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ABSTRACT
Graph Database Management Systems provide an effective
and efficient solution to data storage in current scenarios
where data are more and more connected, graph models are
widely used, and systems need to scale to large data sets.
In this framework, the conversion of the persistent layer of
an application from a relational to a graph data store can
be convenient but it is usually an hard task for database
administrators. In this paper we propose a methodology
to convert a relational to a graph database by exploiting
the schema and the constraints of the source. The approach
supports the translation of conjunctive SQL queries over the
source into graph traversal operations over the target. We
provide experimental results that show the feasibility of our
solution and the efficiency of query answering over the target
database.

1. INTRODUCTION
There are several application domains in which the data

have a natural representation as a graph. This happens for
instance in the Semantic Web, in social and computer net-
works, and in geographic applications. In these contexts,
relational systems are usually unsuitable to store data since
they hardly capture their inherent graph structure. More-
over, and more importantly, graph traversals over highly
connected data require complex join operations, which can
make typical operations on this kind of data inefficient and
applications hard to scale. For these reasons, a new brand
category of data stores, called GDBMSs (Graph Database
Management Systems), is emerging. In GDBMSs data are
natively stored as graphs and queries are expressed in terms
of graph traversal operations. This allows applications to
scale to very large graph-based data sets. In addition, since
GDBMSs do not rely on a rigid schema, they provide a
more flexible solution in scenarios where the organization
of data evolves rapidly. In this framework, the migration
of the persistent layer of an application from a relational to
a graph-based storage system can be very beneficial. This
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task can be however very hard for software engineers and a
tool supporting this activity, possibly in an automatic way,
is clearly essential. Actually, there already exists solutions
to this problem [3, 11], but they usually refer to specific tar-
get data models, such as RDF. Moreover, they usually follow
a naive approach in which, basically, tuples are mapped to
nodes and foreign keys to edges, but this approach does not
take into account the query load and can make graph traver-
sals expensive. Last, but not least, none of them consider
the problem of mapping queries over the source into effi-
cient queries over the target. Yet, this is fundamental to
reduce the impact on the logic layer of the application and
to provide, if needed, a relational view over the target.

In this paper we propose a comprehensive approach to the
automatic migration of databases from relational to graph
storage systems. Specifically, our technique converts a re-
lational database r into a graph database g and maps any
conjunctive query over r into a graph query over g. The
translation takes advantage of the integrity constraints de-
fined over the source and try to minimize the number of
accesses needed to answer queries over the target. Intu-
itively, this is done by storing in the same node data that
likely occur together in query results. We refer to a general
graph data model and a generic query language for graph
databases: this makes the approach independent of the spe-
cific GDBMSs chosen as a target. In order to test the feasi-
bility of our approach, we have developed a complete system
for converting relational to graph databases that implements
the above described technique. A number of experiments
over available data stores have shown that there is no loss
of data in translation, and that queries over the source are
translated into efficient queries over the target.

The rest of the paper is organized as follows. Section 6
discusses related works. In Section 2 we introduce some pre-
liminary notions that are used in Section 3 and in Section 4
to illustrate the data and the query mapping technique, re-
spectively. Finally, Section 5 discusses some experimental
results and Section 7 sketches conclusions and future works.

2. PRELIMINARIES
A graph data model for relational databases. As

usual, we assume that: (i) a relational database schema R
is a set of relation schemas R1(X1), . . . , Rn(Xn), where Ri

is the name of the i−th relation and Xi is the set of its
attributes, and (ii) a relational database r over R is a set of
relations r1, . . . , rn over R1(X1), . . . , Rn(Xn), respectively,
where ri is a set of tuples over Ri(Xi). In the following,
we will underline the attributes of a relation that belong
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Figure 1: An example of relational database

to its primary key and we will denote by Ri.A
fk−→ Rj .B a

foreign key between the attribute A of a relation Ri and the
attribute B of a relation Rj

1. A relational schema R can
be naturally represented in terms of a graph by considering
the keys and the foreign keys of R. This representation will
be used in first step of the conversion of a relational into a
graph database and is defined as follows.

Definition 1 (Relational Schema Graph). Given
a relational schema R, the relational schema graph RG for
R is a directed graph 〈N, E〉 such that: (i) there is a node
A ∈ N for each attribute A of a relation in R and (ii) there
is an edge (Ai, Aj) ∈ E if one of the following holds: (a) Ai

belongs to a key of a relation R in R and Aj is a non-key
attribute of R, (b) Ai, Aj belong to a key of a relation R in
R, (c) Ai, Aj belong to Ri and Rj respectively and there is
a foreign key between Ri.Ai and Rj .Aj.

