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Abstract

Neural decoding has played a key role in recent advances in brain–machine interfaces (BMIs) by 

converting brain signals into control commands to drive external devices such as robotic limbs or 

computer cursors. A number of practical algorithms including the well-known linear regression 

and Kalman filter models have been used to predict continuous movement in a real-time online 

context using recordings from a chronically implanted multielectrode microarray in the motor 

cortex. Though effective, those models were often based on a strong assumption that the neural 

signal sequence is a stationary process. Recent work, however, indicates that the motor system 

significantly varies over time. To characterize the dynamic relationship between neural signals and 

hand kinematics, here we develop an adaptive approach for each of the linear regression and 

Kalman filter methods. Experimental results show that the new adaptive algorithms generate more 

accurate decoding than the nonadaptive algorithms. To make the new algorithms feasible in an 

online situation, we further develop a recursive update approach and theoretically demonstrate its 

superior efficiency. In particular, the adaptive Kalman filter is shown to be more accurate and 

efficient. We also test the new methods in a simulated BMI experiment where the true hand 

motion is not known. The successful performance suggests these methods could be useful 

decoding algorithms for practical applications.
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I. INTRODUCTION

EMERGING as a highly interdisciplinary field in less than a decade, a great deal of progress has 

been made in cortically controlled brain–machine interfaces (BMIs). The primary goal of 

this field is to restore motor function in the severely disabled by building direct interfaces 

between brain and external devices such as robotic limbs or computer displays [1]–[3]. 
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Recent advances on developing BMIs have demonstrated the feasibility of direct neural 

control using implanted electrodes in non-human primates [4]–[7] as well as in humans [8]. 

These results are based on a variety of linear and nonlinear decoding methods that predict 

motor parameters, such as hand movement direction or hand position, from population 

neuronal activity in the motor cortex and other brain areas. These methods can be 

categorized into two groups. The first group decodes discrete parameters such as movement 

direction and it includes maximum likelihood [9], [10] and maximum a posteriori [11] 

methods. The second group decodes continuous parameters such as position and velocity. 

There are significantly more methods in this group which include population vectors [6], 

[12], multiple linear regression [4], [5], the Kalman filter and it variants [13]–[15], particle 

filters [16], [17], and nonlinear neural network models [7], [18]. Except for particle filters, 

these continuous decoding methods perform in real-time and can be directly used in an 

online BMI environment. In particular, both the linear regression and Kalman filter models 

are preferred due to their simplicity, efficiency, and accuracy [4], [5], [13], [15], [19].

All those methods, however, are often based on a strong assumption that the neural signal 

sequence is a stationary process, and the prediction is performed under a common cross-

validation framework; that is, a certain initial period of recording is taken as training data, 

the parameters of the model are learned, and then a prediction is made on test data that was 

recorded in a later period. However, as we observed during the experiments, the research 

subjects may be engaged in the task with a variable degree of attention. They often have a 

strong motivation to behave in the initial stage, but then gradually lose interest and become 

reluctant to move in the later period of the experiment. A recent study by Kim et al. [20] 

addressed this issue by showing that overall neural activity in motor cortex significantly 

varies over time and therefore should not be regarded as a stationary process. For example, 

the mean firing rates of some neurons keep increasing over time whereas the kinematic 

parameters are fairly consistent. This indicates that as time evolves, the model fitted by the 

fixed training data in the initial period will become more and more inappropriate in 

describing the dynamic relationship between neuronal activity in the brain and the 

movement parameters. To better characterize the relationship between motor behavior and 

the neural signals in motor cortex, it is critical to find an adaptive model which could 

appropriately characterize such variability over time.

Several recent studies addressed the nonstationarity of neural signals in various frameworks. 

Helms Tillery et al. added a supervised learning method which modified the parameters in 

the population vector [21]. They found the new method significantly improved brain-

controlled cursor movement. Gage et al. examined naive coadaptive cortical control in rat 

subjects using a Kalman filter where parameters in the model were adaptively updated over 

time [22]. Kim et al. proposed an estimation approach under multiinput multioutput 

(MIMO) neural network systems [23]. The method successfully tracked the linear 

relationship between neural activity and hand kinematics. Eden et al. provided an adaptive 

point process filtering method using a state-space model [24]. They simulated a neuronal 

ensemble to examine the dynamic representation of movement information and found that 

the algorithm was able to accurately estimate the hand direction [25].
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Focusing on accuracy and efficiency, here we propose an adaptive approach to address the 

nonstationarity by updating the model when new observations are available. In contrast to 

