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Abstract
Environmental variability has important influences on mosquito life cycles and understanding the
spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-
borne disease prevention. Meteorological data used for model-based predictions of mosquito
abundance and life cycle dynamics are typically acquired from ground-based weather stations;
however, data availability and completeness are often limited by sparse networks and resource
availability. In contrast, environmental measurements from satellite remote sensing are more
spatially continuous and can be retrieved automatically. This study compared environmental
measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E)
and in situ weather station data to examine their ability to predict the abundance of two important
mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005
to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface
air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models
had better fits and higher forecasting accuracy than models based on weather station data despite
the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air
temperature and surface water fraction were the best predictors of Aedes vexans, whereas air
temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models
were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for
mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics
derived from satellite passive microwave radiometry are suitable for predicting mosquito
population dynamics and can potentially improve the effectiveness of mosquito-borne disease
early warning systems.
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1. Introduction
Vector-borne disease is responsible for more morbidity and mortality in humans than any
other type of infectious disease, and the mosquito is one of the most important vectors
(Gubler, 1998). More than 300 million cases of malaria and 50–100 million cases of dengue
are reported worldwide every year, highlighting the enormous global public health impact of
mosquito-borne diseases (WHO, 2009a, 2009b). West Nile virus (WNV) has become the
most significant mosquito-borne disease in North America after its entry into the continent
in 1999 and currently has the broadest global geographic distribution of any contemporary
vector-borne disease (Hofmeister, 2011). Mosquito-borne diseases are sensitive to various
environmental factors that influence pathogen, vector, and host ecology. Remotely-sensed
environmental monitoring data, primarily in the visible and infrared spectra, have been
widely applied to map and forecast vector-borne diseases at spatial scales ranging from
landscapes to the entire globe (Adimi et al., 2010; Hay & Lennon, 1999; Machault et al.,
2010). In contrast, other types of earth observation data, such as passive microwave
radiometry, have been greatly underutilized in public health applications despite microwave
sensitivity to surface moisture, temperature and vegetation characteristics that may provide
effective surrogates for environmental controls influencing mosquito habitat and life cycle
dynamics. Therefore, the main goal of our study was to assess the potential for modeling
mosquito population dynamics using environmental variables derived from satellite passive
microwave radiometry.

Mosquito-borne disease transmission is closely linked with mosquito behavior and
population dynamics (Bolling et al., 2009; Ebel et al., 2005). In particular, temperature and
humidity influence the larval developmental rate, the length of the gonotrophic cycle,
mosquito survival, and the extrinsic incubation period (EIP); and sufficient rainfall is
necessary to create and maintain larval habitats (Becker et al., 2003). Meteorological data
from weather stations is frequently used to investigate mosquito abundances and disease risk
(Chuang et al., 2011; Kristan et al., 2008; Trawinski & Mackay, 2008). These data provide
direct measurements of near-surface ambient temperature, precipitation, relative humidity,
wind speed, and atmospheric pressure. However, the distribution of weather stations is not
homogeneous and can be very sparse in rural areas and in most developing countries. Data
collection and equipment maintenance is labor intensive and costly resulting in incomplete
data records, particularly in the developing world.

Satellite remote sensing techniques provide an alternative source of environmental data that
are being increasingly applied to assess the risk of vector-borne diseases and vector
population dynamics (Beck et al., 2000; Kalluri et al., 2007). In contrast to weather stations,
remote sensing data provide spatially continuous and automated global measurements of a
diverse range of environmental information. For example, the normalized difference
vegetation index (NDVI) in combination with land surface temperature (LST) has been used
to model the geographic distribution of mosquito species in Africa (Rogers et al., 2002).
MODIS LST and NDVI, in combination with precipitation data derived from the Tropical
Rainfall Monitoring Mission Microwave Imager (TRMM-TMI) have been used to predict
malaria risk in Afghanistan (Adimi et al., 2010). Many other studies have applied land cover
and land use data derived from remote sensing to identify potential mosquito habitats
(Brown et al., 2008; Chuang et al., 2011; Clennon et al., 2010; Masuoka et al., 2003).
Multiple sources of remote sensing data were used to identify negative associations of
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elevation and urbanization and a positive association of LST with West Nile virus infection
rate in mosquitoes in Los Angeles (Liu & Weng, 2012).

