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SUMMARY
Identifying predictors of subjective sleepiness and severity of sleep apnea are important yet
challenging goals in sleep medicine. Classification algorithms may provide insights, especially
when large data sets are available. We analyzed polysomnography and clinical features available
from the Sleep Heart Health Study. The Epworth Sleepiness Scale and the apnea–hypopnea index
were the targets of three classifiers: k-nearest neighbor, naive Bayes and support vector machine
algorithms. Classification was based on up to 26 features including demographics,
polysomnogram, and electrocardiogram (spectrogram). Naive Bayes was best for predicting
abnormal Epworth class (0–10 versus 11–24), although prediction was weak: polysomnogram
features had 16.7% sensitivity and 88.8% specificity; spectrogram features had 5.3% sensitivity
and 96.5% specificity. The support vector machine performed similarly to naive Bayes for
predicting sleep apnea class (0–5 versus >5): 59.0% sensitivity and 74.5% specificity using
clinical features and 43.4% sensitivity and 83.5% specificity using spectrographic features
compared with the naive Bayes classifier, which had 57.5% sensitivity and 73.7% specificity
(clinical), and 39.0% sensitivity and 82.7% specificity (spectrogram). Mutual information analysis
confirmed the minimal dependency of the Epworth score on any feature, while the apnea–
hypopnea index showed modest dependency on body mass index, arousal index, oxygenation and
spectrogram features. Apnea classification was modestly accurate, using either clinical or
spectrogram features, and showed lower sensitivity and higher specificity than common sleep
apnea screening tools. Thus, clinical prediction of sleep apnea may be feasible with easily
obtained demographic and electrocardiographic analysis, but the utility of the Epworth is
questioned by its minimal relation to clinical, electrocardiographic, or polysomnographic features.
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INTRODUCTION
Obstructive sleep apnea (OSA) represents an under-diagnosed yet treatable risk factor for
medical morbidities and daytime sleepiness (Epstein et al., 2009; Malhotra and White,
2002). Although screening algorithms are available, the sensitivity and specificity of these
tests render them appropriate mainly for populations with low baseline OSA risk (Bianchi,
2009). The STOP screen (snoring, tiredness, observed apnea and high blood pressure),
validated in a surgical population, had a sensitivity for detecting polysom-nography (PSG)-
confirmed apnea–hypopnea index (AHI) > 5 of 65.6% [confidence interval (CI): 56.4–
73.9%] and a specificity of 60.0% (CI: 45.9–73.0%) (Chung et al., 2008). Adding body mass
index (BMI), age, neck circumference and gender (BANG) improved the sensitivity for AHI
> 5 to 83.6% (CI: 75.8–89.7), although the specificity was lower at 56.4% (CI: 42.3–69.7).
If the STOP–BANG screen were applied in the surgical population used to develop it, with a
approximately 70% pre-test probability of OSA (AHI >5, which was correlated with adverse
surgical outcomes), a negative result would only reduce the disease probability to
approximately 40% (based on the negative likelihood ratio of 0.29). The pretest probability
would have to be under approximately 30% for a negative STOP–BANG screen to reduce
the OSA probability to less than 10%. However, many populations, such as the surgical
population just considered, have high OSA prevalence, such as patients with refractory
epilepsy (33%) (Malow et al., 2000), recent stroke (58%) (Bassetti et al., 2006), refractory
hypertension (63%) (Logan et al., 2001), heart failure (35%) (Sin et al., 1999) or morbid
obesity undergoing bariatric surgery (80%) (Lopez et al., 2008). A recent review of OSA
screening tools reported pooled sensitivity of 72% (CI: 66–78%) and specificity of 61.0%
(CI: 55–67%) for sleep-disorders patients, while pooled analysis of non-sleep-disorders
patients revealed sensitivity of 77% (CI: 73–80%) and specificity of 53.0% (CI: 50–57%)
(Abrishami et al., 2010).

There is ongoing need for better predictors of sleep apnea, as well as better characterization
of the relationship between apnea severity and daytime sleepiness. This goal remains
particularly challenging regarding subjective endpoints such as daytime sleepiness, as
several reports suggest weak or absent correlations of objective polysomnogram (PSG)
parameters with the Epworth Sleepiness Scale (ESS) (Benbadis et al., 1999; Chervin and
Aldrich, 1999; Chervin et al., 1997). For example, analysis of the large Sleep Heart Health
Study database revealed a small but statistically significant relationship between categorical
apnea severity (none, mild, moderate, severe) and ESS (Gottlieb et al., 1999). However,
even in the most severe apnea category [respiratory disturbance index (RDI) > 30], the mean
ESS score (9.3) was within the normal range. Predicting sleepiness may have important
policy implications, especially for management of those with alertness-sensitive occupations
(Tregear et al., 2009).