For instance, let us consider the relational database R for
a social application in Figure 1. Note that this is a typical
application scenario for which relational DBMS are consid-
ered not suited [9]. It involves the following foreign keys:

FR.fuser
fk−−→ US.uid, FR.fblog

fk−−→ BG.bid, BG.admin
fk−−→ US.uid,

CT.cblog
fk−−→ BG.bid, CT.cuser

fk−−→ US.uid, TG.tuser
fk−−→ US.uid

and TG.tcomment
fk−−→ CT.cid. Then, the relational schema

graph for R is depicted in Figure 2. We say that a hub in
a graph is a node having more than one incoming edges, a
source is a node without incoming edges, and a sink is a
node without outcoming edges. For instance, in the graph
in Figure 2 FR.fuser is a source, CT.date is a sink, and US.uid
is a hub. In a relational schema graph we focus our atten-
tion on full schema paths, i.e., paths from a source node to
a sink node. This is because, in relational schema graphs,
they represent logical relationships between concepts of the
database and for this reason they correspond to natural way
to join the tables of the database for answering queries. Re-
ferring to Figure 2, we have the full schema paths shown in
Figure 3.

Graph Databases. Recently, graph database models are
receiving a new interest with the diffusion of GDBMSs. Un-
fortunately, due to diversity of the various systems and of
1Note that, in this paper, we only consider foreign keys over
single attributes. Foreign key over multiple attributes can
be managed by means of references to tuple identifiers.
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FR.fuser FR.fblog

CT.cuser
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CT.msg

CT.date

TG.tuser TG.tcomment

Figure 2: An example of schema graph

sp1 : FR.fuser→ US.uid→ US.uname.
sp2 : FR.fuser→ FR.fblog→ BG.bid→ BG.bname.
sp3 : FR.fuser→ FR.fblog→ BG.bid→ BG.admin

→ US.uid→ US.uname.
sp4 : TG.tuser→ US.uid→ US.uname.
sp5 : TG.tuser→ TG.tcomment→ CT.cid→ CT.msg.
sp6 : TG.tuser→ TG.tcomment→ CT.cid→ CT.date.
sp7 : TG.tuser→ TG.tcomment→ CT.cid→ CT.cblog

→ BG.bid→ BG.bname.
sp8 : TG.tuser→ TG.tcomment→ CT.cid→ CT.cuser

→ US.uid→ US.uname.
sp9 : TG.tuser→ TG.tcomment→ CT.cid→ CT.cblog

→ BG.bid→ BG.admin→ US.uid→ US.uname.

Figure 3: An example of full schema paths

the lack of theoretical studies on them, there is no accepted
definition of data model for GDBMSs and of the features
provided by them. However, almost all the existing systems
exhibit three main characteristics. First of all, at physical
level, a graph database satisfies the so called index-free ad-
jacency property: each node stores information about its
neighbors only and no global index of the connections be-
tween nodes exists. As a result, the traversal of an edge
is basically independent on the size of data. This makes a
GDBMS very efficient to compute local analysis on graph-
based data and makes it suitable in scenarios where data size
increases rapidly. Secondly, a GDBMS stores data by means
of a multigraph , usually called property graph [12], where
every node and every edge is associated with a set of key-
value pairs, called properties. We consider here a simplified
version of a property graph where only nodes have prop-
erties, which represent actual data, while edges have just
labels that represent relationships between data in nodes.

Definition 2 (Graph Database). A graph database
is a multigraph g = (N, E) where every node n ∈ N is asso-
ciated with a set of pairs 〈key, value〉 and every edge e ∈ E
is associated with a label.

An example of graph database is reported in Figure 4: it
represents a portion of the relational database in Figure 1.
Note that a tuple t of over a relation schema R(X) is repre-
sented here by set of pairs 〈A, t[A]〉, where A ∈ X and t[A]
is the restriction of t on A. The third feature common to
GDBMSs is the fact that data is queried using path traversal
operations expressed in some graph-based query language,
as discussed next.