A valuable potential application of remote sensing in public health is the development of
early warning systems that forecast potential for disease outbreaks based on measurements
of antecedent environmental risk factors. For example, an experimental vectorial capacity
model has been developed using remotely sensed rainfall and temperature data to forecast
malaria risk in the semiarid and highland regions in Africa (Ceccato et al., 2012). However,
a major limitation of remote sensing is that most spaceborne sensors currently used for
disease modeling and forecasting do not measure the proximal environmental variables that
affect mosquito populations. For example, although mosquitoes are directly influenced by
air temperature, most remotely-sensed temperature products measure the radiometric land
surface (skin) temperature which is highly sensitive to thermal loading due to insolation,
moisture status, and recent weather in addition to the bulk emissivity of the materials within
the scene. As a result, land surface temperature may not be tightly correlated with the near
surface air temperature recorded at weather stations (Vancutsem et al., 2010).

Rainfall estimates are available from satellite products including the TRMM-TMI sensor
(Kummerow et al., 1998), and are frequently used in analyses of mosquito populations and
mosquito-borne disease risk (Adimi et al., 2010). However, both the abundance and the
quality of breeding sites depend on other factors besides precipitation, including the amount
of soil moisture, soil characteristics, topography, land use, and evapotranspiration (Shaman
& Day, 2005). Thus, it is often difficult to develop generalizable relationships between
precipitation, mosquitoes, and mosquito-borne diseases (Landesman et al., 2007; Olson et
al., 2009).

The NDVI provides an indicator of absorption of photosynthetically active radiation (400–
700 nm), which is, in turn, a rough proxy of the amount of chlorophyll at the surface
(Gitelson et al., 2003). Thus, the NDVI indirectly integrates multiple environmental
variables including moisture, temperature, and vegetation structure. Although the NDVI
tends to be a strong correlate of multiple ecological phenomena, they do not map simply to
measures of plant biomass because they are sensitive to the effects of spatial and temporal
variability in weather and climate with spatial variability in vegetative cover. Therefore,
relationships between disease patterns and vegetation indices established in a particular
region are difficult to extrapolate to other areas. To enhance the surveillance and prediction
of mosquito-borne diseases, there is a need to develop remote sensing products that provide
more effective measurements of near-ground temperature, humidity, soil moisture, and
standing water.

A daily global land surface parameter database was developed from the NASA Advanced
Microwave Scanning Radiometer on the Earth Observing System (AMSR-E), and provides
several environmental variables that are potentially relevant to mosquito ecology, including
near-surface air temperature, surface soil moisture, fractional open water cover, and
estimates of vegetation canopy opacity to microwave emissions at three microwave
frequencies (Jones et al., 2010; Jones & Kimball, 2010). Advantages of microwave
radiometry include the ability to estimate global surface air temperature and other
parameters day or night, and under cloudy, non-precipitating, non-frozen conditions.
Compared to remote sensing based on visible and near-infrared wavelengths, lower-
frequency satellite microwave remote sensing is largely insensitive to atmospheric
contamination, resulting in a larger signal-to-noise ratio and the potential for near-daily
global observations of the land surface. The AMSR-E land parameter data offer an
opportunity to improve the environmental modeling and early warning of WNV risk by

Chuang et al. Page 3

Remote Sens Environ. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



testing the effectiveness of new environmental measurements that are directly relevant to the
breeding habitats and population dynamics of mosquitoes.

Our study focused on the population dynamics of two mosquito species that are considered
important in the northern Great Plains region of North America. Culex tarsalis Coquillet is
the major vector of WNV in this region (Bell et al., 2005; Bolling et al., 2007). Aedes
vexans Meigen is a nuisance mosquito and can potentially serve as a bridge vector of WNV
(Turell et al., 2005). Previous research has highlighted the importance of the Northern Great
Plains as a region of consistently high WNV risk and quantified influences of climate and
land cover on spatial patterns of WNV risk (Chuang et al., 2012; Wimberly et al., 2008).
Meteorological variables measured using weather stations have also been identified as
important drivers of mosquito abundance, with Cx. tarsalis most sensitive to temperature
and Ae. vexans most sensitive to rainfall (Chuang et al., 2011).

