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ABSTRACT
We describe the main features and discuss the tuning of algorithms for the direct solution

of sparse linear systems on distributed memory computers developed in the context of
PARASOL (ESPRIT IV LTR Project (No 20160)). The algorithms use a multifrontal
approach and are especially designed to cover a large class of problems. The problems can
be symmetric positive de�nite, general symmetric, or unsymmetric matrices, all possibly

rank de�cient, and they can be provided by the user in several formats. The algorithms
achieve high performance by exploiting parallelism coming from the sparsity in the problem

and that available for dense matrices. The algorithms use a dynamic distributed task

scheduling technique to accommodate numerical pivoting and to allow the migration of
computational tasks to lightly loaded processors. Large computational tasks are divided
into subtasks to enhance parallelism. Asynchronous communication is used throughout
the solution process for the e�cient overlap of communication and computation.

We illustrate our design choices by experimental results obtained on a Cray SGI Origin
2000 and an IBM SP2 for test matrices provided by industrial partners in the PARASOL
project.
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1 Introduction

We consider the direct solution of large sparse linear systems on distributed memory computers.
The systems are of the form Ax = b, where A is an n� n symmetric positive de�nite, general

symmetric, or unsymmetric sparse matrix that is possibly rank de�cient, b is the right-hand
side vector, and x is the solution vector to be computed.

The work presented in this article, has been performed as Work Package 2:1 within the

PARASOL Project. PARASOL is an ESPRIT IV Long Term Research Project (No 20160) for
\An Integrated Environment for Parallel Sparse Matrix Solvers". The main goal of this Project,
which started on January 1996 and �nishes in June 1999, is to build and test a portable library
for solving large sparse systems of equations on distributed memory systems. The �nal library

will be in the public domain and will contain routines for both the direct and iterative solution
of symmetric and unsymmetric systems.

In the context of PARASOL, we have produced a MUltifrontal Massively Parallel Solver [27, 28]
referred to as MUMPS in the remainder of this paper. Several aspects of the algorithms used in

MUMPS combine to give an approach which is unique among sparse direct solvers. These include:

� classical partial numerical pivoting during numerical factorization requiring the use of
dynamic data structures,

� the ability to automatically adapt to computer load variations during the numerical phase,

� high performance, by exploiting the independence of computations due to sparsity and

that available for dense matrices, and

� the capability of solving a wide range of problems, including symmetric, unsymmetric,
and rank-de�cient systems using either LU or LDLT factorization.

To address all these factors, we have designed a fully asynchronous algorithm based on a
multifrontal approach with distributed dynamic scheduling of tasks. The current version of

our package provides a large range of options, including the possibility of inputting the matrix
in assembled format either on a single processor or distributed over the processors. Additionally,
the matrix can be input in elemental format (currently only on one processor). MUMPS can also

determine the rank and a null-space basis for rank-de�cient matrices, and can return a Schur

complement matrix. It contains classical pre- and postprocessing facilities; for example, matrix
scaling, iterative re�nement, and error analysis.

Among the other work on distributed memory sparse direct solvers of which we are aware
[7, 10, 12, 22, 23, 24], we do not know of any with the same capabilities as the MUMPS solver.

Because of the di�culty of handling dynamic data structures e�ciently, most distributed
memory approaches do not perform numerical pivoting during the factorization phase. Instead,
they are based on a static mapping of the tasks and data and do not allow task migration

during numerical factorization. Numerical pivoting can clearly be avoided for symmetric positive
de�nite matrices. For unsymmetric matrices, Du� and Koster [18, 19] have designed algorithms
to permute large entries onto the diagonal and have shown that this can signi�cantly reduce
numerical pivoting. Demmel and Li [12] have shown that, if one preprocesses the matrix using

the code of Du� and Koster, static pivoting (with possibly modi�ed diagonal values) followed
by iterative re�nement can normally provide reasonably accurate solutions. They have observed
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that this preprocessing, in combination with an appropriate scaling of the input matrix, is a
key issue for the numerical stability of their approach.

The rest of this paper is organized as follows. We �rst introduce some of the main terms

used in a multifrontal approach in Section 2. Throughout this paper, we study the performance
obtained on the set of test problems that we describe in Section 3. We discuss, in Section 4, the
main parallel features of our approach. In Section 5, we give initial performance �gures and we

show the in
uence of the ordering of the variables on the performance of MUMPS. In Section 6,
we describe our work on accepting the input of matrices in elemental form. Section 7 then
brie
y describes the main properties of the algorithms used for distributed assembled matrices.
In Section 8, we comment on memory scalability issues. In Section 9, we describe and analyse

the distributed dynamic scheduling strategies that will be further analysed in Section 10 where
we show how we can modify the assembly tree to introduce more parallelism. We present a
summary of our results in Section 11.

Most results presented in this paper have been obtained on the 35 processor IBM SP2

located at GMD (Bonn, Germany). Each node of this computer is a 66 MHertz processor
with 128 MBytes of physical memory and 512 MBytes of virtual memory. The SGI Cray
Origin 2000 from Parallab (University of Bergen, Norway) has also been used to run some

of our largest test problems. The Parallab computer consists of 64 nodes sharing 24 GBytes
of physically distributed memory. Each node has two R10000 MIPS RISC 64-bit processors
sharing 384 MBytes of local memory. Each processor runs at a frequency of 195 MHertz and
has a peak performance of a little under 400 M
ops per second.

All experiments reported in this paper use Version 4:0 of MUMPS. The software is written in
Fortran 90. It requires MPI for message passing and makes use of BLAS [14, 15], LAPACK
[6], BLACS [13], and ScaLAPACK [9] subroutines. On the IBM SP2, we are currently using a
non-optimized portable local installation of ScaLAPACK, because the IBM optimized library

PESSL V2 is not available.

2 Multifrontal methods

It is not our intention to describe the details of a multifrontal method. We rather just de�ne

terms used later in the paper and refer the reader to our earlier publications for a more detailed
description, for example [3, 17, 20].

In the multifrontal method, all elimination operations take place within dense submatrices,
called frontal matrices. A frontal matrix can be partitioned as shown in Figure 1. In this

matrix, pivots can be chosen from within the block F11 only. The Schur complement matrix
F22�F21F

�1
11 F12 is computed and used to update later rows and columns of the overall matrix.

We call this update matrix, the contribution block.

fully summed rows -

partly summed rows -

fully summed columns

?

partly summed columns

?"
F11 F12

F21 F22

#

Figure 1: Partitioning of a frontal matrix.

The overall factorization of the sparse matrix using a multifrontal scheme can be described
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by an assembly tree, where each node corresponds to the computation of a Schur complement
as just described, and each edge represents the transfer of the contribution block from the son
node to the father node in the tree. This father node assembles (or sums) the contribution

blocks from all its son nodes with entries from the original matrix. If the original matrix is
given in assembled format, complete rows and columns of the input matrix are assembled at
once, and, to facilitate this, the input matrix is ordered according to the pivot order and stored

as a collection of arrowheads. That is, if the permuted matrix has entries in, for example,
columns fj1; j2; j3g of row i, i < j1; j2; j3, and in rows fk1; k2g of column i, i < k1; k2, then
the arrowhead list associated with variable i is faii; aj1i; aj2i; aj3i; aik1 ; aik2g. In the symmetric
case, only entries from the lower triangular part of the matrix are stored. We say that we

are storing the matrix in arrowhead form or by arrowheads. For unassembled matrices,
complete element matrices are assembled into the frontal matrices and the input matrix need
not be preprocessed.