Eden et al. where they built the model on the spike trains, we use a rate code to represent the 

dynamic relationship between neural activity and hand kinematics. We develop the adaptive 

methods based on commonly used linear regression and Kalman filter models as they have 

been preferred in the latest online human neural prosthetic work [8], [13]. To demonstrate 

the effectiveness of the new approach, we need to answer two questions. 1) Can this 

adaptive approach improve the decoding accuracy? 2) Is this approach computationally 

efficient? Here, we update the training data over time and fit the parameters in the new 

model by the least squares [9] and the maximum likelihood estimate [15]. In particular, the 

procedure for the adaptive Kalman filter is similar to that by Gage et al. [22], while the 

parameters are updated in a more efficient way. The decoding accuracy of each adaptive 

approach (linear regression or Kalman filter) is compared to its static version using 

experimental recordings from two macaque monkeys. To address the second question, we 

further develop a recursive approach which makes the estimation more efficient for each 

adaptive method. Both theoretical and practical costs of the recursive approaches are also 

compared to the nonrecursive methods.

II. METHODS

A. Experimental Method

Electrophysiological Recording—The neural data used here were previously recorded 

and have been described elsewhere [26]. Briefly, silicon microelectrode arrays containing 

100 platinized-tip electrodes (1.0 mm electrode length; 400 microns interelectrode 

separation; Cyberkinetics Inc., Salt Lake City, UT) were implanted in the arm area of 

primary motor cortex (MI) in two juvenile male macaque monkeys (Macaca mulatta). 

Signals were filtered, amplified (gain, 5000) and recorded digitally (14-bit) at 30 kHz per 

channel using a Cerebus acquisition system (Cyberkinetics Neurotechnology Systems, Inc., 

Foxborough, MA). Only waveforms (1.6 ms in duration) that crossed a threshold were 

stored and spike-sorted using Offline Sorter (Plexon Inc., Dallas, TX). Single units were 

manually extracted by the contours and templates methods. Interspike interval histograms 

were computed to verify single-unit isolation by ensuring that less than 0.05% of waveforms 

possessed an inter-spike interval less than 1.6 ms. The number of units in each electrode 

varied from one to five. One data set was collected and analyzed for each monkey where the 

number of distinct units was 124 for the first monkey, and 125 for the second one.

Task—The monkeys were operantly trained to perform a random target pursuit (RTP) task 

by moving a cursor to targets via contralateral arm movements. The cursor and a sequence 

of seven targets (target size: 1 cm × 1 cm) appeared on a horizontal projection surface. At 

any one time, a single target appeared at a random location in the workspace, and the 

monkey was required to reach it within 2 s. As soon as the cursor reached the target, the 

target disappeared and a new target appeared in a new, pseudo-random location. After 

reaching the seventh target, the monkey was rewarded with a drop of water or juice. A new 

set of seven random targets was presented on each trial. The majority of trials were 

approximately 4–5 s in duration. In data set one, the first monkey successfully completed 
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550 trials, and in data set two, the second monkey completed 400 trials. We deliberately 

arranged more targets in the boundary area of the rectangle workspace so that sufficient 

hand position data over the full working space were collected. The monkey’s arm rested on 

cushioned arm troughs secured to links of a two-joint robotic arm (KINARM system, see 

[27]) underneath the projection surface. The shoulder joint was abducted 90° such that 

shoulder and elbow flexion and extension movements were made in the horizontal plane. 

The robotic arm contained two motor encoders that directly measured the shoulder and 

elbow joint angles of the monkey’s arm at a sampling rate of 500 Hz. The monkey’s hand 

positions were calculated and recorded using the forward kinematics equations [27]. All of 

the surgical and behavioral procedures were approved by the University of Chicago’s 

Institutional Animal Care and Use Committee (IACUC) and conform to the principles 

outlined in the Guide for the Care and Use of Laboratory Animals (NIH publication no. 

86-23, revised 1985).

Analysis—The firing rates of single cells were computed by counting the number of spikes 

within the previous 50-ms time window. To match time scales, the hand position were 

down-sampled every 50 ms and from this we computed velocity and acceleration using 

simple differencing. Recent studies, including ours, indicated that the averaged optimal 

latency between firing activity in MI and hand movement is around 100 ms [15], [26], [28], 

[29]. Therefore, in all our analysis we compared the neural activity in a 50-ms bin with the 

instantaneous kinematics (position, velocity, and acceleration) of the arm measured 100 ms 

later (i.e., a 2 time bin delay). Note that the hand motions in this task were richer than those 

in the more common stereotyped tasks (e.g. “center-out” task in [6]) in that the motions 

spanned a full range of directions, positions, and speeds (see [29] for details).

For neural coding in motor cortex, we examined the relations between firing activity and 

hand kinematics. We found that the averaged hand positions (averaged within each trial) 

were very consistent from trial to trial, whereas the averaged firing rates of a subpopulation 

(around 50%) of neurons significantly varied over time (see Fig. 1 for two example 

neurons). This suggests it would be inappropriate to describe the neural signals as a 

stationary process. In this paper, we address this dynamic relation by developing adaptive 

models based on the linear regression and Kalman filter.