Two fundamental questions therefore remain unresolved: (i) can routine clinical
characteristics predict apnea severity and (ii) can routine PSG features predict subjective
daytime sleepiness? Because sleep apnea and daytime sleepiness are probably complex
functions of many potentially interacting variables, the task of investigating predictive
factors may be well suited to analysis by classification algorithms (also called ‘machine
learning’ algorithms). These algorithms provide a powerful alternative to traditional
regressions and correlations. Although many varieties of these algorithms exist, the unifying
concept is that they can learn’ statistical patterns in a given data set (the ‘training set’) and
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recognize these patterns in new data (the ‘testing set’). In ‘supervised’ learning, also called
classification, the algorithm uses training set data that have already been assigned to various
classes, such as patient demographic data paired with, for instance, hypertension status
(classified as present or absent). The algorithms attempt to discover patterns in the feature
set (e.g. demographics) associated with the provided class assignments (hypertension or
not), which can then support future classification of new data. In this paper we used three
supervised algorithms, the naive Bayes classifier, k-nearest neighbor (k-NN) and support
vector machine (SVM), to explore whether demographic and PSG features from the Sleep
Heart Health Study (SHHS) could predict the ESS, and whether routine clinical features
could predict the presence of OSA (AHI > 5). In addition, we tested whether novel
electrocardiogram (ECG)–spectrographic features could predict either abnormal ESS or the
presence of OSA (Thomas et al., 2005, 2007, 2009).

MATERIALS AND METHODS
Subjects and study design

The SHHS, a large database of home-based polysomnography (PSG) (Quan et al., 1997).
Category IV Institutional Review Board (BIDMC) approved use of these data, which are
anonymous, and thus we did not require additional consent. The SHHS is a multi-center
longitudinal study of 6441 participants drawn from several ongoing cohort studies, aged ≥40
years, designed to determine the cardiovascular consequences of sleep apnea. The baseline
assessments included an overnight polysomnogram, scored using conventional rules. From
this SHHS database we analyzed a subset of subjects for the current study, which did not
include participants in the Strong Heart Health Study (541 subjects). Wealso excluded
subjects for whom spectrogram data could not be obtained, such as excessive ECG signal
dropout (< 80% of signal available for analysis), atrial fibrillation, ventricular bigeminy,
demand ventricular pacing and biventricular pacing, as these conditions would interfere with
single-lead ECG analysis. From the original SHHS cohort, a total of 5299 subjects were
analyzed in the present analysis. As detailed in the results, the analysis was limited to
subjects with complete data, n = 4647 (see Fig. 1).

Sleep data collection and scoring
In-home polysomnography in the SHHS was performed with 12-lead Compumedics PS
(Melbourne, Australia) equipment. Manual sleep stage scoring was performed at a central
location, with the following stage designations: non-rapid eye movement (NREM) Stages 1–
4, REM sleep and wakefulness. Obstructive apnea was defined as an absence of airflow on
the nasal cannula and a reduction in the oral thermistor signal to < 10% of baseline with
continued respiratory effort, while central apneas were scored when there was no evidence
of respiratory effort. Hypopnea was defined as a 30% reduction in thermistor or respiratory
effort signals. The frequency (per hour of sleep) of all apneas and hypopneas associated with
4% oxygen desaturation is referred to as the AHI. The RDI used here refers to apneas and
hypopneas that were associated with cortical EEG arousal.

ECG-derived sleep spectrogram
Details of the method have been published previously (Thomas et al., 2005). In brief, using a
continuous singlelead ECG from the PSG, we combine information from heart rate
variability and ECG-derived respiration. The latter reflects amplitude variations in the QRS
complex related to respiration. After filtering for outliers and cubic spline resampling at 2
Hz, the cross-spectral power and coherence of these two signals are calculated over a 1024-
sample (8.5 min) window using the fast-Fourier transform applied to three overlapping 512-
sample subwindows within the 1024-sample coherence window. The window is then
advanced by 256 samples (2.1 min) and the computations are repeated.
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For each 1024-sample window the product of the coherence and cross-spectral power is used
to calculate the ratio of coherent cross-power in the low-frequency (0.01–0.1 Hz.) band to
that in the high-frequency (0.1–0.4 Hz.) band. This ratio is used to classify each successive
sampling window as high-frequency coupling (HFC) associated with ‘stable’ sleep or low-
frequency coupling (LFC) associated with ‘unstable’ sleep. Very low-frequency coupling
(VLFC) is associated with wake or REM sleep, and is calculated using the ratio of coherent
cross-power in the 0–0.01 Hz band to the power in the 0.01–0.4 Hz band. A subset of LFC
with especially large amplitude, called elevated-LFC (e-LFC), reflects apneic and non-
apneic sleep fragmentation. It is important to note that the low-frequency component of the
sleep spectrogram is not equivalent to the low-frequency component of the HRV spectrum,
but more specifically represents relatively low-frequency respiratory coupled oscillations in
heart rate. Thus, the frequency bands of the ECG-derived sleep spectrogram are distinct
from the standard HRV bands, although an overlap exists.

