
Early Experiences in Using a Domain-Specific Language
for Large-Scale Graph Analysis

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Jan Van Der Lugt
Oracle Labs

jan.van.der.lugt@oracle.com

Adam Welc
Oracle Labs

adam.welc@oracle.com

Raghavan Raman
Oracle Labs

raghavan.raman@oracle.com

Hassan Chafi
Oracle Labs

hassan.chafi@oracle.com

ABSTRACT
Large-scale graph analysis has recently been drawing lots of atten-
tion from both industry and academia. Although there are already
several frameworks designed for scalable graph analysis, e.g. Gi-
raph [1], all these frameworks adopt non-traditional programming
models and APIs. This can significantly lower the productivity of
the framework user. This paper discusses the feasibility of using
an intuitive Domain-Specific Language (DSL) for graph analysis.
Specifically, we use a compiler to translate Green-Marl [5] pro-
grams into an equivalent Giraph application, automatically bridg-
ing between very different programming models. We observe that
the DSL programs are concise and intuitive, and that the compiler
generated Giraph implementations exhibit performance on par with
that of hand-written ones. However, the DSL compilation cannot
but fail if the algorithm is fundamentally not compatible with the
target framework. Overall, we believe that the DSL-based approach
will provide great productivity benefits once it matures.

1. INTRODUCTION
A graph is a fundamental data representation that captures rela-

tionships (edges) between data entities (vertices). Graph analysis is
a procedure which examines such relationships and extracts certain
information that is not immediately available from a given data-set.
Examples of graph analysis include assigning weights to the data
entities based on their relative importance, predicting future rela-
tionship between data entities, and identifying groups of entities
that are more closely related than others. Furthermore, graph anal-
ysis algorithms can take as input the results of other analyses, e.g.
counting number of (un-)closed triads or sampling the vertices in a
largegraph.

Large-scale graph analysis is often conducted in an off-line (batch)
manner using throughput-oriented systems. This is due to the fact
that such an analysis typically involves (repeated) inspection of
nearly the entire graph instance, and thus naturally takes a lot of
time. Consequently, the usage model of graph analysis is some-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES2013) Jun 23, 2013, New York,
NY, USA
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

what different from that of simple graph querying which mainly
aims to identify the specified subset of the graph, using the most up-
to-date information, within a certain latency. This is analogous to
the difference between OLAP systems and OLTP systems in classic
database design.

Several different off-line systems have been used for large-scale
graph analysis. Hadoop [4], the most popular MapReduce engine,
has been widely used to solve graph analysis problems [14] even
though its performance for graph analysis has been put in ques-
tion [9]. There are also systems that are specially designed for
graph analysis. For example, Pregel [10], and its open-source im-
plementation Giraph [1], provide a graph-specific message-passing
API on top of a bulk-synchronous [17] computation engine. Graph-
Lab [9] performs distributed asynchronous vertex-wise computa-
tion triggered by messages exchanged between vertices. Trinity [16]
performs graph computation using a distributed in-memory key-
value store.

Noticeably, all the graph analysis systems above adopt differ-
ent computation models, not to mention different APIs. Conse-
quently, it is up to the user to implement a graph algorithm that is
compatible with each system’s computation model and API. Such
an implementation, however, can impose a non-trivial program-
ming overhead to the user and thus lowers productivity as sub-
stantial modifications to the original graph algorithm are often re-
quired.(Section 2)

In order to address this issue, we introduce a high-level domain-
specific language (DSL) for graph analysis. That is, we let the users
program the graph algorithms intuitively using the DSL, and then
let the compiler translate it into the target system with its different
programming model and API, in an efficient way. Note that it is
not a new idea to use a DSL for this purpose. SQL is a classic
example of an intuitive interface language for accessing a relational
database. Pig [11] and Hive [15] are also good examples that give
significant productivity benefits for MapReduce environments.

This paper reports our early experience of using a DSL for large-
scale graph analysis. Specifically, we encode a few popular graph
algorithms with the Green-Marl [5] DSL. We then use the Green-
Marl compiler to generate an equivalent Giraph application out of
the given Green-Marl program. We discuss the following topics
regarding this approach:

• Productivity: How intuitive or how hard is it to program
graph algorithms with Green-Marl? (Section 3)

• Performance: How is the quality of the compiler-generated
code? How much performance overhead does it induce?

(Section 4)

• Other issues: What are other practical benefits and issues
in using a DSL? Especially, how can the DSL approach be
seamlessly integrated into a conventional data analysis sys-
tem? (Section 5)

We draw some conclusions in Section 6 while we use the next
section (Section 2) to provide some background information.

2. BACKGROUND

2.1 Pregel, Giraph and Their Programming
Model

Pregel [10] is a distributed, in-memory graph analysis frame-
work, in which the vertices of the graph are distributed across mul-
tiple worker machines. The original publication showed that the
framework is highly scalable.

The Pregel framework adopts a special programming model:
• vertex-centric: The user implements a single method

(vertex.compute()) which describes the behavior of each
vertex. The method is applied to every vertex in the graph
in parallel.