In our implementation, the assembly tree is constructed from the symmetrized pattern of

the matrix and a given sparsity ordering. By symmetrized pattern, we mean the pattern of
the matrix A+AT where the summation is symbolic. Note that this allows the matrix to be
unsymmetric.

Because of numerical pivoting, it is possible that some variables cannot be eliminated from
a frontal matrix. The fully summed rows and columns that correspond to such variables are
added to the contribution block that is sent to the father node. The assembly of fully summed
rows and columns into the frontal matrix of the father node means that the corresponding

elimination operations are delayed. This will be repeated until elimination steps on the later
frontal matrices have introduced stable pivots to the delayed fully summed part. The delay
of elimination steps corresponds to an a posteriori modi�cation of the original assembly tree
structure and in general introduces additional (numerical) �ll-in in the factors.

An important aspect of the assembly tree is that operations at a pair of nodes where neither
is an ancestor of the other are independent. This gives the possibility for obtaining parallelism
from the tree (so-called tree parallelism). For example, work can commence in parallel on all

the leaf nodes of the tree. Fortunately, near the root node of the tree, where the tree parallelism
is very poor, the frontal matrices are usually much larger and so techniques for exploiting
parallelism in dense factorizations can be used (for example, blocking and use of higher Level
BLAS). We call this node parallelism. We discuss further aspects of the parallelism of the

multifrontal method in later sections of this paper. Our work is based on our experience
of designing and implementing a multifrontal scheme on shared and virtual shared memory
computers (for example, [2, 3, 4]) and on an initial prototype distributed memory multifrontal
version [21]. We describe the design of our resulting distributed memory multifrontal algorithm

in the rest of this paper.

3 Test problems

Throughout this paper, we will use a set of test problems to illustrate the performance of our
algorithms. We describe the set in this section.

In Tables 1 and 2, we list our unassembled and assembled test problems, respectively.
All except one come from the industrial partners of the PARASOL Project. The remaining
matrix, bbmat, is from the forthcoming Rutherford-Boeing Sparse Matrix Collection [16]. For
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symmetric matrices, we show the number of entries in the lower triangular part of the matrix.
Typical PARASOL test cases are from the following major application areas: computational

uid dynamics (CFD), structural mechanics, modelling compound devices, modelling ships

and mobile o�shore platforms, industrial processing of complex non-Newtonian liquids, and
modelling car bodies and engine components. Some test problems are provided in both
assembled format and elemental format. The su�x (rsa or rse) is used to di�erentiate them.

For those in elemental format, the original matrix is represented as a sum of element matrices

A =
X

Ai ;

where each Ai has nonzero entries only in those rows and columns that correspond to variables
in the ith element. Because element matrices may overlap, the number of entries of a matrix
in elemental format is usually larger than for the same matrix when assembled (compare the

matrices from Det Norske Veritas of Norway in Tables 1 and 2). Typically there are about twice
the number of entries in the unassembled elemental format.

Real Symmetric Elemental (rse)

Matrix name Order No. of elements No. of entries Origin

m t1.rse 97578 5328 6882780 Det Norske Veritas

ship 001.rse 34920 3431 3686133 Det Norske Veritas
ship 003.rse 121728 45464 9729631 Det Norske Veritas
shipsec1.rse 140874 41037 8618328 Det Norske Veritas
shipsec5.rse 179860 52272 11118602 Det Norske Veritas

shipsec8.rse 114919 35280 7431867 Det Norske Veritas
thread.rse 29736 2176 3718704 Det Norske Veritas
x104.rse 108384 6019 7065546 Det Norske Veritas

Table 1: Unassembled symmetric test matrices from PARASOL partner (in elemental format).

In Tables 3, 4, and 5, we present statistics on the factorizations of the various test problems
using MUMPS. The tables show the number of entries in the factors and the number of 
oating-
point operations (
ops) for elimination. For unsymmetric problems, we show both the estimated
number, assuming no pivoting, and the actual number when numerical pivoting is used.

The statistics clearly depend on the ordering used. Two classes of ordering will be considered
in this paper. The �rst is an Approximate Minimum Degree ordering (referred to as AMD,
see [1]). The second class is based on a hybrid Nested Dissection and minimum degree
technique (referred to as ND). These hybrid orderings were generated using ONMETIS [26]

or a combination of the graph partitioning tool SCOTCH [29] with a variant of AMD (Halo-
AMD, see [30]). For matrices available in both assembled and unassembled format, we used
nested dissection based orderings provided by Det Norske Veritas and denote these by MFR.

Note that, in this paper, it is not our intention to compare the packages that we used to obtain
the orderings; we will only discuss the in
uence of the type of ordering on the performance of
MUMPS (in Section 5).

The AMD ordering algorithms are tightly integrated within the MUMPS code; the other

orderings are passed to MUMPS as an externally computed ordering. Because of this tight
integration, we observe in Table 3 that the analysis time is smaller using AMD than some
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Real Unsymmetric Assembled (rua)

Matrix name Order No. of entries Origin

mixing-tank 29957 1995041 Poly
ow S.A.
inv-extrusion-1 30412 1793881 Poly
ow S.A.
bbmat 38744 1771722 Rutherford-Boeing (CFD)

Real Symmetric Assembled (rsa)

Matrix name Order No. of entries Origin

oilpan 73752 1835470 INPRO
b5tuer 162610 4036144 INPRO
crankseg 1 52804 5333507 MacNeal-Schwendler

crankseg 2 63838 7106348 MacNeal-Schwendler
bmw7st 1 141347 3740507 MacNeal-Schwendler
bmwcra 1 148770 5396386 MacNeal-Schwendler

bmw3 2 227362 5757996 MacNeal-Schwendler
m t1.rsa 97578 4925574 Det Norske Veritas
ship 001.rsa 34920 2339575 Det Norske Veritas
ship 003.rsa 121728 4103881 Det Norske Veritas

shipsec1.rsa 140874 3977139 Det Norske Veritas
shipsec5.rsa 179860 5146478 Det Norske Veritas
shipsec8.rsa 114919 3384159 Det Norske Veritas
thread.rsa 29736 2249892 Det Norske Veritas

x104.rsa 108384 5138004 Det Norske Veritas

Table 2: Assembled test matrices from PARASOL partners (except the matrix bbmat).

AMD ordering

Entries in Flops Time for
Matrix factors (�106) (�109) analysis

estim. actual estim. actual (seconds)

mixing-tank 38.5 39.1 64.1 64.4 4.9
inv-extrusion-1 30.3 31.2 34.3 35.8 4.6
bbmat 46.0 46.2 41.3 41.6 8.1

ND ordering

Entries in Flops Time for
Matrix factors (�106) (�109) analysis

estim. actual estim. actual (seconds)

mixing-tank 18.9 19.6 13.0 13.2 12.8
inv-extrusion-1 15.7 16.1 7.7 8.1 14.0

bbmat 35.7 35.8 25.5 25.7 11.3

Table 3: Statistics for unsymmetric test problems on the IBM SP2.
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user-de�ned precomputed ordering (in this paper ND or MFR orderings). In addition, the cost
of computing the external ordering is not included in these tables.