Classification
We pre-defined a series of n = 27 features of interest, including two that would be used as
targets for classification: the ESS and the AHI. These features included routinely available
clinical information (age, sex, race, blood pressure, presence of diabetes, hypertension,
coronary disease or angina, BMI, ESS), routine PSG features and the ECG spectrogram
calculated from the sleep study ECG channel.

The k-NN algorithm focuses on local patterns in the feature space defined by these features
for each subject. The value of k determines how local’ the algorithm will restrict its search
for patterns in the feature space. k-NN can thus capture local patterns or clusters in the data
set. As k approaches the number of subjects in the data set, classification occurs according to
the most prevalent class in the entire set.

SVM classifiers use one of several types of kernel functions to specify a hyperplane in
multi-dimensional space in order to perform classification (see http://www.support-vector-
machines.org/for review). We implemented the most commonly used SVM, based on the
radial basis function kernel. We manually tested a range of values for the C, gamma and
epsilon parameters. The C parameter is a penalty term: small C values tend to under-fit the
data (increased errors), while high C values tend towards over-fitting, with asymptotic
approach to the ‘hard margin’ condition as C approaches infinity. The gamma parameter
refers to the smoothness of the boundaries of the hyperplane: higher gamma values allow
more irregular boundaries, which corresponds to an increased risk of over-fitting. The
epsilon parameter represents the ‘insensitivity zone’, or tolerance for classification errors.
Higher epsilon values reduce the accuracy requirement during training, and decrease the
number of support vectors in the classifier (important for avoiding overfitting). For AHI
classification using combined clinical, ECG and PSG features, we tested manually a range
of parameter values: epsilon (0–0.5), C (0.1–100) and gamma (0.01–100). When C and
gamma were both 1 or higher, performance was poor regardless of epsilon (LR values very
close to 1). When gamma was 0.01–0.3, C was 0.1–1 and epsilon was 0–0.2, the
performance varied smoothly over a sensitivity range of approximately 35–65% and
specificity of 65–85%. For ESS, this range of parameters yielded extremely poor
performance (sensitivity approximately 0%, specificity approximately 100%, reflecting the
higher prevalence of normal ESS class).

In our analysis, optimal classification performance involved a number of support vectors
that equaled the number of subjects (i.e. 4647), which suggests that class discrimination was
difficult. The time required to train the SVM classifier ranged from 3 minutes to >2 hour for
a single set of parameters (on a Dell Core 2 Duo laptop), much slower than the naive Bayes
classifier.
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The naive Bayes classifier assumes that any given feature value (such as BMI) for a
particular class (such as AHI > 5) is independent of the other feature values for that class. It
employs a maximum likelihood method of parameter estimation. By assuming independence
of each feature (‘naive’), the N-dimensional problem is effectively reduced to the
computationally more simple circumstance of N one-dimensional problems. Empirically, the
independence assumption does not often affect classification accuracy as much as one would
expect; in fact, naive Bayes classifiers perform unexpectedly well on many real-world
classification problems despite the often unrealistic assumption of feature independence in
classification (Zhang, 2004). To demonstrate further that the independence assumption did
not compromise our results, the data set was considered large enough to also perform non-
naive Bayes classification of AHI and ESS using the ECG features (and possibly large
enough for the clinical features). This method, in fact, reduced to the independence
assumption for the ECG features, as well as the nine clinical features (we did not attempt
this for all features, due to insufficient subjects). In other words, there was no advantage to
considering added information in combining features in this data set (data not shown).

Classification algorithms were implemented using the freely available software RapidMiner
(http://rapid-i.com/content/view/181/190/lang,en/). For retrospective analysis such as this,
the classification algorithms utilized a validation method known as K-fold cross-validation.
The training set is defined here as the subset of the 5299 subjects described above with
complete data (n = 4647). This training set is then divided into K equal subsets (we used K =
20), then K–1 of the subsets are used to train the algorithm, while the remaining one subset
is used to apply the learned classification. This process is repeated K times, such that each
subset is classified once by the algorithm trained on the remaining data; that is, all subjects
participate in training sets multiple times and in the classification test set once. The most
accurate validation results are obtained using the method of ‘stratified sampling’ to obtain
the subsets, whereby the distribution of classes in the subsets is as similar as possible to that
of the entire training set. The results are aggregated into a classification accuracy table
(known as a ‘confusion matrix’), which shows correctly and incorrectly classified subjects,
from which sensitivity, specificity and predictive values can be calculated.