B. Statistical Methods

Both linear regression and Kalman filter are well-known estimation methods and their 

implementations are standard. They have been successfully used in decoding neural signals 

for both offline and online experiments. Our focus here is on the development of a real-time 

adaptive version of these methods where the model is updated when new observations are 

available and the decoding is performed using each updated model. Note that in practice it is 

not necessary to update the model at each time step as that typically has little effect on the 

model. The effect would be more significant if we update the model with every new trial.

1) Adaptive Linear Regression—The linear regression method has been used in the 

decoding of neural signals in motor cortex, and particularly in closed-loop neural control 
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tasks [4], [5], [7], [8]. It reconstructs hand position as a linear combination of the firing rates 

over some fixed time period; that is

where xk,i is the x-position (or, equivalently, the y-position) in the ith trial at time tk = kΔt(Δt 

= 50 ms), i = 1, 2, …, T, k = N, N + 1, …. a is a constant offset,  is the firing rate of 

neuron c in the ith trial at time tk–j, and  are the filter coefficients. C denotes the 

number of neurons in the data, and T denotes the number of trials. In our experiments, we 

take N = 20 which means the hand position is determined from firing data over 1 s which is 

an appropriate history period [15].

The coefficients  are the parameters in the linear model and can be learned from 

training data using a simple least squares technique [30]. To simplify the notation, we 

denote the coefficients as a matrix , where the 1 + CN rows correspond to 

coefficients in the linear equation and the two columns correspond to x- and y-positions. Let 

K1, K2, …, KT represent the numbers of time bins in the T trials, respectively. For i = M, M 

+ 1,…, T, we use the most recent M trials as the training data. That is, the training data are 

from trial i − M + 1 to i. fi can be estimated by minimizing the cost function

(1)

whose solution is

(2)

where

in which and rj and pj (j = i − M + 1, …, i)are defined as
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and

Calculating the computational cost of each matrix operation, we have that the total cost of 

(2) is O(Σj(Kj − N + 1)(1 + CN)2)+O((1 + CN)3)+O(Σj(Kj − N + 1)(1 + CN)) + O((1 + 

CN)2). In general, the number of time bins in the data, ΣjKj, should have larger magnitude 

than the number of neurons C, the history steps N, and their product CN. Therefore the cost 

can be simplified to O(ΣjKj(1 + CN)2). In many practical situations such as the two datasets 

in this study, all trials have similar time length. That is, Kj’s are approximately equal to a 

constant, K. Therefore, the cost can be further simplified to O(MK(1 + CN)2).

In practical neural data, the number of recorded neurons varies from tens to over a hundred, 

and the filter length N is often chosen from 10 to 30 (0.5–1.5 s). In the two collected 

datasets, the number of bins in each trial is around 100 (5 s). We take M = 80 (in dataset 1) 

and 110 (in dataset 2) to make sure there is enough training data to fit the parameters in the 

model. To facilitate the comparison of computational cost, we list the typical order of each 

parameter in Table I.

Update From Trial i to Trial i + 1—To appropriately represent the temporal variability 

of neural activity we update the encoding model when new observations are available. Such 

update can properly describe the dynamic relationship between neural activity and 

kinematics. The procedure above uses a training set of the M latest trials to estimate fi. Here, 

we study the update at the new trial i + 1. To make the new model describe the current firing 

pattern of neural signals, we keep using the latest measurements of trials to estimate the 

linear model.

If we update the model directly using (2), the computational cost could be expensive. In 

order to make the adaptive method more favorable in neural decoding, we would desire the 

update to be conducted in a more efficient way. In this paper, we propose the following 

recursive approach to update the linear model, where we assume that the old encoding 

model is already obtained using training data from trial i − M + 1 to trial i. Let 

. Then 

the parameters fi+1 can be computed by
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(3)

Equation (3) (assuming Ei+1 and Fi+1 are known) only involves inversion and multiplication 

of two matrices with order (1 + CN), and therefore its computational cost is O((1 + CN)3).

As we have shown in the computation of  above, the cost of computing Ei+1 and Fi+1 is 

O(MK(1 + CN)2) if they are directly calculated by Ri+1 and Pi+1. However, based on the 

definition of Ei+1 and Fi+1, they can be estimated by a recursive scheme; that is

(4)

and

(5)

Equations (4) and (5) involve elementary operations of a few matrices with order (1 + CN), 

and therefore the computational cost is 

. As the cost in (3) is only 

O((1 + CN3), the total cost to compute the filter coefficients is O((1 + CN)3). This is often 

more efficient than the nonrecursive computing cost, O(MK(1 + CN)2) (see Table I).