AMD ordering ND ordering

Entries Flops Time for Entries Flops
Matrix in factors analysis in factors

(�106) (�109) (seconds) (�106) (�109)

oilpan 10 4 4 10 3
b5tuer 26 13 15 24 12
crankseg 1 40 50 10 32 30

crankseg 2 61 102 14 41 42
bmw7st 1 27 15 10 25 11
bmwcra 1 97 128 13 70 61
bmw3 2 51 45 15 45 29

Table 4: Statistics for symmetric test problems on the IBM SP2.

Entries Flops
Matrix in factors

(�106) (�109)

m t1 29 17
ship 003 57 73

shipsec1 37 32
shipsec5 51 52
shipsec8 34 34
thread 24 39

x104 24 10

Table 5: Statistics for symmetric test problems, available in both assembled (rsa)
and unassembled (rse) formats (MFR ordering).
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4 Parallel implementation issues

In this paper, we assume a one-to-one mapping between processes and processors in our
distributed memory environment. A process will thus implicitly refer to a unique processor

and, when we say for example that a task is allocated to a process, we mean that the task is
also mapped onto the corresponding processor.

As we did before in a shared memory environment [4], we exploit parallelism both arising

from sparsity (tree parallelism) and from dense factorizations kernels (node parallelism). To
avoid the limitations due to centralized scheduling, where a host process is in charge of
scheduling the work of the other processes, we have chosen a distributed scheduling strategy.
In our implementation, a pool of work tasks is distributed among the processes that participate

in the numerical factorization. A host process is still used to perform the analysis phase (and
identify the pool of work tasks), distribute the right-hand side vector, and collect the solution.
Our implementation allows this host process to participate in the computations during the
factorization and solution phases. This allows the user to run the code on a single processor

and avoids one processor being idle during the factorization and solution phases.

The code solves the system Ax = b in three main steps:

1. Analysis. The host performs an approximate minimum degree ordering based on the
symmetrized matrix pattern A + AT and carries out the symbolic factorization. The

ordering can also be provided by the user. The host also computes a mapping of the nodes
of the assembly tree to the processors. The mapping is such that it keeps communication
costs during factorization and solution to a minimum and balances the memory and

computation required by the processes. The computational cost is approximated by the
number of 
oating-point operations, assuming no pivoting is performed, and the storage
cost by the number of entries in the factors. After computing the mapping, the host
sends symbolic information to the other processes. Using this information, each process

estimates the work space required for its part of the factorization and solution. The
estimated work space should be large enough to handle the computational tasks that
were assigned to the process at analysis time plus possible tasks that it may receive
dynamically during the factorization, assuming that no excessive amount of unexpected

�ll-in occurs due to numerical pivoting.

2. Factorization. The original matrix is �rst preprocessed (for example, converted to
arrowhead format if the matrix is assembled) and distributed to the processes that will
participate in the numerical factorization. Each process allocates an array for contribution

blocks and factors. The numerical factorization on each frontal matrix is performed by
a process determined by the analysis phase and potentially one or more other processes
that are determined dynamically. The factors must be kept for the solution phase.

3. Solution. The right-hand side vector b is broadcast from the host to the other processes.

They compute the solution vector x using the distributed factors computed during the
factorization phase. The solution vector is then assembled on the host.

7



4.1 Sources of parallelism

We consider the condensed assembly tree of Figure 2, where the leaves represent subtrees of the

assembly tree.

P3
P0
P1
P2

P0
P1
P2

P3P2P1

P0 P1

P3

P0 P1

P0

P0

P3

P0

SUBTREES

P3

P2 P2

P0

P2
P2
P3
P0

Type 2

Type 3

Type 2

P0

Type 2

P0

Type 1

Figure 2: Distribution of the computations of a multifrontal assembly tree over the four

processors P0, P1, P2, and P3.

If we only consider tree parallelism, then the transfer of the contribution block from a node
in the assembly tree to its father node requires only local data movement when the nodes
are assigned to the same process. Communication is required when the nodes are assigned

to di�erent processes. To reduce the amount of communication during the factorization and
solution phases, the mapping computed during the analysis phase assigns a subtree of the
assembly tree to a single process. In general, the mapping algorithm chooses more leaf subtrees
than there are processes and, by mapping these subtrees carefully onto the processes, we achieve

a good overall load balance of the computation at the bottom of the tree. We have described
this in more detail in [5]. However, if we exploit only tree parallelism, the speedups are very
disappointing. Obviously it depends on the problem, but typically the maximum speedup is no

more than 3 to 5 as illustrated in Table 6. This poor performance is caused by the fact that
the tree parallelism decreases while going towards the root of the tree. Moreover, it has been
observed (see for example [4]) that often more than 75% of the computations are performed
in the top three levels of the assembly tree. It is thus necessary to obtain further parallelism

within the large nodes near the root of the tree. The additional parallelism will be based on
parallel blocked versions of the algorithms used during the factorization of the frontal matrices.

Nodes of the assembly tree that are treated by only one process will be referred to as nodes
of type 1 and the parallelism of the assembly tree will be referred to as type 1 parallelism.

Further parallelism is obtained by a one-dimensional (1D) block partitioning of the rows of
the frontal matrix for nodes with a large contribution block (see Figure 2). Such nodes will
be referred to as nodes of type 2 and the corresponding parallelism as type 2 parallelism.

Finally, if the frontal matrix of the root node is large enough, we partition it in a two-dimensional
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(2D) block cyclic way. The parallel root node will be referred to as a node of type 3 and the
corresponding parallelism as type 3 parallelism.

4.2 Type 2 parallelism

During the analysis phase, a node is determined to be of type 2 if the number of rows in its
contribution block is su�ciently large. If a node is of type 2, one process (called the master)
holds all the fully summed rows and performs the pivoting and the factorization on this block

while other processes (called slaves) perform the updates on the partly summed rows (see
Figure 1).

The slaves are determined dynamically during factorization and any process may be selected.

To be able to assemble the original matrix entries quickly into the frontal matrix of a type 2
node, we duplicate the corresponding original matrix entries (stored as arrowheads or element
matrices) onto all the processes before the factorization. This way, the master and slave
processes of a type 2 node have immediate access to the entries that need to be assembled in

the local part of the frontal matrix. This duplication of original data enables e�cient dynamic
scheduling of computational tasks, but requires some extra storage. This is studied in more
detail in Section 8. (Note that for a type 1 node, the original matrix entries need only be present
on the process handling this node.)

At execution time, the master of a type 2 node �rst receives symbolic information describing
the structure of the contribution blocks of its son nodes in the tree. This information is sent
by the (master) processes handling the sons. Based on this information, the master determines

the exact structure of its frontal matrix and decides which slave processes will participate in
the factorization of the node. It then sends information to the processes handling the sons to
enable them to send the entries in their contribution blocks directly to the appropriate processes
involved in the type 2 node. The assemblies for this node are subsequently performed in parallel.