Graph Query Languages. The various proposals of
query languages for graph data models [14] can be clas-



FR.fuser : u01
US.uname : Date

US.uid : u01

FR.fblog : b02
BG.bname : Database
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BG.bid : b02
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Figure 4: An example of property graph

sified into two main categories. The former includes lan-
guages, such as SPARQL and Cypher , in which queries
are expressed as a graphs and query evaluation relies on
graph matching between the query and the database. The
limitation of this approach is that graph matching is very
expensive on large databases [4]. The latter category in-
cludes languages that rely on expressions denoting paths of
the database. Among them, we mention Gremlin , XPath,
and XQuery. These languages, usually called traversal query
languages, are more suitable for an efficient implementation.
For the sake of generality, in this paper we consider an ab-
stract traversal query language that adopts an XQuery-like
syntax. Expressions of this language are based on path ex-
pressions in which, as usual, square parentheses denote con-
ditions on nodes and the slash character (/) denotes the
relationship between a node n and an edge incoming to or
outcoming from n. We will also make use of variables, which
range over paths and are denoted by the prefix $, of the for

construct, to iterate over path expressions, and of the re-

turn construct, to specify the values to return as output.

3. DATA CONVERSION
This section describes our method for converting a rela-

tional database r into a graph database g. Usually, existing
GDBMSs provide ad-hoc importers implementing a naive
approach that creates a node n for each tuple t over a schema
R(X) occurring in r, such that n has a property 〈A, t[A]〉 for
each attribute A ∈ X. Moreover, two nodes n1 and n2 for
a pair of tuples t1 and t2 are connected in g if t1 and t2 are
joined. Conversely, in our approach we try to aggregate val-
ues of different tuples in the same node to speed-up traversal
operations over g. The basic idea is to try to store in the
same node of g data values that are likely to be retrieved to-
gether in the evaluation of queries. Intuitively, these values
are those that belong to joinable tuples, that is, tuples t1 and
t2 over R1 and R2 respectively such that there is a foreign
key constraint between R1.A and R2.B and t1[A] = t2[B].
Referring to Figure 1, t11 and t8 are joinable tuples, since

CT.cblog
fk−→ BG.bid and t11[cblog] = t8[bid]. However, by

just aggregating together joinable tuples we could run the
risk to accumulate a lot of data in each node, which is not
appropriate for graph databases. Therefore, we consider a
data aggregation strategy based on a more restrictive prop-
erty, which we call unifiability. First, we need to introduce
a preliminary notion. We say that an attribute Ai of a rela-
tion R is n2n if: (i) Ai belongs to the key K = {A1, . . . , Ak}
of R and (ii) for each Aj of K there exists a foreign key

constraints R.Aj
fk−→ R′.B for some relation R′ in r differ-

ent from R. Intuitively, a set of n2n attributes of a relation
implement a many-to-many relationship between entities.
Referring again to Figure 1, FR.fuser and FR.fblog are n2n.
Then we say that two data values v1 and v2 are unifiable
in a relational database r if one of the following holds: (i)
there is a tuple t of a relation R in r such that: t[A] = v1,
t[B] = v2, and A and B are not n2n, (ii) there is a pair of
joinable tuples t1 and t2 of relations R1 and R2 respectively

FR.fuser : u01
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Figure 5: An example of graph database

in r such that: t1[A] = v1, t2[B] = v2, and A is n2n, and
(iii) there is a pair of joinable tuples t1 and t2 of relations R1

and R2 respectively in r such that: t1[A] = v1, t2[B] = v2,
A and B are not n2n, and there is other no tuple t3 in r that
is joinable with t2.

While this notion seems quite intricate, we show that it
guarantees a balanced distribution of data among the nodes
of the target graph database and an efficient evaluation of
queries over the target that correspond to joins over the
source. Indeed, our technique aims at identifying and ag-
gregating efficiently unifiable data by exploiting schema and
constraints of the source relational database. Let us consider
the relational database in Figure 1. In this case, data is ag-
gregated in six nodes, as shown in Figure 5. For instance
the node labeled by n1 aggregates data values occurring in
t1, t3, t4 and t5. Similarly the node labeled by n2 involves
data from t9 and t4, while n3 aggregates data values from
t8 and t6. In this paper, the data conversion process takes
into account only the schema of r. Of course, it could be
taken into account a set of “frequent” queries over r. This is
subject of future work.