The present study expanded upon this previous work by hypothesizing that land surface
parameters derived from AMSR-E data would quantify environmental factors relevant to
mosquito abundance and, therefore, improve the accuracy of mosquito abundance models
compared to standard meteorological measurements from weather stations. Major study
objectives included: (1) Compare the environmental models of the population dynamics of
two mosquito species in Sioux Falls, South Dakota using predictor variables from in situ
daily weather station measurements and AMSR-E daily land surface parameter retrievals;
(2) Determine which environmental variables were the most important predictors of each
mosquito species (Culex tarsalis and Aedes vexans); and (3) Validate the selected models
against local population measurements and generate a predicted map of mosquito climatic
suitability across eastern South Dakota.

2. Material and methods
2.1 Study area

Eastern South Dakota is located in the northern Great Plains region of the United States and
is defined as the portion of the state lying east of the Missouri River. Major physiographic
zones include the Coteau des Prairies, James River Valley, and Missouri Coteau. The
regional landscape has generally low relief and glacial deposits have resulted in clay-rich
soils that develop impermeable surfaces that are favorable for temporary pooling of water.
Sioux Falls is the largest city in South Dakota with a population of 153,888 (U.S. Census
2010). It is located at the southern tip of the Couteau des Prairies in the valley of the Big
Sioux River and is surrounded by an agricultural landscape dominated by croplands
dedicated to maize and soy production, pastures, and hayfields.

2.2 Mosquito sampling
Culex tarsalis and Aedes vexans samples were collected by the city of Sioux Falls, which is
the major metropolitan area in south eastern South Dakota (Figure 1). The Sioux Falls
Health Department maintains multiple CDC CO2-baited light traps (John W. Hock
Company, Gainesville, FL) during the mosquito season from May to September. The
numbers of traps varied from 20 to 40 traps from 2005 to 2010 and 17 traps that were
consistently operated during the study period were included in the analysis. Mosquito traps
were set every day from Monday to Thursday and the samples were collected the next day
(Tuesday to Friday). Mosquito species were identified by staff according to their
morphological characteristics. The natural log-transformed (raw trap count+ 1) was applied
to estimate the daily mosquito number per trap night and then the weekly mean results were
summarized from all traps. Similar mosquito collection procedures were used in Brookings
County, approximately 90 km to the north of Sioux Falls (Figure 1). In order to validate the
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final models, we used mosquito data summarized from five traps in Brookings County to
examine whether model predictions could be applied to a different location within the same
region.

2.3 Satellite data
The primary remote sensing data for this study were daily global land surface parameters
derived from AMSR-E (Jones & Kimball, 2010). This product provided daily, global
coverage over the time period from June 19, 2002 through December 31, 2010, at a spatial
resolution of 25 km. Near-surface (~2 m height) air temperature, fractional open water
cover, surficial soil moisture, and vertically integrated atmospheric water vapor were
estimated from brightness temperatures at 6.9, 10.7, and 18.7 GHz frequencies and
horizontal and vertical polarizations under classified non-frozen conditions (Kim et al.,
2011).

The AMSR-E derived air temperatures have been found to be strongly correlated (r>=0.88)
with daily surface air temperature records from Northern Hemisphere weather stations of the
World Meteorological Organization (Jones et al., 2010). A forward model sensitivity
analysis indicated that the retrieval algorithm effectively resolves the vegetation opacity
seasonal cycle over a majority of global vegetated land areas, with mean retrieval relative
error (expressed as a percent of retrieved vegetation opacity) </=30% for vegetation opacity
levels between 0.5–1.5, which effectively covers ~66% of the global vegetated land area.
The expected retrieval error is closer to ~+/−20% within the SD study domain. The
vegetation opacity results were also favorably correlated (p<0.01) with MODIS NDVI/EVI
and LAI parameters, with correlations for global vegetation types characteristic of the SD
domain ranging from 0.6 (cropland/natural veg), 0.6 (grassland) and 0.62 (Savanna) (Jones
et al., 2011).