The master and slave processes then perform the elimination operations on the frontal matrix
in parallel. Macro-pipelining based on a blocked factorization of the fully summed rows is used
to overlap communication with computation. The e�ciency of the algorithm thus depends on
both the block size used to factor the fully summed rows and on the number of rows allocated

to a slave process. Further details and di�erences between the implementations for symmetric
and unsymmetric matrices are described in [5].

4.3 Type 3 parallelism

At the root node, we must factorize a dense matrix and we can use standard codes for
this. For scalability reasons, we use a 2D block cyclic distribution of the root node and
we use ScaLAPACK [9] or the vendor equivalent implementation (routine PDGETRF for

general matrices and routine PDPOTRF for symmetric positive de�nite matrices) for the actual
factorization.

Currently, a maximum of one root node, chosen during the analysis, is processed in parallel.
The node chosen will be the largest root provided its size is larger than a computer dependent

parameter (otherwise it is factorized on only one processor). One process (also called the master)
holds all the indices describing the structure of the root frontal matrix.

We call the root node, as determined by the analysis phase, the estimated root node.
Before factorization, the structure of the frontal matrix of the estimated root node is statically
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mapped onto a 2D grid of processes. This mapping fully determines to which process an entry
of the estimated root node is assigned. Hence, for the assembly of original matrix entries
and contribution blocks, the processes holding this information can easily compute exactly the

processes to which they must send data to.
In the factorization phase, the original matrix entries and the part of the contribution blocks

from the sons corresponding to the estimated root can be assembled as soon as they are available.

The master of the root node then collects the index information for all the delayed variables
(due to numerical pivoting) of its sons and builds the �nal structure of the root frontal matrix.
This symbolic information is broadcast to all processes that participate in the factorization. The
contributions corresponding to delayed variables are then sent by the sons to the appropriate

processes in the 2D grid for assembly (or the contributions can be directly assembled locally if
the destination is the same process). Note that, because of the requirements of ScaLAPACK,
local copying of the root node is required since the leading dimension will change if there are
any delayed pivots.

4.4 Parallel triangular solution

The solution phase is also performed in parallel and uses asynchronous communications both
for the forward elimination and the back substitution. In the case of the forward elimination,

the tree is processed from the leaves to the root, similar to the factorization, while the back
substitution requires a di�erent algorithm that processes the tree from the root to the leaves.
A pool of ready-to-be-activated tasks is used. We do not change the distribution of the factors

as generated in the factorization phase. Hence, type 2 and 3 parallelism are also used in the
solution phase. At the root node, we use ScaLAPACK routine PDGETRS for general matrices
and routine PDPOTRS for symmetric positive de�nite matrices.

5 Basic performance and in
uence of ordering

From earlier studies (for example [25]), we know that the ordering may seriously impact both

the uniprocessor time and the parallel behaviour of the method. To illustrate this, we report
in Table 6 performance obtained using only type 1 parallelism. The results show that using
only type 1 parallelism does not produce good speedups. The results also show (see columns

\Speedup") that we usually get better parallelism with nested dissection based orderings than

with minimum degree based orderings. We thus gain by using nested dissection because of
both a reduction in the number of 
oating-point operations (see Tables 3 and 4) and a better
balanced assembly tree.

We now discuss the performance obtained with MUMPS on matrices in assembled format that
will be used as a reference for this paper. The performance obtained on matrices provided in
elemental format is discussed in Section 6. In Tables 7 and 8, we show the performance of
MUMPS using nested dissection and minimum degree orderings on the IBM SP2 and the SGI

Origin 2000, respectively. Note that speedups are di�cult to compute on the IBM SP2 because
memory paging often occurs on a small number of processors. Hence, the better performance
with nested dissection orderings on a small number of processors of the IBM SP2 is due, in part,
to the reduction in the memory required by each processor (since there are less entries in the

factors). To get a better idea of the true algorithmic speedups (without memory paging e�ects),
we give, in Table 7, the uniprocessor CPU time for one processor, instead of the elapsed time.
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Matrix Time Speedup
AMD ND AMD ND

oilpan 12.6 7.3 2.91 4.45
bmw7st 1 55.6 21.3 2.55 4.87
bbmat 78.4 49.4 4.08 4.00

b5tuer 33.4 25.5 3.47 4.22

Table 6: In
uence of the ordering on the time (in seconds) and speedup for the

factorization phase, using only type 1 parallelism, on 32 processors of the IBM SP2.

When the memory was not large enough to run on one processor, an estimate of the Mega
op
rate was used to compute the uniprocessor CPU time. (This estimate was also used, when
necessary, to compute the speedups in Table 6.) On a small number of processors, there can
still be a memory paging e�ect that may signi�cantly increase the elapsed time. However, the

speedup over the elapsed time on one processor (not given) can be considerable.

Matrix Ordering Number of processors
1(�) 4 8 16 24 32

oilpan AMD 37 13.6 9.0 6.8 5.9 5.8
ND 33 10.8 7.1 5.7 4.6 4.6

b5tuer AMD 116 155.5 24.1 16.8 16.1 13.1
ND 108 55.7 21.6 16.8 14.7 10.5

crankseg 1 AMD 456 508.3 162.4 78.4 63.3
ND 270 228.2 102.0 42.4 39.1 31.9

crankseg 2 AMD 926 - - 819.6 308.5 179.7
ND 378 - 316.6 79.7 41.7 35.7

bmw7st 1 AMD 142 153.4 46.5 21.3 18.4 16.7
ND 104 105.7 36.7 20.2 12.9 11.7

bmw3 2 AMD 421 - 309.8 74.2 51.0 34.2
ND 246 - 145.3 42.6 25.8 23.6

mixing-tank AMD 495 - 288.5 70.7 64.5 61.3
ND 104 32.80 26.1 17.4 14.4 14.8

inv-extrusion-1 AMD 279 - 67.9 63.2 56.5 56.0
ND 70 25.7 17.5 16.0 13.1 12.4

bbmat AMD 320 276.4 68.3 47.8 44.0 39.8
ND 198 106.4 76.7 35.2 34.6 30.9

Table 7: Impact of the ordering on the time (in seconds) for factorization on the IBM

SP2. (�) estimated CPU time on one processor; - means not enough memory.

Table 8 also shows the elapsed time for the solution phase; we observe that the speedups

for this phase are quite good.
In the remainder of this paper, we will use nested dissection based orderings, unless stated

otherwise.
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Factorization phase
Matrix Ordering Number of processors

1 2 4 8 16 32
crankseg 2 AMD 566.1 392.2 220.0 115.9 86.4 77.4

ND 216.9 115.9 72.0 60.3 46.9 38.9
bmw7st 1 AMD 85.7 56.0 28.2 18.5 15.1 14.2

ND 63.1 38.5 27.9 19.5 21.1 11.5
bmwcra 1 AMD 663.0 396.5 238.7 141.6 110.3 76.9

ND 306.6 182.7 80.9 52.9 41.2 35.5
bmw3 2 AMD 252.7 153.4 81.8 49.4 34.0 27.3

ND 152.1 93.8 52.5 33.0 22.1 17.0

Solution phase
Matrix Ordering Number of processors

1 2 4 8 16 32
crankseg 2 AMD 6.8 5.8 4.4 2.9 2.4 2.3

ND 4.3 2.7 1.8 1.5 1.1 1.8
bmw7st 1 AMD 4.2 2.4 2.3 1.9 1.4 1.6

ND 3.3 2.1 1.7 1.4 1.6 1.5
bmwcra 1 AMD 11.4 7.2 6.8 3.9 2.8 2.4

ND 8.3 4.7 2.7 2.1 1.8 2.0
bmw3 2 AMD 6.7 4.1 3.6 2.4 2.1 1.9

ND 6.3 3.8 2.9 2.4 2.0 2.4

Table 8: Impact of the ordering on the time (in seconds) for factorization and solve
phases on the SGI Origin 2000.
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6 Elemental input matrix format

In this section, we discuss the main algorithmic changes to handle e�ciently problems that are
provided in elemental format. We assume that the original matrix can be represented as a sum

of element matrices
A =

X
Ai ;

where each Ai has nonzero entries only in those rows and columns that correspond to variables
in the ith element. Ai is usually held as a dense matrix, but if the matrix A is symmetric, only
the lower triangular part of each Ai is stored.