• stateful and iterative: The same vertex.compute() func-
tion is applied over multiple time-steps. Vertex-private data
is maintained between time-steps.

• message-passing: For inter-vertex communication, a ver-
tex can explicitly send messages to other vertices. Globally
shared data can be implemented via a special aggregator

API.
• bulk-synchronous [17]: Conceptually, every vertex compu-

tation happens in parallel at each time-step, while global bar-
rier synchronization is enforced at the end of the time-step.
All the messages generated in a time step are instantly deliv-
ered at the beginning of the next time-step.

Giraph [1] is an open-source implementation of Pregel, with
a few enhancements. First, Giraph workers are implemented as
Hadoop Mappers; therefore, Giraph tasks can be trivially integrated
with all the other Hadoop infrastructure components, such as HDFS
(Hadoop Distributed File System), Pig, and Hive. Note that this is
very useful when a large graph instance is generated from the even
larger raw data-set in HDFS as there is no need to move a large
amount of data only for graph analysis. Second, Giraph adopts the
concept of master.compute() [13], which allows master-side, se-
quential computation between each parallel vertex computation.

2.2 Compiling Green-Marl into Giraph
In this study, we use Green-Marl [5], a DSL for describing graph

analysis algorithms. In contrast to Pregel’s programming model,
Green-Marl adopts an imperative, shared-memory style program-
ming model. It also provides various built-in data types, operators,
and functions which allows for intuitive programming by users,
while still exposing important semantic information to the com-
piler. We omit providing details of the language here, but the lan-
guage specification is publicly available [2].

In order to accommodate large-scale graph analysis, we extend
the existing Green-Marl compiler such that it transforms the given
Green-Marl program into an equivalent Giraph program. Note that
such a transformation is not trivial because these two programs as-
sume very different programming models; Green-Marl programs
are written in a shared-memory imperative style, while Pregel pro-
grams are written in a bulk-synchronous, message-passing, vertex-
centric style. Here we present an overview of this compiler trans-

Parsing &

Checking

Transformation

Translation

Optimization

Code Generation

Green-Marl

Program

Error
Pregel-

Canonical? N

IR

(AST)

IR

(FSM + AST)

Pregel

Program

Figure 1: Compilation steps: Initially, the compiler uses an annotated
abstract syntax tree (AST) as the internal representation (IR). After transforma-
tion steps, the compiler uses another IR that is composed of both a finite state
machine (FSM) and an AST.

formation. The details about this transformation are outside the
scope of this paper, but available in another manuscript [6].

Figure 1 depicts the overall flow of our compilation steps. Once
the input Green-Marl program is parsed and type-checked, the pro-
gram is first internally represented as an annotated syntax tree.
Then the compiler applies multiple transformation rules, while try-
ing to turn the given program into Pregel-compatible form. For
instance, the following program is not Pregel-compatible, because
each vertex n is reading its neighbors t’s bar value while Pregel
does not allow remote data reading:

Foreach(n: G.Nodes)
Foreach(t: n.Nbrs)

n.foo += t.bar

The compiler transforms the above program into the following form,
which is Pregel-compatible; now each vertex t pushes its own bar

value to incoming neighbors, which can be implemented as mes-
sages.

Foreach(t: G.Nodes)
Foreach(n: t.InNbrs)
n.foo += t.bar

Note that, however, some graph algorithms are inherently se-
quential (e.g. Tarjan’s strongly connected algorithm) and thus not
compatible with Pregel in any realistic way. If the compiler fails to
transform the given program into Pregel-compatible form, it simply
reports an error and stops.

On the other hand, in the case of a Pregel-compatible Green-
Marl program, The compiler identifies parallel and sequential ex-
ecution phases of the algorithm and analyzes the control structure
between them. From this information, the compiler creates a finite
state machine (FSM) in which each state corresponds to a time-
step in Pregel execution. The compiler examines information that
is exchanged between states and converts them into messages. The
compiler also applies several optimization rules to minimize the
number of time-steps and the size of the messages. Finally, the
compiler creates the resulting Giraph programs with the appropri-
ate API calls, including all the required boilerplate code.

2.3 Example Graph Algorithms
In this study, we perform an early evaluation of using Green-

Marl for large scale graph analysis, using a few popular, important
graph algorithms as our example algorithms. The algorithms used
in our study are as follows:

1. PageRank [12]: PageRank is a very famous algorithm to
compute a weight of a vertex based on the link structure of

u

v wOr

Figure 2: The Counted Triangle Pattern in Directed Graphs

the graph. The PageRank value of each vertex is determined
by the weighted sum of PageRank value of its neighborhood
vertices; the computation is repeated until all the PageRank
values have converged.

2. Triangle Counting [14]: Counting the number of triangles (or
closed triads) is a critical step for computing clustering co-
efficient and detecting community structures. In this experi-
ment, we use a variant of the algorithm which counts only a
specific pattern of triangles (Fig. 2) assuming that the input
graph is directed.