A forward model sensitivity analysis showed expected AMSR-E fractional water retrieval
uncertainty within +/−4.1% (RMSE spatial classification accuracy), with sufficient accuracy
to resolve regional inundation patterns and seasonal to annual variability (Watts et al.,
unpublished data). This study also indicated that the fractional water maps reflected strong
microwave sensitivity to sub-grid scale open water variability and compared favorably
(0.84<r<0.92) with alternative, static fractional water maps derived from finer scale (30-m
to 250-m resolution) Landsat and combined MODIS and SRTM (MOD44W) data. The same
study also reported favorable temporal correspondence (0.71<r<0.87) between the AMSR-E
fractional inundation retrievals and regional wet/dry cycles inferred from northern basin
discharge records.

The AMSR-E soil moisture retrievals have previously been validated through comparisons
with in situ soil moisture network measurements and antecedent moisture indices derived
from independent satellite (TRMM-TMI) precipitation data. These results show that the soil
moisture retrievals are responsive to rapid precipitation wetting and drying cycles within 2–
5 days in accordance with AMSR-E brightness temperature (10.7 and 6.9 GHz) sensitivity to
surface (<2 cm depth) soil moisture conditions (Jones et al. 2009); soil moisture retrieval
accuracy is reduced at higher vegetation biomass levels, with effective retrieval saturation
above ~1.2–1.4 vegetation opacity, which is consistent with previous AMSR-E soil moisture
validation studies (Njoku and Chan, 2006). Previous intensive validation studies for AMSR-
E soil moisture products derived using four different retrieval algorithms indicate mean bias
adjusted retrieval accuracies of 0.082+/−0.05 (RMSE, m3 m−3) and mean correlation
coefficients of 0.671+/−0.10 based on product comparisons against intensive in situ soil
moisture network observations from four USDA ARS experimental watersheds within the
continental USA (Jackson et al., 2010).
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The major parameters of interest for mosquito-borne disease modeling and forecasting are
the daily air temperature minima and maxima at 2 m height (TA), fractional cover of open
water (FW), surficial soil moisture at ≤ 2 cm soil depth (MV), and microwave vegetation
opacity (TC). In this study, the daily environmental indicators were averaged from the
AMSR-E ascending (afternoon) and descending (morning) overpass images of each single
day and then the weekly averages were calculated from the daily summarized
measurements. To compare the satellite retrievals against weekly mosquito data from Sioux
Falls, the average values of the AMSR-E derived environmental indicators were
summarized from 5, 25-km resolution pixels that covered the entire study area. The
automated data processing of the time series (2005–2010) of satellite images was carried out
using Python 2.6 (Python Software Foundation) scripts and ERSI ArcGIS geoprocessing
functions. All map layers were reprojected to a consistent Albers Equal Area (AEA)
projection.

2.4 Weather station data
Meteorological data was acquired from the first-order weather station (KFSD) at the Sioux
Falls Regional Airport (N 43 °34', W 96°43') in the northern part of the city. The daily
average weather variables, including temperature, relative humidity, and total precipitation
were computed from the hourly measurements. In order to match the temporal scale of the
AMSR-E and mosquito data, weekly summaries were computed and used in the analysis.

2.5 Statistical Analysis
We used statistical models to explore the effects of lagged environmental variables on
temporal patterns of observed mosquito abundance. However, because different time lags of
the same environmental variable are typically highly correlated, severe multicollinearity
problems often arise when classical linear regression approaches are applied. To avoid this
dilemma, we used polynomial distributed lag (PDL) models, which constrain the lagged
parameter estimates to fit polynomial functions so that estimation problems will be reduced
(Almon, 1965). The PDL method was originally proposed in the field of econometrics and
has been applied in epidemiology and environmental health only recently (Hu et al., 2006;
Schwartz, 2000). The equations of the PDL model are

(1)

(2)

where yt is the independent variable at time t, α is the intercept, xt is the independent
variable at lag i, zt indicates a simple covariate, γ is the coefficient of a simple covariate, βi
are the coefficients of the lag values, and μt is an error term. The distribution of lagged
effect is modeled by lag polynomials and the coefficients βi are estimated from the equation
2, where fj(i) is a polynomial function of degree j at the lag length i, and αj is a coefficient
estimated from the data. In the AMSR-E model, the xt included temperature, water fraction,
soil moisture, and vegetation opacity inputs. In the weather station model, the xt included
temperature, relative humidity, and precipitation inputs.