RESULTS
The distribution of clinical features from the SHHS database

The feature set we considered from the SHHS database included routinely available clinical
features [age, sex, race, BMI, systolic and diastolic blood pressure (SBP and DBP), coronary
artery disease (CAD; defined by a history of angina or myocardial infarction), diabetes
(DM) and ESS] and PSG features [AHI, RDI, total sleep time (TST), sleep efficiency,
percentage of stage N1, N2, N3 and REM sleep, arousal index (total, as well as stage
specific: NREM versus REM sleep), percentage of the night below 90% oxygen saturation,
and oxygen nadir in REM and NREM sleep] (Table 1). In addition, we considered novel
ECG-spectrographic features that characterize sleep architecture and sleep-disordered
breathing by the dominant frequency of cardiopulmonary coupling, consisting of a
combination of autonomic heart rate variability and respiration-related changes in R-wave
amplitude (Thomas et al., 2005, 2009, 2010). The ECG-spectrogram allows sleep to be
categorized according to the amount of time spent in states of high-frequency
cardiopulmonary coupling (HFC; associated with stable respiratory rate and tidal volumes in
NREM sleep), LFC (associated with fluctuations in respiratory rate and tidal volumes), e-
LFC (associated with apneas and hypopneas) and VLFC (associated with fluctuations
characteristic of wake and of REM sleep) (Table 1). We restricted analysis to the subjects in
the SHHS who had an adequate ECG signal (see Materials and methods) in order to use the
ECG-spectrographic features, as reported previously (Thomas et al., 2009). Thus, a total of
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27 features were considered, two of which were chosen as targets for algorithm
classification: AHI and ESS.

We divided the features into three categories (clinical, PSG and spectrographic) to represent
types of data that might be considered when making clinical predictions. For example, the
problem of predicting sleep apnea is mainly relevant when considering non-PSG features, as
obtaining the PSG itself includes routine measurement of AHI, so making an AHI prediction
based upon, for instance, sleep stages, would be of mainly academic interest. However,
being able to predict AHI based on purely clinical features or a simple single-lead ECG
would have potential practical utility in screening or risk stratification. Similarly, predicting
ESS based on physiology is of interest for mechanistic reasons; however, predicting it based
on clinical features is less useful because the ESS is itself obtained easily in routine clinical
contact.

Figure 1 shows the distribution of values for routine clinical features. Binned histograms of
the continuous variables demonstrated non-Gaussian distributions in each case within this
data set. For each continuous variable, we found statistically significant deviation from
normality in all cases by two tests (the KS normality test and the D’Agostino and Pearson
normality test). A minority of subjects contained missing values for at least one of the 27
features. Thus, we restricted the data set further for classification to those subjects with
complete data. In order to assess whether subjects with missing data differed systematically
from those with complete data (n = 4647), each histogram is overlaid with the distribution of
subjects in the ‘missing data’ subset (n = 652). Subjects with missing data had similar
distributions to those with complete data in each case, such that removing this subset from
the classification approach is unlikely to confound the results.

Correlation analysis of clinical features in the SHHS database
We calculated non-parametric correlations (Spearman’s rank method) between individual
clinical, PSG and ECG features (discrete/continuous metrics only; n = 22) and the two
variables of interest, ESS and AHI. Small but significant correlations were found between
most features and the ESS (Fig. 2a) and AHI (Fig. 2b). The strongest correlations with ESS
were small, and the only ones with an r-value at or stronger than 0.1 (or −0.1) were the AHI
(0.13), the RDI (0.1), the BMI (0.1), the % time with <90% oxygen saturation (0.1), the
REM oxygen nadir (−0.1) and the NREM oxygen nadir (−0.11). The AHI, in contrast, was
correlated more strongly with several features, and all the features had r-values stronger than
0.1 (or −0.1) (Fig. 2b). Scatterplots are shown for two commonly associated feature-pairs in
Fig. 2c (ESS versus AHI) and Fig. 2d (AHI versus BMI). These plots illustrate the
variability in the data, consistent with the modest correlations, and suggest the potential
utility of more sophisticated classification methods to capture patterns and relationships
between features and the endpoints of ESS and AHI.

Naive Bayes performance in sleepiness classification
A naive Bayes classifier assigns the test data points (subjects) in question based on the
probability of each feature of that subject occurring in a given class (in this study, defined by
AHI and ESS score). In other words, each feature may be considered to have a sensitivity
and specificity with regard to a given class membership. Thus, the combination of
sensitivity, specificity and prior probability of class membership is used by the algorithm
according to Bayes’ theorem. The ‘naive’ aspect refers to the fact that the algorithm assumes
that the features are independent of each other with regard to class association. This
assumption may not reflect the clinical reality of interactions among patient features; we
address this below, by comparing the performance of a non-naive Bayes classifier algorithm.
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We first attempted to classify ESS using the naive Bayes classifier, based on either PSG
features or ECG spectrographic features. ESS values were dichotomized into normal (0–10)
or abnormal (11–24) according to typical clinical criteria. Algorithm performance is shown
in the form of a ‘confusion matrix’, which is of similar structure to the familiar dichotomous
2×2 box illustrating sensitivity, specificity and predictive value of diagnostic test
performance. Sensitivity and specificity values determine the positive and negative
likelihood ratios, according to the following equations: LR(+) = sensitivity/(100 –
specificity) and LR(−) = (100 – sensitivity)/specificity.