More in detail, given the relation database r with the
schema R, and the set SP of all full schema paths in the
relational schema graph RG for R, we generate a graph
database g = (N, E) from r as shown in Algorithm 1. Our
procedure iterates on the elements of SP; in each iteration,
a schema path sp = A1 → . . . → Ak is analyzed from
the source A1 to the sink Ak. Let us remind that each
Ai of sp corresponds to an attribute in r. The set of data
values associated to Ai in the tuples of r is the active do-
main of Ai: we will use a primitive getAll(r,Ai) that given
the relational database r and an attribute Ai returns all
the values v associated to Ai in r. The set of elements
{〈Ai, vj〉|vj ∈ getAll(r, Ai)} is the set of properties to asso-
ciate to the nodes of g. In our procedure, when we include
all the active domain of an attribute Ai in the nodes of g,
we say that Ai is visited, i.e. Ai is inserted in a set VS of vis-
ited attributes. Therefore, the analysis of a schema path (i.e.
performed by cond(sp, Ai, VS)) can encounter five cases.
case 1. The current attribute Ai to analyze is a source, i.e.
A1, and both Ai and the following attribute Ai+1, i.e. A2,
are not visited. In this case we are at the beginning of the
migration, and we are creating new nodes from scratch: the
function NewNode is responsible of this task. For instance,
referring to Figure 3, our procedure analyzes sp1 for first;
Ai is FR.fuser while Ai+1 is US.uid. Since Ai is a source
and Ai+1 is not visited, we encounter the case 1. For each



data value in the domain of FR.fuser, that is {u01, u02},
we generate a new node to insert in the set N of g: n1

and n5. Then we include the properties 〈FR.fuser, u01〉 and
〈FR.fuser, u02〉 in n1 and n5, respectively. At the end, the
attribute FR.fuser will be included in VS.

Algorithm 1: Create a graph database g

Input : A relational database r, a set SP of full schema paths
Output: A graph database g
VS← ∅;1
g ← (∅, ∅);2
foreach sp ∈ SP do3

foreach Ai ∈ sp do4
switch cond(sp,Ai,VS) do5

case 1 NewNode(Ai, r, g);6
case 2 NewProperty(Ai, r, g);7
case 3 NewProperty(Ai, sp, r, g);8
case 4 NewNodeEdge(Ai, sp, r, g);9
case 5 NewEdge(Ai, sp, r, g);10

VS← VS ∪ {Ai};11

return g;12

case 2. The current attribute Ai to analyze is a source, i.e.
A1, Ai is not visited but the following attribute Ai+1, i.e.
A2, is visited. In this case there is a foreign key constraint
between Ai and Ai+1, i.e. Ai → Ai+1. Since Ai+1 is visited,
we have a node n ∈ N with the property 〈Ai+1, v〉 where
v ∈ getAll(r, Ai). Therefore for each v ∈ getAll(r, Ai) we
have to retrieve a node n ∈ N (i.e. the label l associated to
n) and to insert a new property 〈Ai, v〉 in n, as performed by
the function NewProperty taking as input Ai, r, and g. For
instance, when we start to analyze sp4 (i.e., sp1, sp2 and sp3

were analyzed), we have Ai = TG.tuser and Ai+1 = US.uid.
TG.tuser is a source and not visited while US.uid is visited,
since encountered in both sp1 and sp3. Therefore we have
the case 2: getAll(r, TG.tuser) is {u02} and n5 is the node
with the property 〈US.uid, u02〉. Finally we insert the new
property 〈TG.tuser, u02〉 in n5.
case 3. In this case the current attribute Ai is not visited
and is not a source neither an hub or a n2n node. Therefore
we have to iterate on all nodes n generated or updated by
analyzing Ai−1. In each node n where there was inserted a
property 〈Ai−1, v1〉, we have to insert also a property 〈Ai, v2〉
as shown in Case 3: we call the function NewProperty taking
as input Ai, sp, r, and g. More in detail we have to under-
stand if Ai and Ai−1 are in the same relation (i.e. we are in
the same tuple) or not (i.e. we are following a foreign key).
In the former we have to extract the data value v2 from the
same tuple containing v1 (line 5) otherwise v2 is v1 (line 6).
We use the function getTable to retrieve the relation R in
r containing a given attribute a (lines 3-4). Finally, we in-
sert the new property (by calling the function INS) in the
node n to which is associated the label label(n), coming from
the iteration on the attribute Ai−1. For instance iterating
on sp1, when Ai is US.uname and Ai−1 is US.uid we have
the case 3: we iterate on the nodes n1 and n5 containing
the properties 〈US.uid, u01〉 and 〈US.uid, u02〉, respectively.
Since US.uname and US.uid are in the same relation User
(US), we extract from US the values associated to US.uname
in the tuples t1 and t2, referring to Figure 1. Then we insert
the properties 〈US.uname, Date〉 and 〈US.uname, Hunt〉 in
n1 and n5, respectively.
case 4. The current attribute Ai is not visited and it is an
hub or a n2n node in g. As in case 3, we have to iterate
on all nodes n generated or updated by analyzing Ai−1.
Differently from case 3, for each data value in the domain
of Ai we generate a new node with label li and we insert the