In a multifrontal approach, element matrices need not be assembled in more than one frontal

matrix during the elimination process. This is due to the fact that the frontal matrix structure
contains, by de�nition, all the variables adjacent to any fully summed variable of the front. As
a consequence, element matrices need not be split during the assembly process. Note that, for
classical fan-in and fan-out approaches [7], this property does not hold since the positions of

the element matrices to be assembled are not restricted to fully summed rows and columns.
The main modi�cations that we had to make to our algorithms for assembled matrices to

accommodate unassembled matrices lie in the analysis, the distribution of the matrix, and the

assembly process. We will describe them in more detail below.
In the analysis phase, we exploit the elemental format of the matrix to detect supervariables.

We de�ne a supervariable as a set of variables having the same list of adjacent elements. This
is illustrated in Figure 3 where the matrix is composed of two overlapping elements and has three

supervariables. (Note that our de�nition of a supervariable di�ers from the usual de�nition, see
for example [11]).

Supervariables have been used successfully in a similar context to compress graphs associated
with assembled matrices from structural engineering prior to a multiple minimum degree

ordering [8]. For assembled matrices, however, it was observed in [1] that the use of
supervariables in combination with an Approximate Minimum Degree algorithm was not more
e�cient.

Graph size with
Matrix supervariable detection

OFF ON

m t1.rse 9655992 299194

ship 003.rse 7964306 204324

shipsec1.rse 7672530 193560
shipsec5.rse 9933236 256976
shipsec8.rse 6538480 171428
thread.rse 4440312 397410

x104.rse 10059240 246950

Table 9: Impact of supervariable detection on the length of the adjacency lists given

to the ordering phase.

Table 9 shows the impact of using supervariables on the size of the graph processed
by the ordering phase (AMD ordering). Graph size is the length of the adjacency lists of

variables/supervariables given as input to the ordering phase. Without supervariable detection,
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Graph size is twice the number of o�-diagonal entries in the corresponding assembled matrix.
The working space required by the analysis phase using the AMD ordering is dominated by
the space required by the ordering phase and is Graph size plus an overhead that is a small

multiple of the order of matrix. Since the ordering is performed on a single processor, the space
required to compute the ordering is the most memory intensive part of the analysis phase. With
supervariable detection, the complete uncompressed graph need not be built since the ordering

phase can operate directly on the compressed graph. Table 9 shows that, on large graphs,
compression can reduce the memory requirements of the analysis phase dramatically.

Table 10 shows the impact of using supervariables on the time for the complete analysis
phase (including graph compression and ordering). We see that the reduction in time is not

only due to the reduced time for ordering; signi�cantly less time is also needed for building the
much smaller adjacency graph of the supervariables.

Time for analysis
Matrix supervariable detection

OFF ON

m t1.rse 4.6 (1.8) 1.5 (0.3)
ship 003.rse 7.4 (2.8) 3.2 (0.7)

shipsec1.rse 6.0 (2.2) 2.6 (0.6)
shipsec5.rse 10.1 (4.6) 3.9 (0.8)
shipsec8.rse 5.7 (2.0) 2.6 (0.5)
thread.rse 2.6 (0.9) 1.2 (0.2)

x104.rse 6.4 (3.5) 1.5 (0.3)

Table 10: Impact of supervariable detection on the time (in seconds) for the analysis
phase on the SGI Origin 2000. The time spent in the AMD ordering is in parentheses.

The overall time spent in the assembly process for matrices in elemental format will di�er
from the overall time spent in the assembly process for the equivalent assembled matrix.

Obviously, for the matrices in elemental format there is often signi�cantly more data to assemble
(usually about twice the number of entries as for the same matrix in assembled format).
However, the assembly process of matrices in elemental format should be performed more
e�ciently than the assembly process of assembled matrices. First, because we potentially

assemble at once a larger and more regular structure (a full matrix). Second, because most input
data will be assembled at or near leaf nodes in the assembly tree. This has two consequences.
The assemblies are performed in a more distributed way and most assemblies of original element

matrices are done at type 1 nodes. (Hence, less duplication of original matrix data is necessary.)
A more detailed analysis of the duplication issues linked to matrices in elemental format will be
addressed in Section 8. In our experiments (not shown here), we have observed that, despite the
di�erences in the assembly process, the performance of MUMPS for assembled and unassembled

problems is very similar, provided the same ordering is used. The reason for this is that the extra
amount of assemblies of original data for unassembled problems is relatively small compared to
the total number of 
ops.

The experimental results in Tables 11 and 12, obtained on the SGI Origin 2000, show the

good scalability of the code for both the factorization and the solution phases on our set of
unassembled matrices.
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Matrix Number of processors
1 2 4 8 16

m t1.rse 92 56 30 18 17

ship 003.rse 392 242 156 120 92
shipsec1.rse 174 128 65 36 27
shipsec5.rse 281 176 114 63 43

shipsec8.rse 187 127 68 36 30
thread.rse 186 120 69 46 37
x104.rse 56 34 20 16 16

Table 11: Time (in seconds) for factorization of the unassembled matrices on the SGI
Origin 2000. MFR ordering is used.

Matrix Number of processors
1 2 4 8 16

m t1.rse 3.5 2.1 1.1 1.2 0.8
ship 003.rse 6.9 3.6 3.3 2.5 2.0
shipsec1.rse 3.8 3.1 2.1 1.6 1.5

shipsec5.rse 5.5 4.2 2.9 2.2 1.9
shipsec8.rse 3.8 3.1 2.0 1.4 1.3
thread.rse 2.3 1.9 1.3 1.0 0.8
x104.rse 2.6 1.9 1.4 1.0 1.1

Table 12: Time (in seconds) for the solution phase of the unassembled matrices on

the SGI Origin 2000. MFR ordering is used.
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7 Distributed assembled matrix

The distribution of the input matrix over the available processors is the main preprocessing
step in the numerical factorization phase. During this step, the input matrix is organized into

arrowhead format and distributed according to the mapping provided by the analysis phase. In
the symmetric case, the �rst arrowhead of each frontal matrix is also sorted to enable e�cient
assembly [5]. If the assembled matrix is initially held centrally on the host, we have observed

that the time to distribute the real entries of the original matrix can sometimes be comparable
to the time to perform the actual factorization. For example, for matrix oilpan, the time to
distribute the input matrix on 16 processors of the IBM SP2 is on average 6 seconds whereas
the time to factorize the matrix is 6.8 seconds (using AMD ordering, see Table 7). Clearly,

for larger problems where more arithmetic is required for the actual factorization, the time for
factorization will dominate the time for redistribution.