A first-order autoregressive term was also included in the models to account for the
temporal correlations of the mosquito population in consecutive weeks. We also controlled
for seasonality by including a sinusoidal term (sin (2π*week/52)) in the models as a simple
covariate. The dependent variable was the natural log-transformed weekly mosquito
abundance per trap/night computed as the mean abundance of all 17 mosquito traps in the
Sioux Falls study area.
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We fit two sets of models for each of the two mosquito species. The independent variables
in the first set of models were the environmental measurements from the AMSR-E land
surface parameters product (TA, FW, MV, and TC). The independent variables in the
second set of models were derived from the weather station data (temperature, precipitation,
and relative humidity). Each of the independent variables was computed for lags of zero,
one, two, and three weeks. We considered all possible combinations of environmental
variables for both the AMSR-E models (15 models) and the weather station models (7
models). A second-degree polynomial was determined to be sufficient for modeling
variability in the parameters across these lags.

We compared the performance of the models using the corrected Akaike's Information
Criterion (AICc), which penalized for the number of parameters and finite sample size. The
model performance was evaluated by comparing the resulting Akaike weights. A lower
AICc indicates a better fit of the model penalized for the number of model parameters, so we
determined the best model with the minimum AICc among the candidate models. The
Akaike weights provide information about the relative weight of evidence for candidate
models and are a useful performance indicator especially when there are multiple competing
models (Burnham & Anderson, 2002). We used data from 2005 to 2010 for model fitting. A
leave-one-out cross-validation method was used to evaluate prediction accuracy of the best-
fitting models by sequentially dropping one year at a time, fitting the model with the
remaining years, predicting mosquito abundances based on the environmental variables for
the year that was withheld, and computing the root mean square error (RMSE) to evaluate
the prediction accuracy.

The best-fitting AMSR-E models were also used to generate maps of climatic suitability for
both mosquito species across all of eastern SD. To produce these maps, we used the
environmental variables included in the best-fitting AMSR-E models and applied equations
1 and 2 to the weekly variables for every 25 km pixel in South Dakota east of the Missouri
River. We used the Brookings County mosquito survey data from 2008 to 2010 to test the
ability of the best-fitting AMSR-E models to predict temporal variability in mosquito
abundance at a different location within the region. Pearson's correlation coefficients were
calculated to compare model predictions of climatic suitability and observed mosquito
abundances. The first-order autoregressive term was included in our model fitting process;
however, this information would not be available in a scenario where the aim is to predict
mosquito abundance at unsampled locations. For this reason, the first-order autoregressive
term was not included in the model validation process and climatic suitability was
determined only by the environmental variables. All of the statistical models were fit using
the SAS 9.2 using PDLREG procedure (SAS Institute Inc. Cary, NC).

3. Results
The total numbers of Ae. vexans and Cx. tarsalis mosquitoes captured from 2005 to 2010
were 387,277 and 90,273, respectively. The average natural log-transformed abundance
varied from 0.92 to 2.19 per trap night for Ae. vexans, and from 0.42 to 1.21 per trap night
for Cx. tarsalis.

The environmental variables derived from AMSR-E are shown in Figure 2 for eastern South
Dakota. We compared the two sets of images which included four environmental variables
in spring (March to May) and summer (June to August). 2009 was a relatively dry year
(Mar-Aug total rainfall: 171.1 mm) compared to 2010 which was a relatively wet year (Mar-
Aug total rainfall: 236.4 mm). The higher proportion of water fraction and wetter soil
conditions in 2010 were captured by the AMSR-E variables, particularly in the spring
(Figure 2).
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The seasonal and interannual variability in the environmental variables derived from
AMSR-E and the weather station during the study period (2005–2010) are shown in Figure
3. The seasonal patterns of air temperature from the two different data sources were highly
correlated (r=0.94); however, higher air temperatures were obtained from AMSR-E than for
the meteorological station data during the winter. Surface water fraction and soil moisture
from AMSR-E were moderately correlated (r=0.62). There were much weaker correlations
(r<0.25) between moisture variables from AMSR-E (soil moisture or water fraction) and
moisture variables from the Sioux Falls weather station (precipitation and humidity),
emphasizing the fact that these meteorological variables are not necessarily effective
surrogates for surface wetness. The relatively high correlation between vegetation opacity
and temperature (r=0.72) highlighted the close linkage between land surface phenology and
seasonal patterns of air temperature.