Case 3: NewProperty(Ai, sp, r, g)

Ai−1 ← sp[i− 1];1
foreach node n in g such that n contains a property2
〈Ai−1, v1〉 do

R1 ← getTable(r, Ai−1);3
R2 ← getTable(r, Ai);4
if R1 = R2 then v2 ← πAi

σAi−1=v1 (R1);5

else v2 ← v1;6
INS(g, label(n), Ai, v2);7

property 〈Ai, v〉 in the node. Then we link the node with
label lj generated or updated analyzing Ai−1 to the node
with label li just generated. Given the attribute Ai−1 and
the relation R which Ai−1 belongs to, the label le assigned
to the new edge is built by the concatenation of R and Ai−1.
This task is performed by the function NewNodeEdge. Let
us consider the schema path sp2 and the attribute FR.fblog
as current attribute Ai to analyze. It is not visited and a
n2n node in g. In the previous iteration, the analysis of
FR.fuser (i.e. Ai−1) updated the node with label n1. In the
current iteration, we have to generate three new nodes, i.e.
with labels n2, n3 and n6, and to include the properties
〈FR.fblog, b12〉, 〈FR.fblog, b02〉, 〈FR.fblog, b03〉, repsectively,
since getAll(r, FR.fblog) is {b01, b02, b03}. Finally given the
label le equal to FOLLOWER FUSER, i.e. FR.fuser belongs
to the relation Follower, we generate the edges with label le
between n1 and n2, n1 and n3, n1 and n6.

Case 5: NewEdge(Ai, sp, r, g)

Ai−1 ← sp[i− 1];1
foreach node n in g such that n contains a property2
〈Ai−1, v1〉 do

R1 ← getTable(r, Ai−1); R2 ← getTable(r, Ai);3
if R1 = R2 then V ← πAi

σAi−1=v1 (R1);4

else V ← {v1};5
foreach v ∈ V do6

li ← getNode(g, Ai, v);7
if li 6= NIL then le ← build(r, Ai−1);8
newEdge(g, lj , li, le);

case 5. The last case occurs when we are analyzing the
last schema paths and in particular the last attributes in
a schema path. In this case we link two nodes generated
in the previous iterations. The current attribute Ai is (i)
not visited and n2n or (ii) visited and an hub. Moreover
there exists a node in g with a property 〈Ai, v〉, and the
attribute Ai−1 is not a source. As shown in Case 3, our
procedure iterates on the nodes with label lj built or up-
dated analyzing Ai−1 and retrieves the node with label li
to link it with the node with label lj . We have to discern
if Ai−1 and Ai are in the same relation or not. Given R1

and R2 the relations which Ai−1 and Ai belong to, respec-
tively, if R1 and R2 are the same then Ai−1 and Ai are in
the same tuple and we extract all data values V associated
to Ai in the tuple (line 4). Otherwise we are considering
a foreign key constraint between Ai−1 and Ai: V is {v1}
(line 5), where v1 is the value in the property 〈Ai−1, v1〉
included in the node with label lj . Finally for each data
value v in V we retrieve the node with label li including the
property 〈Ai, v〉 and, if it exists, we link the node with label
lj to the node with label li (lines 6-8). Let us consider the
schema path sp3 and US.uid as current attribute Ai. Since
in the previous iteration the procedure analyzed sp1, US.uid



BG.bname : Information Systems US.uname : ?
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Figure 6: The query template for Q’.

is visited now; moreover US.uid is an hub and the previous
attribute BG.admin is not a source. We have the case 5:
since the nodes with labels n1 and n2 contain the properties
〈US.uid, u01〉 and 〈BG.admin, u01〉, respectively, a new edge
with label BLOG ADMIN is built between that nodes (i.e.
similarly between the nodes with labels n3 and n5).