With a distributed input matrix format we can expect to reduce the time for the
redistribution phase because we can parallelize the reformatting and sorting tasks, and we

can use asynchronous all-to-all (instead of one-to-all) communications. Furthermore, we can
expect to solve larger problems since storing the complete matrix on one processor limits the
size of the problem that can be solved on a distributed memory computer. Thus, to improve

both the memory and the time scalability of our approach, we should allow the input matrix
to be distributed.

Based on the static mapping of the tasks to processes that is computed during the analyis
phase, one can a priori distribute the input data so that no further remapping is required at

the beginning of the factorization. This distribution, referred to as the MUMPS mapping, will
limit the communication to duplications of the original matrix corresponding to type 2 nodes
(further studied in Section 8).

To show the in
uence of the initial matrix distribution on the time for redistribution, we

compare, in Figure 4, three ways for providing the input matrix:

1. Centralized mapping: the input matrix is held on one process (the host).

2. MUMPS mapping: the input matrix is distributed over the processes according to the static
mapping that is computed during the analysis phase.

3. Random mapping: the input matrix is uniformly distributed over the processes in a
random manner that has no correlation to the mapping computed during the analysis

phase.

The �gure clearly shows the bene�t of using asynchronous all-to-all communications (required
by the MUMPS and random mappings) compared to using one-to-all communications (for the
centralized mapping). It is even more interesting to observe that distributing the input matrix
according to the MUMPS mapping does not signi�cantly reduce the time for redistribution.

We attribute this to the good overlapping of communication with computation (mainly data
reformatting and sorting) in our redistribution algorithm.
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the IBM SP2.
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8 Memory scalability issues

In this section, we study the memory requirements and memory scalability of our algorithms.
Figure 5 illustrates how MUMPS balances the memory load over the processors. The �gure

shows, for two matrices, the maximum memory required on a processor and the average over
all processors, as a function of the number of processors. We observe that, for varying numbers
of processors, these values are quite similar.

bmw3 2 bmwcra 1

0 8 16 24 32
Number of Processors

0

50

100

150

200

250

Si
ze

 o
f 

to
ta

l s
pa

ce
 (

M
by

te
s)

Maximum
Average

0 4 8 12 16 20 24 28 32
Number of Processors

 0

 100

 200

 300

 400

 500

 600

 700

 800

Si
ze

 o
f 

to
ta

l s
pa

ce
 (

M
by

te
s)

Maximum
Average

Figure 5: Total memory requirement per processor (maximum and average) during factorization

(ND ordering).

Table 13 shows the average size per processor of the main components of the working space
used during the factorization of the matrix bmw3 2. These components are:

� Factors: the space reserved for the factors; a processor does not know after the analysis

phase in which type 2 nodes it will participate, and therefore it reserves enough space to
be able to participate in all type 2 nodes.

� Stack area: the space used for stacking both the contribution blocks and the factors.

� Initial matrix: the space required to store the initial matrix in arrowhead format.

� Communication buffers: the space allocated for both send and receive bu�ers.

� Other: the size of all the remaining workspace allocated per processor.

� Total: the total memory required per processor.

The lines ideal in Table 13 are obtained by dividing the memory requirement on one processor

by the number of processors. By comparing the actual and ideal numbers, we get an idea how
MUMPS scales in terms of memory for some of the components.
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Number of processors 1 2 4 8 16 24 32

Factors 423 211 107 58 35 31 31

ideal - 211 106 53 26 18 13

Stack area 502 294 172 92 51 39 38
ideal - 251 126 63 31 21 16

Initial matrix 69 34.5 17.3 8.9 5.0 4.0 3.5
ideal - 34.5 17.3 8.6 4.3 2.9 2.2

Communication buffers 0 45 34 14 6 6 5

Other 20 20 20 20 20 20 20

Total 590 394 243 135 82 69 67
ideal - 295 147 74 37 25 18

Table 13: Analysis of the memory used during factorization of matrix bmw3 2 (ND ordering).
All sizes are in MBytes per processor.

We see that, even if the total memory (sum of all the local workspaces) increases, the average
memory required per processor signi�cantly decreases up to 24 processors. We also see that

the size for the factors and the stack area are much larger than ideal. Part of this di�erence
is due to parallelism and is unavoidable. Another part, however, is due to an overestimation
of the space required. The main reason for this is that the mapping of the type 2 nodes on

the processors is not known at analysis and each processor can potentially participate in the
elimination of any type 2 node. Therefore, each processor allocates enough space to be able
to participate in all type 2 nodes. The working space that is actually used is smaller and, on
a large number of processors, we could reduce the estimate for both the factors and the stack

area. For example, we have successfully factorized matrix bmw3 2 on 32 processors with a
stack area that is 20% smaller than reported in Table 13.

The average working space used by the communication bu�ers also signi�cantly decreases
up to 16 processors. This is mainly due to type 2 node parallelism where contribution blocks

are split among processors until a minimum granularity is reached. Therefore, when we increase
the number of processors, we decrease (until reaching this minimum granularity) the size of the
contribution blocks sent between processors. Note that on larger problems, the average size

per processor of the communication bu�ers will continue to decrease for a larger number of
processors. We see, as expected, that the line Other does not scale at all since it corresponds
to data arrays of size O(n) that need to be allocated on each process. We see that this space
signi�cantly a�ects the di�erence between Total and ideal, especially for larger numbers of

processors. However, the relative in
uence of this �xed size area will be smaller on large matrices
from 3D simulations and therefore does not a�ect the asymptotic scalability of the algorithm.

The imperfect scalability of the initial matrix storage comes from the duplication of the
original matrix data that is linked to type 2 nodes in the assembly tree. We will study this in

more detail in the remainder of this section. We want to stress, however, that from a user point
of view, all numbers reported in this context should be related to the total memory used by the
MUMPS package which is usually dominated, on large problems, by the size of the stack area.

An alternative to the duplication of data related to type 2 nodes would be to allocate
the original data associated with a frontal matrix to only the master process responsible for
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Matrix Number of processors
1 2 4 8 12 16

oilpan Type 2 nodes 0 4 7 10 17 22
Total entries 1835 1845 1888 2011 2235 2521

bmw7st 1 Type 2 nodes 0 4 7 9 13 21
Total entries 3740 3759 3844 4031 4308 4793

bmw3 2 Type 2 nodes 0 1 3 13 14 21
Total entries 5758 5767 5832 6239 6548 7120

shipsec1.rsa Type 2 nodes 0 0 4 11 19 21
Total entries 3977 3977 4058 4400 4936 5337

shipsec1.rse Type 2 nodes 0 1 4 13 19 27
Total entries 8618 8618 8618 8627 8636 8655

thread.rsa Type 2 nodes 0 3 8 12 23 25
Total entries 2250 2342 2901 4237 6561 8343

thread.rse Type 2 nodes 0 2 8 12 15 25
Total entries 3719 3719 3719 3719 3719 3719

Table 14: The amount of duplication due to type 2 nodes. \Total entries" is the sum

of the number of original matrix entries over all processors (�103). The number of
type 2 nodes is also given.

the type 2 node. During the assembly process, the master process would then be in charge
of redistributing the original data to the slave processes. This strategy introduces extra
communication costs during the assembly of a type 2 node and thus has not been chosen.