For Ae. vexans, the best-fitting AMSR-E model included water fraction and temperature
(AICc=349.41, weight=0.82, Table 1). In this model, the abundance of Aedes vexans was
positively associated with temperature at current and one week lags, and water fraction at
two to three week lags (Table 2). The best fitting weather station model included
temperature and precipitation as independent variables (AICc=356.82, weight=0.47),
although two closely competing models included temperature alone (AICc=357.99,
weight=0.26) and temperature and humidity (AICc=358.42, weight=0.21) (Table 1). In the
best-fitting weather station model, Aedes vexans abundance had significant associations
with temperature at zero and one week lags and precipitation at one, two, and three week
lags. The fit of the best AMSR-E model was better than the fit of the best weather station
model (AICc= 349.41 vs. 356.82, Table 1).

Culex tarsalis showed different associations with environmental variables compared to
Aedes vexans. The best-fitting Cx. tarsalis model included temperature and vegetation
opacity (AICc=189.26, weight=0.63, Table 3). For the weather station models, only
temperature was included in the best-fitting model (AICc=213.02, weight=0.55) although
both temperature and humidity were included in a closely competing model (AICc=214.15,
weight=0.31) (Table 3). The lagged effects of the environmental variables were also slightly
different compared to the Ae. vexans models. The best AMSR-E model has positive effects
of temperature at one and two week lags and vegetation opacity at zero and one week lags
(Table 2). Similar to the results for Ae. vexans, the best AMSR-E model had a better fit than
the best weather station model (AICc=189.26 vs. 213.02, Table 3).

The model comparison exercise showed that the AMSR-E models had better fits than the
weather station models, and the fit of the AMSR-E models was illustrated by graphs of the
observed and fitted values of mosquito abundance (Figure 4). The models for both Ae.
vexans and Cx. tarsalis were able to capture the main seasonal patterns and interannual
variability of mosquito abundance, although the fitted values tended to underestimate the
highest peaks.

3.1 Model validation
The cross validated RMSE was similar for the AMSR-E and weather station models,
although the RMSE values for the AMSR-E model were lower than for the weather station
models in most years (Figure 5). RMSE values were consistently lower for Cx. tarsalis than
for Ae. vexans except for 2010, when the RMSE values for both species were higher than in
other years. The correlation coefficients between predicted and observed values in
Brookings, SD were 0.76 for Ae. vexans and 0.52 for Cx. tarsalis. These model evaluations
demonstrated a strong potential for predicting mosquito populations in future years in Sioux
Falls, and a comparatively modest accuracy for predicting temporal variability in mosquito
abundance at other locations.
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3.2 Climatic Suitability Maps
Maps of climatic suitability in 2010 were generated for both species using the best AMSR-E
models (Figure 6). The weekly time-series risk maps reflected the influences of different
environmental parameters in the models. The effects of temperature were significant in both
models and were reflected in strong seasonal trends of climatic suitability. For example, the
decrease in predicted Cx. tarsalis abundance from week 22 to week 24 reflected cooler
temperatures in early June compared to late May across most of eastern South Dakota.
Water fraction and vegetation opacity captured different spatial patterns of environmental
variability that are reflected in the geographic distributions of the two species.

4. Discussion and Conclusions
This study examined the fit and predictive capabilities of statistical models of Ae. vexans
and Cx. tarsalis abundance using environmental measurements derived from the AMSR-E, a
passive microwave spaceborne sensor, and local weather station data in Sioux Falls, SD.
The results indicated that models based on the AMSR-E products fit the data better than
models based on weather station data and made more accurate predictions. Furthermore, the
distinctive mosquito ecologies of Ae. vexans and Cx. tarsalis were reflected by the different
responses to the environmental variables in the AMSR-E models. This finding emphasizes
that the AMSR-E derived land parameters are not simply proxies of the weather station
measurements but instead provide unique environmental measurements that may be more
useful for predicting mosquito activity.