4. QUERY TRANSLATION
Our mechanism for translating conjunctive (that is, select-

join-projection) queries, expressed in SQL, into path traver-
sal operations over the graph database exploits the schema of
the source relational. For the sake of simplicity, we consider
an intermediate step in which we map the SQL query in a
graph-based internal structure, that we call query template
(QT for short). Basically, a QT denotes all the sub-graphs
of the target graph database that include the result of the
query. A QT is then translated into a path traversal query
(see Section 2). Given a query Q the construction of a QT
proceeds as follows.

1. We built a minimal set SP of full schema paths such
that for each join condition Ri.Ai = Rj .Aj occurring
in Q, an edge (Ri.Ai, Rj .Aj) is contained in at least
one sp in SP;

2. If there is an attribute in a selection condition (i.e.,
Ri.Ai = c) that does not occur in any full schema
path in SP, another full schema path sp that includes
both Ai and an attribute in a full schema path sp′ in
SP is added to SP;

3. We built a relational database rQ made of: (i) a set
of tables Ri(Ai) having c as instance for each selection
condition Ri.Ak = c, and (ii) a set of tables Rj(Aj)
having the special symbol ? as instance for each at-
tribute Rj .Aj in the SELECT clause of Q;

4. QT is the graph database obtained by applying the
data conversion procedure illustrated in Section 3 over
SP and rQ.

We explain our technique by the following query example Q′.

select US.uname
from User US, Tag TG, Blog BG, Comment CT
where (BG.bid = CT.cblog) and(CT.cid = TG.tcomment) and

(TG.tuser = US.uid) and(BG.bname = ’Inf. Systems’)

On the relational database of Figure 1, Q′ selects all the
users that have left a comment on the Information Systems
blog. As said above, referring to Figure 3, (1) a minimal
set of full schema paths that contain all the join conditions
of Q′ is SP1 = {sp4, sp7} is built. (2) Since from the se-
lection condition (BG.bname = ’Information Systems’) the
attribute BG.bname is already occurring in sp7 we do not
have to include more paths in SP1. (3) From the selection
condition (BG.bname = ’Information Systems’) and the at-
tribute US.uname of the SELECT clause, we build rQ′ =
{BLOG(bname), USER(uname)}, where BLOG(bname) con-

tains one tuple with the data value Information Systems
and USER(uname) contains one tuple with the special sym-
bol ?, respectively, as instance. (4) From SP1 and rQ′ , we
obtain the query template QT ′ shown in Figure 6. It is

straightforward to map QT ′ into a XQuery-like path traver-
sal expression QPT ′ as follows.

for $x in /[BG.bname=’Informative Systems’],
$y in $x/BLOG ADMIN/*

return $y/US.uname
We start from the node with the property 〈 BG.bname,

Information Systems 〉. Moreover, in the condition we ex-
press the fact that this node reaches another node through
the link BLOG ADMIN. Finally, from these nodes we return
the values of the property with key US.uname (i.e. in our
example we have only Hunt).

5. EXPERIMENTAL RESULTS
We have developed the techniques described in this paper

in a Java system called R2G. Experiments were conducted
on a dual core 2.66GHz Intel Xeon, running Linux RedHat,
with 4 GB of memory and a 2-disk 1Tbyte striped RAID
array. We considered real datasets with different sizes (i.e.
number of tuples). In particular we used Mondial (17.115
tuples and 28 relations) and two ideal counterpoints (due
to the larger size), IMDb (1.673.074 tuples in 6 relations)
and Wikipedia (200.000 tuples in 6 relations), as described
in [6]. The authors in [6] defined a benchmark of 50 keyword
search queries for each dataset. We used the tool in [7] to
generate SQL queries from the keyword-based queries de-
fined in [6].

Dataset Neo4J OrientDB R2G N R2G O

Mondial 7.4 sec 5.3 sec 13.9 sec 9.3 sec
Wikipedia 70.7 sec 66.5 sec 161.5 sec 148.7 sec
IMDb 8.1 min 10.2 min 16.2 min 22.1 min