With the approach based on duplication, the master process responsible for a type 2 node has
all the 
exibility to choose collaborating processes dynamically since this will not involve any

data migration of the original matrix. However, the extra cost of this strategy is that, based on
the decision during analysis of which nodes will be of type 2, partial duplication of the original

matrix must be performed.
In order to keep all the processors busy, we need to have su�cient node parallelism near the

root of the assembly tree, MUMPS uses a heuristic that increases the number of type 2 nodes with

the number of processors used. The in
uence of the number of processors on the amount of
duplication is shown in Table 14. On a representative subset of our test problems, we show the
total number of type 2 nodes and the sum over all processes of the number of original matrix
entries and duplicates. If there is only one processor, type 2 nodes are not used and no data

is duplicated. Figure 6 shows, for four matrices, the number of original matrix entries that are
duplicated on all processors, relative to the total number of entries in the original matrix.

Since the original data for unassembled matrices are in general assembled earlier in the
assembly tree than the data for the same matrix in assembled format, the number of duplications

is often relatively much smaller with unassembled matrices than with assembled matrices.
Matrix thread.rse (in elemental format) is an extreme example since, even on 16 processors,
type 2 node parallelism does not require any duplication (see Table 14).

To conclude this section, we want to point out that the code scales well in terms of memory
usage. On (virtual) shared memory computers, the total memory (sum of local workspaces over
all the processors) required by MUMPS can sometimes be excessive. Therefore, we are currently
investigating how we can reduce the current overestimates of the local stack areas so we can
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Figure 6: Percentage of entries in the original matrix that are duplicated on all
processors due to type 2 nodes.

reduce the total memory required. A possible solution might be to limit the dynamic scheduling
of a type 2 node (and corresponding data duplication) to a subset of processors.

9 Dynamic scheduling strategies

To avoid the drawback of centralized scheduling on distributed memory computers, we have

implemented distributed dynamic scheduling strategies. We remind the reader that type 1
nodes are statically mapped to processes at analysis time and that only type 2 tasks, which
represent a large part of the computations and of the parallelism of the method, are involved

in the dynamic scheduling strategy.
To be able to choose dynamically the processes that will collaborate in the processing of a

type 2 node, we have designed a two-phase assembly process. Let Inode be a node of type 2 and
let Pmaster be the process to which Inode is initially mapped. In the �rst phase, the (master)

processes to which the sons of Inode are mapped, send symbolic data (integer lists) to Pmaster.
When the structure of the frontal matrix is determined, Pmaster decides a partitioning of the
frontal matrix and chooses the slave processes. It is during this phase that Pmaster will collect

information concerning the load of the other processors to help in its decision process. The
slave processes are informed that a new task has been allocated to them. Pmaster then sends
the description of the distribution of the frontal matrix to all collaborative processes of all
sons of Inode so that they can send their contribution blocks (real values) in pieces directly

to the correct processes involved in the computation of Inode. The assembly process is thus

22



fully parallelized and the maximum size of a message sent between processes is reduced (see
Section 8).

A pool of tasks private to each process is used to implement dynamic scheduling. All tasks

ready to be activated on a given process are stored in the pool of tasks local to the process.
Each process executes the following algorithm:

Algorithm 1
while ( not all nodes processed )
if local pool empty then

blocking receive for a message; process the message

elseif message available then
receive and process message

else

extract work from the pool, and process it

endif
end while

Note that the algorithm gives priority to message reception. The main reasons for this
choice are �rst that the message received might be a source of additional work and parallelism
and second, the sending process might be blocked because its send bu�er is full (see [5]). In

the actual implementation, we use the routine MPI IPROBE to check whether a message is
available.

We have implemented two scheduling strategies. In the �rst strategy, referred to as cyclic
scheduling, the master of a type 2 node does not take into account the load on the other

processors and performs a simple cyclic mapping of the tasks to the processors. In the
second strategy, referred to as (dynamic) 
ops-based scheduling, the master process uses
information on the load of the other processors to allocate type 2 tasks to the least loaded

processors. The load of a processor is de�ned here as the amount of work (
ops) associated
with all the active or ready-to-be-activated tasks. Each process is in charge of maintaining local
information associated with its current load. With a simple remote memory access procedure,
using for example the one-sided communication routine MPI GET included in MPI-2, each

process has access to the load of all other processors when necessary. However, MPI-2 is not

available on our target computers. To overcome this, we have designed a module based only
on symmetric communication tools (MPI asynchronous send and receive). Each process is in
charge of both updating and broadcasting its local load. To control the frequency of these

broadcasts, an updated load is broadcast only if it is signi�cantly di�erent from the last load
broadcast.

When the initial static mapping does not balance the work well, we can expect that the

dynamic 
ops-based scheduling will improve the performance with respect to cyclic scheduling.
Tables 15 and 16 show that signi�cant performance gains can be obtained by using dynamic

ops-based scheduling. On more than 24 processors, the gains are less signi�cant because our
test problems are too small to keep all the processors busy and thus lessen the bene�ts of a good

dynamic scheduling algorithm. We also expect that this feature will improve the behaviour of
the parallel algorithm on a multi-user distributed memory computer.

Another possible use of dynamic scheduling is to improve the memory usage. We have seen,
in Section 8, that the size of the stack area is overestimated. Dynamic scheduling based on
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Matrix & Number of processors
scheduling 16 20 24 28 32

crankseg 2

cyclic 79.1 47.9 40.7 41.3 38.9

ops-based 61.1 45.6 41.9 41.7 40.4

bmw3 2

cyclic 52.4 31.8 26.2 29.2 23.0

ops-based 29.4 27.8 25.1 25.3 22.6

Table 15: Comparison of cyclic and 
ops-based schedulings. Time (in seconds) for

factorization on the IBM SP2 (ND ordering).

Matrix & Number of processors

scheduling 4 8 16

ship 003.rse

cyclic 156.1 119.9 91.9


ops-based 140.3 110.2 83.8

shipsec5.rse

cyclic 113.5 63.1 42.8


ops-based 99.9 61.3 37.0

shipsec8.rse

cyclic 68.3 36.3 29.9


ops-based 65.0 35.0 25.1

Table 16: Comparison of cyclic and 
ops-based schedulings. Time (in seconds) for
factorization on the SGI Origin 2000 (MFR ordering).
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memory load, instead of computational load, could be used to address this issue. Type 2 tasks
can be mapped to the least loaded processor (in terms of memory used in the stack area). The
memory estimation of the size of the stack area can then be based on a static mapping of the

type 2 tasks.