Recursive Least Squares—Note that the solution in (3) needs to calculate the inverse of 

a large matrix, Ei+1. Such a calculation is inefficient and often ill-conditioned. In adaptive 

filter theory, many stochastic-gradient methods, such as the least mean squares (LMS) and 

recursive least squares (RLS), were introduced to avoid this inverse calculation by various 

recursive techniques [31]. Here, we examine the performance of the RLS method as it also 

obtains the exact solution to (1) (we do not examine the LMS algorithm as it only finds an 

approximation).

The standard RLS algorithm recursively updates the linear model using a new sample point 

at each time step [32]. However, the stepwise update shows very slow variation over time. 

In the current framework, the model is updated by adding a new observed trial and removing 

the trial in the most distant past. Here, we slightly modify the RLS to a trial-wise update as 

follows.

Applying the matrix inversion formula, (A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1D−1, to 

(4), the inverse of Ei+1 can be recursively estimated as

(6)
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Computing the cost of all matrix calculations in (3), (5), and (6), we find the total is 

. As CN is often larger than K (see 

Table I), this cost is more efficient than that in the simple recursive method, where the cost 

is O((1 + CN)3). However, we note that the improvement is only marginal. As the RLS 

method involves more matrix calculations, its efficiency in practical data may not always be 

superior.

2) Adaptive Kalman Filter—The Kalman filter is another efficient decoding system in 

motor cortex, with recent applications to human neural prosthetics [13]. In general, decoding 

involves estimating the state of the hand at the current instant in time; i.e. 

 representing x-position, y-position, x-velocity, y-velocity, x-

acceleration, and y-acceleration in trial i at time tk. The Kalman filter model assumes the 

state is linearly related to the observations  which here represents a C × 1 vector 

containing the firing rates in trial i at time tk for C observed neurons; the state is linearly 

related to itself over time as well. Such assumptions can be described in the following two 

equations:

(7)

(8)

where ,  are the linear coefficient matrices. The noise terms qk,i, wk,i 

are assumed zero mean and normally distributed, i.e. 

. These equations define a linear 

Gaussian model from which the state and its uncertainty can be estimated recursively using 

the Kalman filter algorithm [15].

The parameters Ai, Hi, Wi, Qi in the Kalman filter equations can be estimated from training 

data using the maximum likelihood estimation. As in the linear regression method, the 

training data are chosen from trial i − M + 1 to trial i. Let Zi and Xi denote all firing rates 

and hand kinematics (position, velocity, acceleration) in the training data, respectively. We 

seek the coefficient matrices that maximize the joint distribution p(Zi, Xi), that is

The above maximization has closed-form solutions
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where , and all sums on j are from i − M + 1 to i.

The above equations involve inversions and a few elementary operations such as addition, 

multiplication, and transpose of matrices with size up to Kj × C. Consequently, their 

computational cost is 

Update from Trial i to Trial i + 1—Similar to the adaptive linear regression method, here 

we show how we update the Kalman filter model in a more efficient way. We study the 

update at each new trial i +1, i = M, M + 1, …, T − 1. To make the new model describe the 

current firing pattern of neural signals, we keep using the measurements of latest M trials to 

estimate the parameters Ai+1, Hi+1, Wi+1, Qi+1. That is, the training data is updated by 

adding trial i + 1, and removing trial i = M, … , T, let

where all sums on j are from i − M + 1 to i. Assume {U,V,R,S,T,L}i are obtained in the old 

model, the matrices {U,V,R,S,T,L}i+1 can be recursively computed as follows:

These equations only involve elementary operations of a few matrices with size up to Ki+1 × 

C or Ki−M+1 × C. Their computational cost therefore is 0((Ki−M+1 × C2) ≈ O(KC2). Given 
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that (U, V, R, S, T, L)i+1 are known, the parameters {A, W, H, Q}i+1 can be identified as 

follows:

Likewise, the above equations involve inversions and a few elementary operations of 

matrices with size up to C×C. Therefore, their computational cost is also O(C2). Taking the 

sum of these computations, the overall cost of the adaptive Kalman filter for the model 

updating at each trial is O(KC2).

Note that the above calculations include two matrix inverses,  and . As the sizes of 

these two matrices are both 6 × 6, the computational cost of the inverses is negligible. This 

indicates that the RLS technique in the adaptive linear regression does not benefit the 

computation here. Actually, O(KC2) is the most efficient cost to recursively identify the 

adaptive model. This can be observed by examining one of the coefficient matrices, , 

which has size C × C. It is estimated by algebraic operations of a few matrices which 

include the new firing rate matrix, , whose size is K × C. The operations must include 

the product of K × C a matrix and a C × K matrix, and we know its cost is KC2. This shows 

that O(KC2) is the optimal efficiency.