The classification accuracy for ESS class was poor regardless of training on PSG or
spectrogram data (Fig. 3-a,b). Using PSG data, the sensitivity for detecting abnormal ESS
was only 16.7%, while the specificity was 88.8%, corresponding to LR(+) of 1.49 and LR(−)

of 0.94. Using the ECG data, sensitivity was lower at 5.3% and specificity higher at 96.5%,
but the LR values were still poor, with LR(+) of 1.51 and LR(−) of 0.98. The closer the LR
values are to 1, the smaller will be the change in disease probability after obtaining the test
result, according to Bayes’ theorem. Finally, we tested whether all available information (26
features) would improve the ESS classification (Fig. 3c), but the results were similar to
those obtained with clinical features only (Fig. 3a).

Interpreting the confusion matrices requires consideration of the proportion of subjects in
each class—that is, the prior probability or prevalence. In the SHHS population used for this
analysis, the prevalence of abnormal ESS was approximately 25%, and thus the PPV of the
algorithm (approximately 34–36%) represents only a small improvement over this
prevalence value. The NPV was nearly identical to the prevalence of normal ESS, as
expected when the sensitivity is so low and the LR(−) is so close to 1. In other words, these
LR values indicated that the classification algorithm, viewed as a diagnostic test, yields little
information beyond that contained in the prior probabilities. The classification performance
was only marginally better if we markedly shifted the cutoff of abnormal ESS (for example,
using 0–1 as normal, or using 0–19 as normal), suggesting that the poor performance was
not simply attributable to the clinical definition of normal ESS as 0–10 (data not shown).
Finally, to assess the possibility that features were not independent (as assumed by the
algorithm), we tested the non-naive analog of this classifier for ECG and clinical features.
The classification method, however, reduced to the naive case, indicating that the learning
algorithm could not find statistical evidence of dependence between any of the features.
Although this does not mean that dependencies do not exist (for example, there are known
dependencies between AHI and RDI), it suggests that combining features does not improve
significantly the performance of the classification algorithm.

The classification performance was worse using the k-NN algorithm, with tested k values of
1, 3, 5 and 10 (data not shown). The poor classification accuracy for ESS with both
algorithms could be either because the features truly do not predict sleepiness class, or
because the ESS is a poor marker of sleepiness, or both. For example, the eight questions of
the ESS are equally weighted, although it is likely that falling asleep while driving is a more
substantial indicator of sleepiness than falling asleep after laying down in the afternoon
explicitly to rest.

Naive Bayes performance in classifying apnea severity
We next turned to prediction of an objectively defined metric, the AHI, using clinical
features and ECG features. We dichotomized all subjects into normal (0–5) or abnormal
(>5), based on the typical clinical criteria for diagnosing OSA. AHI classification was
performed based on clinical features (Fig. 3c) or ECG features (Fig. 3d). Using clinical
features, the sensitivity for AHI >5 was 57.5% and specificity was 73.7%, corresponding to
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LR(+) 2.19 and LR(−) 0.58. Using ECG features, the sensitivity was lower at 39.0%, with a
higher specificity of 82.7%, corresponding to LR(+) 2.25 and LR(−) 0.74.

Although these results demonstrated improved prediction of the more objective endpoint of
AHI compared to the subjective ESS, the LR values are still close to 1, and thus only
modestly adjust disease probability. For example, in the subjects studied here, the
prevalence of AHI >5 was approximately 45%, such that the PPV using either clinical-or
ECG-based classifiers was approximately 65%. The NPV was approximately 68% based on
clinical features and approximately 62% based on ECG features.

Classification was not improved substantially when four groups of AHI were considered (0–
5, 5–15, 15–30 and >30), including individual cutoffs such as <30 versus >30 (data not
shown). As in the case of ESS classification, the k-NN algorithm performance for AHI
classification was worse, for k values of 1, 3, 5 and 10 (data not shown).

Finally, we performed AHI classification using a combination of clinical, spectrographic and
PSG features unrelated to sleep-disordered breathing. We excluded PSG metrics of RDI,
low O2 values and arousal indices because they are tied intimately to the actual calculation
of AHI, and may thus elevate falsely the classification accuracy for trivial reasons. Using
these combined data, the sensitivity for AHI > 5 was 56.0% and specificity was 77.4%,
essentially unchanged from the classification based on clinical features (Fig. 3f).

Predicting sleepiness and sleep apnea with an SVM classifier
We next turned to the SVM classification technique. SVM considers the distribution of class
features in multi-dimensional space and designates a ‘hyperplane’ that allows the best
feature-based separation of the classes of interest. We used a radial basis function kernel,
which is very flexible in the consideration of non-linear feature relationships. ESS
classification was poor with this method, and across a range of parameter combinations the
classification defaulted to the prior probability: that is, the algorithm classified all subjects
into the normal 0–10 class, which was the most prevalent.

