

In order to improve the approximation of the zeros of N(s) in the intervals where they are complex,

we consider a second order Taylor expansion of N(s) around s0,0 and we obtain the quadratic function

in s :

N
(2)
0 (s) =

(
(−2κ− α(L+ 1))G4 − κ(t+ r)G3

)
s2 +

(
(κ2 + κ(2(1 + L)α−4)− 2(1 + L)α)G3

+((r+t)κ2 +((t+Lr)α−2t−2r)κ)G2+κ2rtG
)
s+ (κ2(1− α(L+ 1)) + 2κ(α(L+ 1)− 1)

− α(L+ 1))G2 + (κ2(r + t− (Lr + t)α) + (α(t+ Lr)− t− r)κ)G+ κ2rt (93)

which is a polynomial in s with two zeros

s̃
(2)
0 (G) = φ0 ± ρ0(G)

where ρ0(G) and φ0(G) are defined in (40) and (39), respectively. The inverse of the Stieltjes transform,

selected as perturbation of s = − 1
G , is s

(2)
0 (G) as defined in (37). Note that φ0(G) − ρ0(G) cannot be

the desired inverse in the interval [G∞
− , G∞

+ ] since it presents a pole in G = − (t+r)κ
2κ+α(L+1) ∈ [G∞

− , G∞
+ ]
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[s
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I
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I
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≈ [s
(2)
0 (G

(2)
1 ), s

(2)
0 (G

(2)
2 )]
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s1(G)

s
(2)
0 (G)

[s(1)(G3), s
(1)(G4)]

Fig. 8. Comparison of the inverse Stieltjes transform s(G) with its approximations s(1)(G) and s
(2)
0 (G) for the case of a

noiseless system with L = 2, α = 1
100

, κ = 10
4
, P = 0.1 and I = P

4
. The star markers show the extremes of the function

s(1)(G). The triangle markers show the points where s
(2)
0 (G) becomes complex for real values of G. The diamond markers

show the points where s
(2)
P (G) and s

(2)
I (G) become complex for real values of G, i.e. in ascending order GIℓ

, GIu , GPℓ
, and

GPu .

while φ0(G) + ρ0(G) does not. However, φ0(G) + ρ0(G) is not the desired inverse outside the interval

[G∞
− , G∞

+ ] since it behaves like G−2 in a surrounding of G = 0 and like G−1 for G → ±∞.

In contrast to the analogous problem with the first order Taylor approximation s(1)(G), the computation

of the extremes of the function s
(2)
0 (G) do not have a closed form solution since their computation

implies the solution of two polynomial equations of degree seven. In order to acquire deeper insight

on the problem, let us observe the behaviour of s
(2)
0 (G) shown in Figure 8. The match between s(G)

and s
(2)
0 (G) is nearly perfect in the surroundings of the extremes. Figure 8 suggests to approximate

the extremes of s
(2)
0 (G) by the points where s

(2)
0 (G) becomes complex, i.e. the zeros of ρ0(G). This

approximation implies again the solution of a polynomial equation of degree four yielding the zeros G
(2)
1 ,

G
(2)
2 , G

(2)
3 , and G

(2)
4 with G

(2)
1 ≤ G

(2)
2 ≤ G

(2)
3 ≤ G

(2)
4 . Although the zeros G

(2)
1 , G

(2)
2 , G

(2)
3 , and G

(2)
4

can be expressed in closed form, their expression is too cumbersome to be insightful. In order to obtain
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more practical and useful results we consider the second order Taylor expansion of N(s) in s0,P and

s0,I , which yields

N(s) ≈
(
(κ− α(L+ 1))G4 + κ(2r − t)G3

)
s2 +

(
(2κ(α(L+ 1) + 1− κ)− 2α(L+ 1))G3

+ ((t− 5r)κ2 + κ(4r − 2t+ αt+ αLr))G2 + κ2r(t− 3r)G
)
s+ (κ2(−2− Lα− α+ κ)

− α(L+ 1) + κ(2α(L+ 1) + κ))G2 + (κ2(3κr − α(Lr + t) + t− 5r) + κ(2− t)

+ ακ(t+ Lr))G+ 3κ2r(κr − r + κ2t+
κr2

G
) (94)

N(s) ≈
(
(κ− α(L+ 1))G4 + κ(2t− r)G3

)
s2 +

(
(−2κ2 + 2(1 + (1 + L)α)κ− 2α(L+ 1))G3

+ ((r − 5t)κ2 + ((t+ Lr)α− 2r + 4t)κ)G2 + κ2(r − 3t)tG
)
s+ (κ3 − (2 + (L+ 1)α)κ2

+ (1 + 2(1 + L)α)κ− (L+ 1)α)G2 + (3κ3t+ (r − (Lr + t)α− 5t)κ2 + ((t+ Lr)α

− r + 2t)κ)G+ 3κ3t2 + t(r − 3t)κ2 +
t3κ3

G
. (95)