The environmental parameters derived from the AMSR-E are not limited to meteorological
variables and therefore provide additional information about vegetation characteristics and
surface moisture conditions relevant to vector ecology. For example, Aedes vexans is a well-
known floodwater mosquito: its population increases very quickly in response to
precipitation (Schafer & Lundstrom, 2006). Female Aedes vexans tend to lay eggs in places
that have high potential to be inundated after rainfall, and large numbers of these eggs hatch
immediately after rainfall enlarges the sizes of these temporary pools (Becker et al., 2003).
However, precipitation is not always a reliable indicator for ephemeral water pools, and the
creation of water pools still relies on other factors like evaporative demand, surface drainage
and antecedent soil moisture conditions.

The water fraction detected by the AMSR-E was an effective indicator for Ae. vexans
abundance because it provided a direct measurement of the availability of temporal surface
water bodies produced by rainfall. This finding is similar to the study in Florida which
identified the positive association between the surface wetness and Ae. vexans population
using dynamic hydrology models (Shaman et al., 2002). Air temperature is another
important factor influencing Ae. vexans abundance. In general, larvae of this species will
hatch from the eggs if the ambient temperature exceeds 9 °C and the larvae development
rate will increase with temperature (Becker et al., 2003). Thus, the short term effect of
temperature (lag 0 and lag 1) and slightly longer term effect of water fraction (lag 2 and lag
3) in the AMSR-E model reflected the ecological characteristics of Ae. vexans.

Culex tarsalis has a different ecological niche than Aedes vexans. In the northern Great
Plains, this species tends to be abundant near perennial grasslands and hayfields (Chuang et
al., 2011). In contrast to Ae. vexans, Cx. tarsalis species does not respond rapidly either to
precipitation or the proportion of open water on the ground. Our models demonstrated that
vegetation opacity and temperature are the two most important factors for predicting
population numbers for this species. Vegetation opacity, like NDVI, is a composite indicator
of temperature and moisture conditions which potentially influence mosquito activity and
larval habitats. Many previous studies have used vegetation indices as biological indicators
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of vector activity or disease incidence (Anyamba et al., 2001; Gomez-Elipe et al., 2007; Liu
& Chen, 2006). Other potentially important variables correlated to the ecology of this
species are not included in the models. For instance, the survival probability of
overwintering adults may be determined by the environmental conditions during the
preceding winter, which may affect the initial population size of Cx. tarsalis that emerges in
the spring (Reisen et al., 2008).

Although we have parameterized and applied our models for mosquito species in a relatively
small region of South Dakota (3606 km2), our results also provide insights into how they
might be applied more broadly. The cross-validation of model predictions in Sioux Falls
suggests a strong potential for modeling and forecasting temporal patterns of mosquito
abundance at sites where sufficient data is available model calibration. The maps of climatic
suitability are based on spatial extrapolation of temporal associations with environmental
drivers from a single site, and thus serve mainly as a demonstration of the potential for
modeling spatio-temporal fluctuations in mosquito abundance across larger areas. Future
research efforts will focus on developing risk maps using spatially extensive datasets on
vector abundance and disease incidence.

Globally data availability and automated data retrieval are two of the major advantages of
remote sensing technique so our models can be applied to different geographic regions
subject to vector-borne diseases. In most parts of the world, vector surveillance systems and
ground-level environmental data are usually very limited. Remote sensing techniques can
play a very important role in monitoring and predicting vector activity and disease
incidence. For example, Ae. vexans is also an important vector for Rift Valley Fever (RVF)
in sub-Saharan and North Africa, and a recent study showed the associations between
rainfall and RVF transmission risk in Senegal (Vignolles et al., 2009). Integrating AMSR-E
and similar satellite microwave remote sensing data could enhance the mapping and
forecasting of vector distributions in this region.