In summary, the efficiency of each adaptive model is stated in Table II.

We have shown that for each i, the linear regression and Kalman filter models are 

recursively estimated with training data from trial to i − M + 1 to i. The kinematics at trial 

then can be estimated by the linear model and Kalman filter algorithm with observed firing 

rates at trial [15]. As the adaptive models can capture the variability in the neural signals, we 

expect they would result in improvement in the decoding accuracy.

III. RESULTS

A. Adaptive Modeling and Decoding

We performed modeling and decoding in the two datasets that we collected from two 

monkey subjects. As we have shown before, several minutes of training data are typically 

sufficient to identify the parameters in the model using firing activity of 42 neurons [15]. 

Taking into account more neurons in the current datasets (124 and 125, respectively), we 

used the first 80 trials as the training data in dataset 1, and 110 trials in dataset 2, where the 

total durations are around 7–9 min. More detailed study on the number of trials in the 

training data is given below. For non-adaptive linear regression and Kalman filter, we 

identified each model using the first M trials, and then reconstructed trajectories on the 

remaining trials. In contrast, for adaptive models we recursively updated each of them using 
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trial to trial i − M + 1, and then reconstructed the trajectory for trial i + 1, where i = M, M + 

1, … , T − 1.

We have shown that both linear regression and Kalman filter models possess accurate 

decoding performance [15]. Here we conducted the decoding on the two datasets using both 

non-adaptive methods and their adaptive counterparts. The results are summarized in Table 

III, where the mean squared error (MSE) is used to quantitatively measure the averaged 

decoding accuracy over all testing trials. We can see that on average, the MSE using the 

adaptive linear regression is approximately 14% lower than that using the nonadaptive one. 

Likewise, the adaptive Kalman filter performs better than the nonadaptive Kalman filter 

(MSE is approximately 11% lower in the adaptive method). Note that consistent with the 

results in [15], the Kalman filters generate more accurate decoding than the linear regression 

methods. Overall the adaptive Kalman filter has the optimal decoding performance in the 

comparison (see Fig. 2 for two example trials).

Effect of Number of Trials in Training Data—We have used 80 and 110 trials as the 

training data to fit the model in the two datasets, respectively. We here examined the 

appropriateness of those values under the adaptive Kalman filter framework on account of 

its accuracy and efficiency. We varied M from 20 to 160, and measured the stability of the 

identified parameters using the first trials in the model. In particular, the parameters of 

matrix  are of interest in that they describe the dynamic correlation between neural 

activity and hand motion. In a stationary system, these parameters would converge to a 

constant when M gets large. However, as the neural activity does not hold a stationary 

pattern, the parameters will not become stable over time.

To summarize the variation of hundreds of parameters in , we focused on the variation of 

the L2-Norm (the largest singular value) of the matrix ; that is, . It was found that 

 varied following different patterns before and after around 80 trials in dataset 1 and 

around 110 trials in dataset 2 [Fig. 3(a) and (b)]. We regard the variation in the former 

period results from insufficiency of the training data and that in the latter period results from 

the nonstationary neural activity.

Alternatively, we examined the decoding performance in the two datasets when M varies 

from 40 to 140. It was found that in dataset 1 MSE approximately decreases when M varies 

from 40 to 80, and then levels off when gets larger [Fig. 3(c)]. A similar pattern was 

observed in dataset 2 except that the leveling off occurs at 110 [Fig. 3(d)]. These decoding 

results further support our selection of the number of training trials (80 and 110) in the two 

datasets.

Improvement Over Time—We have described that the adaptive decoding approaches are 

motivated by the nonstationarity of neural signals. We update the encoding model using 

firing rates in each new trial and then predict the trajectory in the next. As compared to the 

adaptive methods, the fixed nonadaptive models should be less appropriate over time in 

characterizing the relationship between neural signals and hand kinematics. This suggests 
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that the improvement in decoding accuracy of the adaptive methods would be more 

significant in the later part of the data.

To test this hypothesis, we compared the decoding accuracy over all testing trials by 

calculating the MSE difference between a nonadaptive (Kalman filter and linear regression) 

method and its adaptive version in both datasets (see Fig. 4). To measure the improvement 

over time, we fit the difference with a linear function in each comparison. The slope of the 

fitted line is 0.0022 when comparing the MSE between the nonadaptive and adaptive 

Kalman filters in dataset 1. This indicates that on average, the adaptive method improves the 

MSE accuracy by 0.0022 (cm2) per trial. This result seems insignificant. However, there are 

470 testing trials in dataset 1. The improvement at the end of the data would be 

approximately 470 × 0.0022 = 1.03 (cm2), This is about 13% improvement over the 

averaged MSE and should not be overlooked. The slopes in the other three comparisons are 

0.0041, 0.0053, and 0.0081, respectively. They are considerably larger than the slope in the 

first comparison and therefore would imply more significant improvements. Statistically, the 

significance of these improvements can be justified using a t-test. Under the null hypothesis 

that the slope = 0 (alternative hypothesis: the slope > 0), we can reject the null with 

significance level α = 0.05 for each of the 4 comparisons.