Classification of AHI, in contrast, was much better, and performed similarly to the naive
Bayes classifier (Fig. 4) for clinical and spectrographic features. Using clinical features, the
sensitivity was 59.0% and the specificity was 74.5%, with PPV 65.4% and NPV of 69.0%
(Fig. 4a). The corresponding LR(+) was 2.3, and the LR(−) was 0.55. Using spectrographic
features, the sensitivity was 43.4% and the specificity was 83.5%, with PPV 68.3% and
NPV of 64.4% (Fig. 4b). The corresponding LR(+) was 2.6, and the LR(−) was 0.68.
Combining these features with non-respiration PSG features yielded sensitivity of 62.3%
and specificity 78.3%, with PPV 70.1% and NPV of 71.7%. The corresponding LR(+) was
2.9 and the LR(−) was 0.48. The combined data performed slightly better than the naive
Bayes classifier.

The weights assigned to the features used in the ‘combined’ data set are shown in Fig. 4d.
The relative importance of each feature is in general agreement with clinical expectation and
the non-parametric correlation data shown in Fig. 2. For example, the e-LFC, BMI and LFC
features were the strongest in the algorithm. We again note that although the ‘combined’
data improved the classification, the aim of classification is to perform well without the need
for PSG features (which already include the AHI in routine practice), and thus we suggest
that the most practical results are those that classify based on easily obtained clinical or ECG
features.
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Mutual information approach to correlating clinical features with ESS and AHI
Finally, we undertook an information theoretical approach to quantifying the relationship of
various features with the ESS and the AHI. Mutual information is a powerful tool in this
regard because it captures how much statistical information one variable can provide about
another. For the SHHS data, we thus used mutual information to determine the relationship
between clinical, PSG and ECG features and the ESS or AHI. Mutual information is not
limited to linear relationships as in the Pearson’s correlation, or to monotonic relationships
as in the non-parametric Spearman’s rank correlation. Instead, it captures any relationship
(sometimes referred to as dependency) between the variables—without needing to know or
specify what the relationship is. Because this calculation depends to some extent upon the
number of bins used to categorize the ESS and AHI, we normalized the mutual information
value (which, like entropy, is in units of bits) to the entropy of the ESS and the AHI
distributions themselves. In this way, values approaching zero indicate little or no shared
information or dependency, while values approaching 1 indicate a high or exact degree of
dependency (of any kind) between the two variables.

Figure 5a shows the normalized mutual information between ESS and multiple discrete/
continuous features. In every case the value was close to zero, and always < 0.05, indicating
very little shared dependency, consistent with the poor performance of the classification
algorithms for predicting ESS. Note that even the AHI has a nearly zero value, emphasizing
the exceedingly small statistical dependency between the AHI and ESS. Figure 5b shows the
normalized mutual information between the features and the AHI. As expected, there were
several features that showed some degree of dependency. For example, the arousal index
(whether total, in NREM or in REM sleep) showed a small relationship with AHI. The RDI
and the oxygenation metrics also showed dependency, as expected, as the RDI depends in
part on the AHI, which includes oxygen values. Finally, the ECG features showed a
relationship with AHI. This is also expected as the ECG-spectrogram (in particular e-LFC)
has been associated with apnea severity (Thomas et al., 2009).

DISCUSSION
This study used the large standardized SHHS database to determine whether classification
algorithms could predict two relevant endpoints—AHI > 5 and ESS > 10—from collections
of clinical, PSG or cardiorespiratory /autonomic features. The following conclusions can be
drawn from this analysis: (i) performance in predicting ESS was poor, regardless of which
features were used or which ESS threshold was considered; (ii) performance in predicting
AHI > 5 was notably better, but still only modest sensitivity and specificity values were
obtained; (iii) SVM performed slightly better than the naive Bayes classifier for predicting
AHI class (but not ESS class) at the expense of the need for parameter searching and larger
training times; and (iv) mutual information analysis provided a basis for the discrepancy in
prediction accuracy, because ESS values showed essentially no dependency on any features.