The zeros of (94) and (95) are relatively good approximations of the actual inverse Stieltjes transform

s(G) in the surrounding of the poles (38). Let us denote them ŝ
(2)
P (G) and ŝ

(2)
I (G), respectively. By

using again as approximation for the extremes of ŝ
(2)
P (G) and ŝ

(2)
I (G), the values of G where ŝ

(2)
P (G)

and ŝ
(2)
I (G) become complex, i.e. the points where the discriminants of (94) and (95) vanish, we can

obtain simpler approximations of the extremes. In fact, the discriminants of (94) and (95) are again

quartic polynomials in G but with two zeros in G = 0. The other two zeros can be easily computed and

are given by (44) for ŝ
(2)
P (G) and by (47) for ŝ

(2)
I (G). Then, observing that the irrational components

of ŝ
(2)
P (G) and ŝ

(2)
I (G) vanish in G = G

(2)
P and G = G

(2)
I , respectively, ŝ

(2)
P (G

(2)
P ) = s

(2)
P (G

(2)
P ) and

ŝ
(2)
I (G

(2)
I ) = s

(2)
I (G

(2)
I ) with s

(2)
P (G) and s

(2)
I (G) defined in (43) and (46), respectively. The observation

that the instances of GP and GI with sign plus are not greater than the corresponding instances with

sign minus, i.e. G
(2)
Pℓ

≤ G
(2)
Pu

and G
(2)
Iℓ

≤ G
(2)
Iu

, yields the approximations (42) and (45).

By appealing to the previous results, in the following we derive condition (48) for bulk separability.

Under the assumptions of physical interest that L ∈ N+ and t ≥ r ≥ 0, G
(2)
P and G

(2)
I are all negative

real zeros5 if

t

r
≥ max

(
1 + α

2κ + α
2κ

√
1 + 4Lκ

α ,
1+Lα

2κ
+Lα

2κ

√
1+ 4κ

L2α

1+(L−1)α

κ

)
= 1 + α

2κ + α
2κ

√
1 + 4Lκ

α (96)

or equivalently

0 ≤ α

κ
≤ (t− r)2

r(t+ (L− 1)r)
. (97)

5These conditions are obtained by enforcing that the arguments of the square roots in (94) and (95) are nonnegative.
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By simple inspection, it is easy to verify that G
(2)
Iℓ

≤ G
(2)
Pu

under the above mentioned conditions

of physical interest. However, it is interesting to determine under which conditions the two intervals

[G
(2)
Pℓ

, G
(2)
Pu

] and [G
(2)
Iℓ

, G
(2)
Iu

] do not intersect, i.e. when G
(2)
Iu

≤ G
(2)
Pℓ

. It can be verified, for example using

Maple, that this last condition is satisfied if α
β and β = r

t satisfy (48). Additionally, condition (48) implies

also (97).

APPENDIX D

THE NOISY SYSTEM

The analysis of the system with noise follows along lines similar to the ones adopted in the previous

section. The fixed point equation for the Stieltjes transform of the eigenvalue pdf in (17) can be rewritten

as

sG+ 1 +
ζ(sG+ 1− κ)G

κ
+

α(sG+ 1− κ)G

rκ− (sG+ 1− κ)G
+

αL(sG+ 1− κ)G

tκ− (sG+ 1− κ)G
= 0 (98)

with r, t and ζ defined in (31), (32), and (33).

The inverse function s(G) can be obtained as a zero of the numerator of (98). As in the previous

section, this is a cubic function in s obtained as perturbation of the cubic function

N0(s) =
(
G(κ+ ζG)s+ ζ(1− κ)G+ κ

)(
rκ− (sG+ 1− κ)G

)(
tκ− (sG+ 1− κ)G

)
(99)

by a quadratic function

Np(s) = κG(sG+ 1− κ)(κ(t+ Lr)− (L+ 1)(sG+ 1− κ)G). (100)

Simple inspection of (99) and (100) shows that the introduction of noise has the only effect of modifying

s0,0 in (89) into

s̃0,0 = −ζ(1− κ)G+ κ

(κ+ ζG)G
(101)

while, up to a scaling factor κ, it leaves unchanged the perturbation Np(s). The first order Taylor expansion

of N(s) in s̃0,0 yields to an approximation of the inverse Stieltjes transform whose extremes computation

requires the solution of a polynomial of degree six and it is not feasible in closed form. Thus, we do not

discuss further this case. On the contrary, for the second order expansion, all the results obtained for the

noiseless system can be extended. The second order expansion of N(s) in s̃0,0 yields a polynomial whose

discriminant is again a quartic equation in G. Similarly to the noiseless case, to obtain approximations of

practical use we consider the second order expansions of N(s) in s0,P and s0,I and we approximate the

extremes of the inverse Stieltjes transform by the zeros of the corresponding discriminants. The expansion
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in s0,P yields the approximations Γ
(2)
Pℓ

and Γ
(2)
Pu

in (51) for the extremes of the inverse Stieltjes transform

and the approximation of the inverse Stieltjes transform boils down to ς
(2)
P (Γ

(2)
Pu

) and ς
(2)
P (Γ

(2)
Pℓ

), with

ς
(2)
P (G) defined in (50), when evaluated in Γ

(2)
Pℓ

and Γ
(2)
Pu

. Similar considerations hold for approximation

based on the second order expansion in s0,I .
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