B. Real-Time Performance—The system identification and decoding software was 

written in Matlab (The Mathworks Inc., Natick, MA) and the experiments were run on a 

computer with an Intel CPU 2.00-GHz processor. We examined the practical time cost of 

each method. Here, we only compared the cost in the updating part as the decoding part of 

the nonrecursive and recursive methods are identical.

The result is summarized in Table IV. For example, in dataset 1 the recursive, adaptive 

Kalman filter on average (over all test trials) takes around 5 ms to update the model in each 

trial. This cost is extremely small, almost an order of magnitude less than the 50 ms of the 

time bin size. Note that if we directly estimate the parameters from the data without the 

recursive approach, the cost would be 230 ms. Taking into account the decoding accuracy in 

Table III, the recursive, adaptive Kalman filter is optimal (in terms of accuracy and 

efficiency) among these decoding methods.

The improvement on efficiency can also be observed in the adaptive linear regression 

method. In dataset 1, a nonrecursive, adaptive linear regression takes 49 s to learn the 

parameters in the model. Using the proposed recursive approach or RLS, the time can be 

shortened to 21 s or 42 s. Note that although the RLS method is theoretically more efficient 

than the proposed recursive method, its practical expense is actually higher here. This can 

also be observed in dataset 2.

C. Applications—We have shown that the proposed adaptive methods better capture the 

nonstationary neural activity and possess more accurate decoding. More importantly, the 

adaptive Kalman filter can perform efficiently in real-time and the method could be 

exploited in many neural control experiments [13], [19]. However, in practical prosthetic 

applications, the disabled subjects often do not have the ability to move and therefore there 

would be no “actual” hand motion to train the proposed model. This indicates that the 
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adaptive Kalman filter can not be directly used for a BMI as it relies on the actual hand 

position to fit the model.

To make the method applicable, here we use a simple yet reasonable scheme to generate the 

“actual hand positions.” In Section II, we have described that the behavioral task is a 

goaldriven movement. That is, at each time instant, the monkey’s hand movement is to 

control the cursor to reach a target. In a typical human BMI experiment, the target is often 

known and the patient is trained to imagine using his hand to track a cursor to reach the 

target. The “training data” would be the simultaneously recorded neural activity and 

imaginary hand movement (actually cursor motion) [8]. In our experiment, there are seven 

targets in each movement trial. Motivated by the imaginary movement, we propose to use a 

straight line linking adjacent targets (see one example trial in Fig. 5). The time length of the 

line is assumed to equal the actual time length between the two targets in the recording, and 

the “hand positions” are distributed over the line with a bell-shaped speed profile between 

adjacent targets; that is, the speed is around zero at both ends, while reaches maximum in 

the middle point. We regard these straight lines as the “true” hand trajectories and use them 

in the proposed adaptive models.

Using the same decoding process as described above where the kinematics are known, here 

we conducted the decoding on the “straight-line” datasets using the adaptive Kalman filter. 

As simulated kinematics only describe the main trend of the movement, the correlation 

coefficient (CC) is a more appropriate criterion than the MSE to measure the decoding 

performance. Here, CC is calculated between the estimated and simulated position in x- and 

y-coordinate, respectively [15]. We found that the averaged CC equals (0.82, 0.75) in dataset 

1, and (0.81, 0.64) in dataset 2. These high CCs imply the possibility that the method could 

be utilized when actual hand movement is not available in BMI paradigms such as in 

Hochberg et al. [8]. However, we note that the simulated movement is based on the target 

information, while the target can only be known in a training process. In practical interfaces, 

only neural activity should be used to control external devices.