10 Splitting nodes of the assembly tree

During the processing of a parallel type 2 node, both in the symmetric and the unsymmetric
case, the factorization of the pivot rows is performed by a single processor. Other processors

can then help in the update of the rows of the contribution block using a 1D decomposition (as
presented in Section 4). The elimination of the fully summed rows can represent a potential
bottleneck for scalability, especially for frontal matrices with a large fully summed block near
the root of the tree, where type 1 parallelism is limited. To overcome this problem, we subdivide

nodes with large fully summed blocks, as illustrated in Figure 7.
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Figure 7: Tree before and after the subdivision of a frontal matrix with a large pivot block.
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In this �gure, we consider an initial node of size NFRONT with NPIV pivots. We replace
this node by a son node of size NFRONT with NPIVson pivots, and a father node of size
NFRONT�NPIVson, with NPIVfather = NPIV�NPIVson pivots. Note that by splitting a node,

we increase the number of operations for factorization, because we add assembly operations.
Nevertheless, we expect to bene�t from splitting because we increase parallelism.

We experimented with a simple algorithm that postprocesses the tree after the symbolic

factorization. The algorithm considers only nodes near the root of the tree. Splitting large
nodes far from the root, where su�cient tree parallelism can already be exploited, would only
lead to additional assembly and communication costs. A node is considered for splitting only if
its distance to the root, that is, the number edges between the root and the node, is not more

than dmax = log2(NPROCS� 1).
Let Inode be a node in the tree, and d(Inode) the distance of Inode to the root. For all

nodes Inode such that d(Inode) � dmax, we apply the following algorithm.

Algorithm 2 Splitting of a node

if NFRONT� NPIV=2 is large enough then

1. Compute Wmaster = number of 
ops performed by the master of Inode.

2. Compute Wslave = number of 
ops performed by a slave,

assuming that NPROCS� 1 slaves can participate.

3. if Wmaster > Wslave � (1 +
p�max(1;d(Inode)�1)

100 ) then
3.1. Split Inode into nodes son and father so that NPIVson = NPIVfather = NPIV=2.
3.2. Apply Algorithm 2 recursively to nodes son and father.

endif

endif

Algorithm 2 is applied to a node only when NFRONT { NPIV/2 is large enough because
we want to make sure that the son of the split node is of type 2. (The size of the contribution
block of the son will be NFRONT { NPIVson.) A node is split only when the amount of

work for the master (Wmaster) is large relative to the amount of work for a slave (Wslave). To
reduce the amount of splitting further away from the root, we add, at step 3 of the algorithm,
a relative factor to Wslave. This factor depends on a machine dependent parameter p, p > 0,
and increases with the distance of the node from the root. Parameter p allows us to control

the general amount of splitting. Finally, because the algorithm is recursive, we may divide the
initial node into more than two new nodes.

The e�ect of splitting is illustrated in Table 17 on both the symmetric matrix crankseg 2

and the unsymmetric matrix inv-extrusion-1. Ncut corresponds to the number of type 2

nodes cut. A value p = 0 is used as a 
ag to indicate no splitting. Flops-based dynamic
scheduling is used for all runs in this section. The best time obtained for a given number of
processors is indicated in bold font. We see that signi�cant performance improvements (of up to

40% reduction in time) can be obtained by using node splitting. The best timings are generally
obtained for relatively large values of p. More splitting occurs for smaller values of p, but the
corresponding times do not change much.
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crankseg 2

p Number of processors
16 20 24 28 32

0 Time 61.1 45.6 41.9 41.7 40.4

Ncut 0 0 0 0 0

200 Time 37.9 31.4 30.4 29.5 25.4
Ncut 6 7 9 9 12

150 Time 41.8 31.3 31.0 28.9 27.2
Ncut 7 9 10 12 13

100 Time 39.8 32.3 28.4 28.6 26.7
Ncut 9 11 13 14 15

50 Time 36.7 33.6 31.4 29.6 27.4

Ncut 12 13 16 17 21

10 Time 40.8 32.5 29.5 29.8 26.0
Ncut 16 17 21 28 32

inv-extrusion-1

p Number of processors

4 8 16 24 32

0 Time 25.9 16.7 14.6 13.5 14.6

Ncut 0 0 0 0 0

200 Time 25.5 16.7 13.4 12.1 12.4
Ncut 0 1 3 6 12

150 Time 24.9 16.3 13.5 13.4 12.4
Ncut 1 1 4 11 9

100 Time 24.9 16.2 13.7 13.1 13.6
Ncut 1 2 6 19 24

50 Time 24.9 17.0 13.5 13.6 16.6

Ncut 1 3 14 25 35

10 Time 24.9 17.5 13.4 14.5 15.8
Ncut 2 6 17 27 33

Table 17: Time (in seconds) for factorization and number of nodes cut for di�erent values of

parameter p on the IBM SP2. Nested dissection ordering and 
ops-based dynamic scheduling
are used.
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11 Summary

Tables 18 and 19 show results obtained with MUMPS 4.0 using both dynamic scheduling and
node splitting. Default values for the parameters controlling the e�ciency of the package have

been used and therefore the timings do not always correspond to the fastest possible execution
time. The comparison with results presented in Tables 7, 8, and 11 summarizes well the bene�ts
coming from the work presented in Sections 9 and 10.

Matrix Number of processors

1(�) 4 8 16 24 32

oilpan 33 11.1 7.5 5.2 4.8 4.6
b5tuer 108 82.1 51.9 13.4 13.1 10.5
crankseg 1 270 185.3 92.4 27.3 25.6 20.9
crankseg 2 378 - - 41.8 31.0 27.2

bmw7st 1 104 - 29.8 13.7 11.7 11.3
bmw3 2 246 - - 24.1 24.0 20.4
mixing-tank 104 30.8 21.6 16.4 14.7 14.8

inv-extrusion-1 70 24.9 16.3 13.5 13.4 12.4
bbmat 198 255.4 85.2 34.8 32.8 30.9

Table 18: Time (in seconds) for factorization using MUMPS 4.0 with default options
on IBM SP2. ND ordering is used. (�) : uniprocessor CPU or estimated CPU time;
- means swapping or not enough memory.

Matrix Number of processors
1 2 4 8 16

crankseg 2 217 112 66 46 29
bmw7st 1 62 36 25 12 10
bmwcra 1 307 178 82 58 36

bmw3 2 151 96 53 33 18
m t1.rse 92 56 31 19 13
ship 003.rse 392 237 124 108 51
shipsec1.rse 174 125 63 39 25

shipsec5.rse 281 181 103 62 37
shipsec8.rse 187 119 64 35 27
thread.rse 186 125 70 38 24

x104.rse 56 34 19 12 11

Table 19: Time (in seconds) for factorization using MUMPS 4.0 with default options
on SGI Origin 2000. ND or MFR ordering is used.

The largest problem we have solved to date is a symmetric matrix of order 943695 with
more than 39 million entries. The number of entries in the factors is 1:4� 109 and the number
of operations during factorization is 5:9� 1012. On one processor of the SGI Origin 2000, the

factorization phase required 8.9 hours and on two (non-dedicated) processors 6.2 hours were
required. Because of the total amount of memory estimated and reserved by MUMPS, we could
not solve it on more than 2 processors. This issue will have to be addressed to improve the
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scalability on globally addressable memory computers and further analysis will be performed
on purely distributed memory computers with a larger number of processors. Possible solutions
to this have been mentioned in the paper (limited dynamic scheduling and/or memory based

dynamic scheduling) and will be developed in the future.
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