Prediction of the Epworth Sleepiness Scale
The ESS requires patients to reflect on the chances of dozing, in general (not for any
particular time frame), for each of eight circumstances. Several studies have suggested little
or no correlation of ESS scores with AHI values or with Multiple Sleep Latency Test
(MSLT) values (Chervin, 2000; Chervin and Aldrich, 1999; Chervin et al., 1997; Gottlieb et
al., 1999), and alternative measures to predict sleepiness have been proposed (Chervin and
Aldrich, 1998; Chervin et al., 2005), as well as alternative analysis techniques of the ESS
(Smith et al., 2008). The inverse question, of whether sleepiness captured by the ESS score
predicts apnea severity (Gottlieb et al., 1999), is also interesting as this subjective complaint
may be among early clues to the clinical suspicion of sleep-disordered breathing. Although
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the ESS score was used in one clinical predictor of OSA (Santaolalla Montoya et al., 2007),
it was not found to be of value in a neural network clinical predictor (Kirby et al., 1999), and
is not used in several other clinical prediction algorithms (Roche et al., 2002; Rowley et al.,
2000; Young et al., 2002). Several considerations may explain the weak classification
performance observed here as well as in prior studies seeking association with PSG and
MSLT findings. The composite measure of equally weighted circumstances in the scale may
obscure otherwise useful information contained in individual responses. Also, the subjective
sense of sleepiness may be impacted by comorbid illness, rate of development of
condition(s) causing sleepiness, tolerance to challenges causing sleepiness (such as OSA)
and /or countermeasures such as caffeine. Moreover, the cutoff value of >10 for abnormal
may not be generally applicable. We addressed this final consideration by choosing various
class cutoff values, such as isolating the extreme values which may be more specific.
However, neither extreme values nor breaking the scores into quartiles provided any
improvement. Together with the mutual information analysis, the results suggest that the
ESS score has little dependency on clinical, PSG or autonomic features, and thus is therefore
inherently difficult to predict. Considering the weak relation of ESS to the objective measure
of sleepiness provided by the MSLT, the results suggest the need for further efforts to
improve quantification of subjective sleepiness.

Prediction of the AHI
Predicting the presence and /or severity of sleep apnea is of great interest from the general
preventative care screening setting, to optimal utilization of laboratory PSG resources, to
specialized settings such as post-operative care units. Screening questionnaires such as the
Berlin questionnaire, the Wisconsin Sleep questionnaire and the STOP–BANG
questionnaire have the advantages of being straightforward, brief and inexpensive to
administer in the ambulatory setting—however, they have only modest sensitivity and
specificity (Abrishami et al., 2010). More sophisticated methods have been used to establish
predictors of OSA based on statistical analysis of various clinical features. The highest
sensitivity and specificity values were obtained in a retrospective neural network classifier
trained on various clinical features (Kirby et al., 1999). The prevalence of OSA (AHI>10) in
this group of 405 patients was nearly 70%, and the network performed well with sensitivity
of 99% and specificity of 80%. Logistic models based on routine clinical features fared less
well, identifying AHI >10 in 370 patients referred for OSA with 76–96% sensitivity and 13–
54% specificity (prevalence of OSA in that cohort was 67%) (Rowley et al., 2000).
Identifying those with AHI >20 had lower sensitivity and higher specificity, and the authors
suggested that the prediction rules might be useful for stratifying patients for split-night
studies, but were not accurate enough for general screening use. Multiple logistic regression
of clinical features available in the SHHS suggested several independent predictors of
AHI>15, including male sex, age, BMI, neck girth, snoring and frequency of reported
nocturnal respiratory pauses (Young et al., 2002), but no explicit prediction model with
sensitivity and specificity for OSA was reported. Roche et al. (2002) developed a multiple
linear regression analysis with reasonable predictive value in their training cohort, but the
model performed poorly on a validation cohort from their center, emphasizing the
importance of validating prediction models prospectively.

Regardless of the method used as a screening test or predictor of OSA, one prevailing
challenge involves the apparently high prevalence of OSA in various clinical populations as
described above. When the pre-test probability of OSA is high, any screening test must have
fairly small LR(−) values in order trust that a negative test result is not simply a false
negative. The 2007 American Academy of Sleep Medicine guidelines for home sleep
monitoring suggest limiting use to those with high pre-test probability of disease (Collop et
al., 2007)—in this population the risk of false negatives should warrant caution. It is worth
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also pointing out that a high sensitivity, considered typically as critical for good ‘rule-out’
power, is not sufficient—the specificity is also critical. For example, any time the sensitivity
and specificity percentages add to 100%, the positive and negative LR values will be 1; that
is, no change in probability with either test result. In our ESS prediction, the high specificity
is therefore tempered by the extremely low sensitivity, and thus the LR(+) remained low,
such that a positive classification provided little adjustment in the probability of abnormal
ESS class.

Although the AHI does not suffer from the subjective complexities of the ESS, it is sensitive
to a variety of factors that may change from night to night within an individual, and thus the
AHI values obtained from single PSG assessments in the SHHS may not reflect each
subject’s ‘true’ apnea index. For example, body position, amount of REM sleep, presence of
intermittent nasal congestion, sleep drive on the particular night of study or other stochastic
fluctuations in apnea severity contribute to this variability, such that a single night of
recording may not constitute an adequate sample (Levendowski et al., 2009). We did not
include other morphometric values that may be associated with severity.