IV. DISCUSSION

Recent studies indicate that the neuronal firing activity in motor cortex over time is not a 

stationary process. To appropriately describe the dynamic relation between neural activity 

and kinematics, we present an adaptive approach by updating the encoding model when the 

new observations are available. Our work focuses on the development of an adaptive real-

time decoding algorithm. Real-time efficiency is needed to allow the new approaches to be 

feasible for neural prosthetic applications. In this paper, we build our adaptive approaches 

based on the linear regression and Kalman filter methods. Both methods are classical 

estimation systems and are preferred in decoding neural activity in motor cortex for their 

simplicity, accuracy, and successful performance in closed-loop neural control experiments 

[4], [5], [7], [13], [22]. They approximate the relationship between firing activity and hand 

kinematics using linear models. More powerful nonlinear, and non-Gaussian, likelihood 

models can be constructed and used for decoding [14], [16], [17], [33]; the decoding task, 

however, becomes more complex and inefficient, and hence, are not yet appropriate for 

neural prosthetic applications.
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Our approaches follow an online estimation framework. In each recording session, we take 

the first part of data as training data to fit the linear regression or Kalman filter model. The 

model is updated with new observations at each trial, and then is used to decode the neural 

signals in the next trial. We tested the new methods on two datasets and found that they are 

more accurate than the nonadaptive methods. We have further developed a recursive update 

approach and demonstrated its efficiency using theoretical estimation as well as practical 

comparison in the two datasets. In particular, we compared the proposed recursive, adaptive 

linear regression with an RLS method, and found that the RLS method is theoretically 

marginally superior. However, the practical cost in the two datasets show that the proposed 

recursive method is actually more efficient.

Several previous BMI studies have addressed the nonstationarity of neural activity from 

various perspectives. As it is known, population vector, linear regression, and Kalman filter 

are three preferred methods in current BMI applications [2], [4]–[8], [13], [19]. Helms 

Tillery et al. [21] added a supervised learning method which modified the parameters in the 

population vector during a 3-D reaching movement. They found the new method 

significantly improved brain-controlled cursor movement. In contrast, our study focused on 

applications of the other two methods. Gage et al. [22] examined naive coadaptive cortical 

control in rat subjects using a Kalman filter. Our study is similar to this work though there 

are a few important differences. First, Gage’s work directly addressed the online neural 

control, while our study focused on the methods and we theoretically compared the 

efficiency of all models. An online test of the models would be our next step. Second, 

Gage’s work updated the model in a nonrecursive form, while we were very concerned with 

the efficiency and proposed a recursive way to update the model. Third, there are only 16 

electrodes and 1-D “out frequency” in Gage’s work, while we examined over 100 neurons 

and multidimensional hand kinematics. This also indicates why the efficiency is a very 

important factor in our study.

State-space models follow an elegant Bayesian framework and are preferred in current 

neural modeling work [34], [35]. Eden et al. proposed an adaptive point process filtering 

approach to study the plasticity of receptive fields [24]. The method successfully tracked the 

system parameters and state in two simulated data examples. The authors further applied the 

method to motor cortical neurons to track changes in the firing activity of neural ensemble. 

They found the adaptive algorithm was able to accurately estimate the hand direction, but 

not the velocity [25]. Furthermore, Srinivasan et al. developed a general-purposed filter 

design which generalizes commonly used state-space models for various neural signals. The 

investigation on simulated data demonstrates that the unified framework outperforms 

previous approaches [36]. Other neural decoding studies also addressed the nonstationarity 

of neural signals. Kim et al. proposed an adaptive MIMO neural network and demonstrated 

that the method can successfully track the relationship between neural activity and hand 

kinematics [23]. In contrast, our goal has been to build efficient and accurate tools for 

potential BMI applications, and our approach is different from these studies in the following 

sense. First, both linear regression and Kalman filter have been successfully exploited in 

BMIs. Further study on these methods would result in more useful applications. In contrast, 

nonlinear methods generally are more accurate while more complex and difficult to use. 
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Second, our methods directly investigate real neural data instead of simulations, which is 

more relevant in the study of neural coding. Third, recent studies indicate that although 

nonlinear models are theoretically important, they do not significantly outperform linear 

methods in practical motor cortical decoding [4], [33].

From the results, we conclude that the adaptive Kalman filter would be our optimal selection 

for an online decoding method. It only takes a few milliseconds to update the model and has 

the best decoding accuracy. A nonadaptive Kalman filter has been successfully used in a 

neural control experiment [19], and recently be applied to a human neural prosthetic study 

[13]. These studies strongly suggest the adaptive Kalman method could be exploited in BMI 

applications. In contrast, although the adaptive linear regression also improves the decoding 

accuracy, it takes about half a minute for each update. This makes the method difficult to be 

useful in practical interfaces. Note that by comparing the decoding accuracy, we see a fixed 

Kalman filter performs even better than an adaptive linear regression method. This further 

supports the superiority of Kalman filters over linear filters in neural decoding in motor 

cortex [15].

We have shown the adaptive models have better offline decoding than their nonadaptive 

counterparts. However, we should note that the improvement of the decoding accuracy may 

not be essential to the subject’s behavior. The neural modulation in the brain could 

accommodate all these errors, and the improvement of the algorithms could be outweighed 

by adaptive improvements by the brain to control the device. Note that the offline study in 

this paper would not be able to address this issue. In the future, we will test the hypothesis 

by comparing the online neural control performance between nonadaptive and adaptive 

Kalman filters.