Table 1: Performance of translations from r to g

R2G has been embedded and tested in two different
GDBMSs: Neo4J and OrientDB. In the following we de-
note with R2G N and R2G O the implementations of R2G
in Neo4J and OrientDB, respectively. First of all we evalu-
ate data loading, that is time to produce a graph database
starting from a SQL dump. We compared R2G against na-
tive data importers of Neo4J and OrientDB, that use a naive
approach to import a SQL dump, that is one node for each
tuple and one edge for each foreign key reference. In our
transformation process we query directly the RDBMS to
build schema graph and compute schema paths and then to
extract data values. For our purposes we used PostgreSQL
9.1 (denoted as RDB). Table 1 shows the performance of
this task. Neo4J and OrientDB importers perform better
than our system, i.e. about two times better. This is due to
the fact that R2G has to process the schema information of
relational database (i.e. the schema graph) while the com-
petitor systems directly import data values from the SQL
dump. Then we evaluated the performance of query exe-
cution. For each dataset, we grouped the queries in five
sets (i.e. ten queries per set): each set is homogeneous
with respect to the complexity of the queries (e.g., num-
ber of keywords, number of results and so on). For instance
referring to IMDb, the first set (i.e. Q1-Q10) searches in-
formation about the actors (providing the name as input),
while the second set (i.e. Q11-Q20) seeks information about
movies (providing the title as input). The other sets com-
bine actors, movie and characters. For each set, we ran the
queries ten times and measured the average response time.
We performed cold-cache experiments (i.e. by dropping all
file-system caches before restarting the various systems and
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Figure 7: Performance on databases

running the queries) and warm-cache experiments (i.e. with-
out dropping the caches). Figure 7 shows the performance
for cold-cache experiments. Due to space constraints, in the
figure we report times only on IMDb and Wikipedia, since
their much larger size poses more challenges. In particular
we show also times in the relational database (i.e. RDB) as
global time reference, not for a direct comparison with rela-
tional DBMS. Our system performs consistently better for
most of the queries, significantly outperforming the others
in some cases (e.g., sets Q21-Q30 or Q31-Q40). We high-
light how our data mapping procedure allows OrientDB to
perform better than RDB in IMDb (having a more complex
schema). This is due to our strategy reducing the space
overhead and consequently the time complexity of the over-
all process w.r.t. the competitors that spend much time
traversing a large number of nodes. Warm-cache experi-
ments follow a similar trend.

6. RELATED WORKS
The need to convert relational data into graph modeled

data [1] emerged particularly with the advent of Linked
Open Data (LOD) [8] since many organizations needed to
make available their information, usually stored in relational
databases, on the Web using RDF. For this reason, sev-
eral solutions have been proposed to support the translation
of relational data into RDF. Some of them focus on map-
ping the source schema into an ontology [5, 10, 13] and rely
on a naive transformation technique in which every rela-
tional attribute becomes an RDF predicate and every rela-
tional values becomes an RDF literal. Other approaches,
such as R2O [11] and D2RQ [3], are based on a declara-
tive language that allows the specification of the map be-
tween relational data and RDF. As shown in [8], they all
provide rather specific solutions and do not fulfill all the
requirements identified by the RDB2RDF (http://www.w3.
org/TR/2012/CR-rdb-direct-mapping-20120223/) Working
Group of the W3C. Inspired by draft methods defined by the
W3C, the authors in [13] provide a formal solution where re-
lational databases are directly mapped to RDF and OWL
trying to preserve the semantics of information in the trans-
formation. All of those proposals focus on mapping rela-
tional databases to Semantic Web stores, a problem that is
more specific than converting relational to general, graph
databases, which is our concern. On the other hand, some
approaches have been proposed to the general problem of
database translation between different data models (e.g., [2])
but, to the best of our knowledge, there is no work that tack-
les specifically the problem of migrating data and queries
from a relational to a graph database management system.
Actually, existing GDBMSs are usually equipped with fa-
cilities for importing data from a relational database, but
they all rely on naive techniques in which, basically, each
tuple is mapped to a node and foreign keys are mapped to

edges. This approach however does not fully exploit the ca-
pabilities of GDBMSs to represent graph-shaped the infor-
mation. Moreover, there is no support to query translation
in these systems. Finally, it should be mentioned that some
works have done on the problem of translating SPARQL
queries to SQL to support a relational implementation of
RDF databases [13]. But, this is different from the problem
addressed in this paper.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach to migrate

automatically data and queries from relational to graph
databases. The translation makes use of the integrity con-
straints defined over the source to suitably build a target
database in which the number of accesses needed to answer
queries is reduced. We have also developed a system that
implements the translation technique to show the feasibility
of our approach and the efficiency of query answering. In
future works we intend to refine the technique proposed in
this paper to obtain a more compact target database.
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