A limitation of the AMSR-E data is the relatively coarse spatial resolution (25 km) of the
passive microwave land parameter retrievals. However, this limitation is offset by relatively
high (1–2 days) temporal fidelity and the ability to collect data at night and under cloudy
conditions. These advantages are particularly valuable in tropical regions, which have both
significant cloud cover and high burden of mosquito-borne diseases. Although we can also
do a reasonably good job mapping surface water with VNIR sensors like Landsat and
MODIS, neither of these sensors would be able to provide as much data over time as
AMSR-E under typical weather conditions. Although AMSR-E data cannot be used to
identify the precise spatial locations of mosquito breeding sites, the spatial scale should
suffice to capture climatic anomalies that tend to be manifested at much larger spatial scales.
Another limitation of the satellite derived temperatures is due to retrieval gaps during
classified frozen or snow covered land surface conditions, leading to an apparent warm bias
in winter. Additional gap filling and bias correction using other sources of air temperature
data may need to be incorporated in applications that require accurate temperatures during
winter.

In this study, we have demonstrated the usefulness of multiple environmental indictors
derived from passive microwave radiometry which can provide improved environmental
metrics for mosquito-borne disease applications compared with ground-level weather
stations. The AMSR-E sensor on Aqua ceased effective operations in October 2011 due to a
malfunction of the sensor antenna spin mechanism. However, another AMSR sensor was
launched in May 2012 onboard the JAXA GCOM-W satellite, enabling the continuation of
global land parameter retrievals and future applications for modeling and forecasting
mosquito-borne diseases. In the future, satellite passive microwave radiometry can be
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applied to determine the seasonal timing of environmental indicators at broader geographic
extents and more sophisticated models can be developed for disease forecasting. These data
also could be integrated with other remote sensing sources to take advantage of the high
temporal consistency of observations from passive microwave radiometry and the higher
spatial resolution of other datasets.
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Highlights

> Mosquito abundance was modeled using passive microwave data from the
AMSR-E sensor.

> Models based on AMSR-E were more accurate than models based on
meteorological data.

> Surface water, vegetation opacity, and air temperature predicted mosquito
dynamics.

> Variability in mosquito climatic suitability was mapped in space and over
time.
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Figure 1.
Location of eastern South Dakota and the Sioux Falls study area. The land cover map for
Sioux Falls is from the National Land Cover Dataset 2001.
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Figure 2.
Environmental parameters derived from the AMSR-E data in spring (average of March,
April, and May) and summer (average of June, July, and August) in eastern South Dakota,
2009–2010.
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Figure 3.
Weekly environmental variables derived from AMSR-E (blue line) and the Sioux Falls
Regional Airport weather station (black line) within the Sioux Falls study area, 2005–2010.
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Figure 4.
Comparison of the predicted and observed values of (a) Ae. vexans and (b) Cx. tarsalis
abundance using the best-fitting model based on AMSR-E data
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Figure 5.
Leave-one-out cross-validation of the best models from the two data sources for Ae. vexans
and Cx. tarsalis.

Chuang et al. Page 19

Remote Sens Environ. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Predicted maps of climatic suitability for (a) Ae. vexans and (b) Cx. tarsalis in eastern South
Dakota, 2010.
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Table 2

Parameter estimates for the best-fitting PDL models for Aedes vexans and Culex tarsalis.

Variables
Cx. tarsalis Ae. vexans

Beta S.E. Beta S.E.

AMSR-E

Air Temperature

Lag 0 0.000 0.012 0.1000 0.0188***

Lag 1 0.033 0.009*** 0.0439 0.0136**

Lag 2 0.032 0.009*** 0.0096 0.0141

Lag 3 −0.005 0.012 −0.0030 0.0202

Water Fraction

Lag 0 4.2635 3.4491

Lag 1 8.1982 2.4650***

Lag 2 8.6141 2.5011***

Lag 3 5.5111 2.9945

Vegetation Opacity

Lag 0 3.131 1.381*

Lag 1 2.620 1.116*

Lag 2 0.012 1.151

Lag 3 −4.695 1.344**

Weather Station

Air Temperature

Lag 0 0.0162 0.0104 0.0814 0.0162***

Lag 1 0.0317 0.0080*** 0.0397 0.0122**

Lag 2 0.0294 0.0077*** 0.0093 0.0120

Lag 3 0.0092 0.0108 −0.0099 0.0175

Precipitation

Lag 0 0.0139 0.0167

Lag 1 0.0354 0.0174*

Lag 2 0.0448 0.0176*

Lag 3 0.0420 0.0176*

***
: p-value<0.001.

**
: p-value<0.01,

*
: p-value<0.05
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