V. CONCLUSION

In this paper, we have presented an adaptive version for the commonly used linear 

regression and Kalman filter methods. Analysis of the new methods was performed using 

two datasets involving complex, continuous, hand motions. Neural recordings from two 

monkeys were obtained from chronically implanted microelectrode arrays. Our focus has 

been to provide a more appropriate description of the data and more accurate, efficient 

performance for the neural control of 2-D cursor motion. We have shown that the adaptive 

methods estimated trajectories from firing rates of a population of cells in primary motor 

cortex more accurately than those produced by the static methods. In particular, the adaptive 

Kalman filter has real-time efficiency using a recursive approach.

Our future work will focus on evaluating the performance of the adaptive Kalman filter for 

closed-loop neural control of cursor motion in the continuous movement task. To make the 

method applicable to human trials, we will test the performance when there is no true hand 

motion in the training data. Furthermore, we will explore adaptive versions for more 

complicated nonlinear methods [16], [33]. Such investigations could help better understand 

the nonlinear dynamic relations between the neural activity and kinematics and further 

improve decoding performance.
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Fig. 1. 
Averaged hand positions and firing rates of two example neurons in dataset 1.(a) Smoothed 

averaged x-positions (dashed line) and y-positions (solid line) over all trials. (b) Smoothed 

averaged firing rates of neuron 17 (dashed line) and neuron 41 (solid line) over all trials.
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Fig. 2. 
Reconstruction on two test trials. (a) True hand trajectory (dashed) and reconstruction using 

the adaptive Kalman filter of an example trial from dataset 1. Left column: Trajectories in 

the 2-D working space. Right column: Trajectories by their x and y components. MSE 

denotes the reconstruction accuracy. (b) Same as (a) except for an example trial from dataset 

2.
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Fig. 3. 

(a) Solid line is the estimated  in the Kalman filter model as a function of number of 

training trials in dataset 1. White area denotes the first varying period when more data are 

needed to fit the parameters in the model. Light gray area denotes the second varying period 

when training data are sufficient yet nonstationary over time. Dashed line and dark gray area 

denote the transition region. (b) Same as (a) except for dataset 2. (c) Solid line is MSE in the 

adaptive Kalman filter decoding as a function of number of training trials in dataset 1. This 

function approximately decreases in the white area and then levels off around the dashed 

line and dark gray area. (d) Same as (c) except for dataset 2.

Wu and Hatsopoulos Page 21

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison of MSE between nonadaptive decoding methods and the corresponding 

adaptive methods in the testing trials of the two datasets. (a) Gray line is the MSE difference 

between the nonadaptive Kalman filter and the adaptive Kalman filter in 470 testing trials in 

dataset 1. Black straight line is the optimal linear fit with a positive slope. (b) Same as (a) 

except for the comparison between the nonadaptive and adaptive linear regressions. (c) and 

(d) Same as (a) and (b) except in 290 testing trials in dataset 2.
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Fig. 5. 
A sample movement trial (solid line) and its “straight line” version (dashed line). Hand 

started at the first target (triangle point), and then moved to reach each target sequentially. 

Trial was complete when the seventh target was reached. The “straight line” trajectory is 

constructed by linearly connecting the adjacent targets with a bell-shaped speed profile. The 

dots denote the “straight line” hand positions with 50-ms time step.
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TABLE I

TYPICAL ORDER OF EACH PARAMETER

Parameter Order

K: Number of bins in each trial 102

M: Number of trials in the training data 10 – 102

C: Number of neurons 10 – 102

N: Number of history trials in the linear regression 10
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TABLE II

COMPUTATIONAL COST OF EACH UPDATE METHOD

Method Adaptive LR Adaptive KF

Non-recursive update O(MK(1 + CN)2) O(MKC2)

Recursive update O((1 + CN)3) O(KC2)

RLS O(K(1 + CN)2)
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TABLE III

COMPARISON OF MSE(cm2) IN THE TESTING TRIALS OF THE TWO DATASETS USING EACH METHOD

Decoding Method Dataset 1 Dataset 2

Non-adaptive linear regression 10.7 10.1

Adaptive linear regression 8.8 9.0

Non-adaptive Kalman filter 7.9 8.2

Adaptive Kalman filter 6.8 7.5
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TABLE IV

PRACTICAL COST OF EACH METHOD IN THE TWO DATASETS

Decoding Method Dataset 1 Dataset 2

Non-recursive, adaptive linear regression 49s 68s

Recursive, adaptive linear regression 21s 22s

RLS adaptive linear regression 42s 44s

Non-recursive, adaptive Kalman filter 230ms 390ms

Recursive, adaptive Kalman filter 5ms 6ms
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