Finally, it is worth mentioning that, due to the nature of the internal cross-validation process
used here, it is difficult to predict how machine learning algorithms might perform in other
data sets. It would be interesting to apply similar classification algorithm approaches to
other data sets, as the SHHS may not be representative of the general population (Lind et al.,
2003). Different populations may be more amenable to classification if, for example, they
contain less clinical heterogeneity. Also, it would be interesting to utilize different endpoints
for sleepiness (such as multiple sleep latency or maintenance of wakefulness testing), and in
the case of apnea severity to measure this on repeated nights, given that this measurement
itself contains some variance not captured by the single night assessments in this data set.
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Figure 1.
Distribution of clinical features in the Sleep Heart Health Study (SHHS) subjects.
Histograms of various clinical features are shown in overlapped bars, where dark grey
represents subjects with at least one missing data point, and light grey representing subjects
with complete data. We studied 27 features in total. Twenty-five are shown in this figure;
arousal index (AI) in non-rapid eye movement (NREM) and REM are not shown, but
demonstrated similar complete versus missing distributions. See Table 1 for description of
features.
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Figure 2.
Spearman’s correlation of clinical features with Epworth Sleepiness Scale (ESS) and apnea–
hypopnea index (AHI). R-values for correlation between ESS (a) and AHI (b) are shown for
the listed clinical features. Scatterplots are shown for representative pairs: ESS versus AHI
(c) and AHI versus body mass index (BMI) (d).
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Figure 3.
Performance of the naive Bayes classifier in predicting Epworth Sleepiness Scale (ESS) and
apnea–hypopnea index (AHI) classes. The prediction power of the naive Bayes classifier
algorithm is shown for ESS based on polysomnogram (PSG) features (a), electrocardiogram
(ECG) features (b) or a combination of all 26 available features (c). The prediction power of
the naive Bayes classifier algorithm is shown for AHI based on clinical features (d), ECG
features (e) or a combination of features (f). For (f), the combination included clinical, ECG
and only those PSG values not related to apnea index [excluded arousal, respiratory
disturbance index (RDI) and oxygen metrics].
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Figure 4.
Performance of the support vector machine (SVM) classifier in predicting apnea–hypopnea
index (AHI) class. The prediction power of the SVM algorithm is shown for AHI based on
clinical features (a), electroencephalogram (ECG) features (b) or a combination of these and
non-respiratory polysomnogram (PSG) features (n = 19 features) (c). The parameters
gamma, C and epsilon were first searched manually across log-units and then more narrow
choices until the shown values were obtained. The parameters used in the data shown were:
gamma 0.1, C 0.2, epsilon 0.2. Normalized weights from the SVM are shown in (d), where
all values are normalized to the largest weight [elevated low-frequency coupling (e-lfc)].
The absolute value of the weights reflect the strength of the relationship between that feature
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and the AHI class. The dotted lines mark the range of weighting values obtained when the
AHI values were scrambled randomly; feature weights within this range are taken to be non-
significant.
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Figure 5.
Mutual information between various features and Epworth Sleepiness Scale (ESS) or apnea–
hypopnea index (AHI). The normalized mutual information is shown for various discrete/
continuous features compared with ESS (a) and AHI (b). Categorical features were not
computed. Note that the vertical axis range is 0–0.05 in (a), while that in (b) is sixfold larger,
0–0.3, emphasizing the striking difference in information between the features and ESS
versus AHI. For both plots, the features are stratified from most to least mutual information.
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Table 1

Sleep Heart Health Study (SHHS) subject features and abbreviations

HFC: high-frequency coupling Electrocardiogram (ECG) spectrographic marker of stable,non-fragmented,
non-rapid eye movement (NREM) sleep

LFC: low-frequency coupling ECG spectrographic marker of unstable NREM sleep

VLFC: very low-frequency coupling ECG spectrographic marker of wakefulness and REM sleep

e-LFC: elevated low-frequency coupling ECG spectrographic marker of fragmentation, typically from sleep apnea

TST: total sleep time Total of any stage of sleep in single night of home PSG

N1–3% NREM stages 1–3, as a percentage of total sleep time

Rapid eye movement (REM)% REM sleep, as a percentage of total sleep time

Eff: sleep efficiency TST divided by time in bed from sleep onset until final awakening

ai_all: arousal index Total number of arousals per hour of sleep

ai_nrem Number of arousals per hour of NREM sleep

ai_rem Number of arousals per hour of REM sleep

Time < 90% O2 % of the TST during which pulse oximetry was < 90%

Low O2-NR Lowest pulse oximetry recording during NREM sleep

Low O2-R Lowest pulse oximetry recording during REM sleep

RDI Respiratory disturbance index (per hour of sleep)

AHI Apnea–hypopnea index (per hour of sleep)

BMI Body mass index (kg−1 m2)

SBP, DBP Systolic and diastolic blood pressure (mm Hg)

ESS Epworth Sleepiness Scale (0–24, where >10 is considered abnormal)

DM Diabetes mellitus (presence or absence)

CAD Coronary artery disease (presence or absence)

Sex Male or female

Age Years

Race Caucasian; African American; Native American/Alaskan; Asian/Pacific Islander;
Hispanic/Mexican American (left to right in Fig. 1)
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