3. Random Walk Sampling with Random Jumps [8]: Sampling
is used to obtain a representative (vertex) set of a large graph.
Here, we implement a sampling algorithm that performs ran-
dom walking on the graph with probabilistic random jump-
ing for the sake of escaping from local clusters.

3. PROGRAMMABILITY AND
PRODUCTIVITY

In this section, we discuss the benefits of using a DSL and its
impact on programmability and productivity. For this purpose, we
implement the example algorithms in Section 2 both with Green-
Marl as well as directly with the Giraph API. Figure 3 shows the
resulting Green-Marl programs. Note that the figure shows the en-
tire programs and not excerpts.

3.1 Current Benefits
Intuitive Programming Model

Graph analysis algorithms implemented in Green-Marl are quite
intuitive, as can be seen from Figure 3. Most noticeably, Green-
Marl programs are written in an imperative, shared-memory style,
which is similar to how the original graph algorithms were spec-
ified. Indeed, the Green-Marl implementation of PageRank and
Triangle Counting are almost identical to the abstract algorithm de-
scription in their original publications [12, 14].

To the contrary, the Pregel programming model may require mod-
ification of graph algorithms. For instance, in the original PageR-
ank algorithm, each vertex reads values from its incoming neigh-
bors (line 10). However, in the Pregel implementation, each vertex
sends out its PageRank value (divided by its degree) to the outgoing
neighbors:

// vertex class
public void compute(Iterable<DoubleMsg> msgs) {

// received messages;
for (DoubleMsg m : msgs)

sum += m.get();
double newV = ((1.0 - d)/N + d*sum); // new PageRank
// send messages to ’out-nbrs’
sendMsgToNbrs(new DoubleMsg(newV/numEdges()));
...

}

In other words, the original algorithm uses data-pulling while the
Pregel API only allows data-pushing; therefore the algorithm has
to be modified accordingly. The Green-Marl compiler automati-
cally handles such transformation between data-pulling and data-
pushing

1 Procedure PageRank (G: Graph, e,d:Double, max:Int
2 ; pg_rank: Node_Prop<Double>) {
3 Double diff;
4 Double N = G.NumNodes();
5 Int cnt = 0;
6 Do {
7 diff = 0;
8 Foreach(t: G.Nodes) {
9 Double val = (1-d) / N +

10 d * Sum(w:t.InNbrs) {w.pg_rank / w.Degree()};
11 diff += | val - t.pg_rank |;
12 // pg_rank updated synchronously after t-loop
13 t.pg_rank <= val @ t;
14 }
15 cnt ++;
16 } While ((diff > e) && (cnt < max));
17 }

(a) PageRank
18 Procedure Triangle_Counting(G: Graph) : Long {
19 Long T = 0;
20 Foreach(v: G.Nodes) {
21 Foreach(u: v.Nbrs) {
22 Foreach (w: v.Nbrs) (w > u) {
23 If (w.HasEdgeFrom(u) || w.HasEdgeTo(u))
24 T ++;
25 } } }
26 Return T;
27 }

(b) Triangle Counting
28 Procedure Random_Walk_Sampling(G: Graph,
29 p_sample: Float, p_jump: Float,
30 num_tokens:Int ; Selected : Node_Prop<Bool>) {
31
32 // temporary properties
33 Node_Prop<Int> Token, TokenNxt;
34
35 // Initialize
36 G.Token = 0;
37 G.TokenNxt = 0;
38 G.Selected = False;
39 Long N = G.NumNodes() * p_sample; // sample size
40
41 // Choose initial nodes and give them tokens
42 Node_Set S;
43 While (S.Size() < num_tokens) {
44 Node n = G.PickRandom();
45 S.Add(n);
46 }
47 S.Token = 1;
48
49 // Repeat random walk until sample size reaches N
50 Long size = 0;
51 While (size < N) {
52 Foreach(n : G.Nodes) (n.Token > 0) {
53 // Increase sample size at first token reception
54 If (!n.Selected) {
55 n.Selected = True;
56 size++;
57 }
58 While (n.Token > 0) { // randomly shoot out tokens
59 n.Token--;
60 If ((n.Degree() == 0) || (Uniform() < p_jump)) {
61 // global random jump
62 Node m = G.PickRandom();
63 m.TokenNxt ++;
64 } Else {
65 // local random jump
66 Node m = G.PickRandomNbr();
67 m.TokenNxt ++;
68 } } }
69 G.Token = G.TokenNxt;
70 G.TokenNxt = 0;
71 } }

(c) Random Walk Sampling

Figure 3: Green-Marl Implementation of Sample Graph Algo-
rithms

Moreover, the compiler automatically generates code for com-
putational state management, which is also required for the vertex-
centric computation model. For instance, the manual Giraph im-
plementation of the random walk sampling algorithm contains the
following state machine:

class RandomWalkMaster ... {
public void compute(...) {
switch(state) {

//phase 1: initialization
case 1: init_token_set(); break;
//phase 2: main computation
case 2: aggregate_sample_size(); break;

}
if (sample_sz > N) halt();

} }

A similar state machine has to be implemented for the vertex class.
Such state management code grows even longer if the target algo-
rithm is composed of multiple computation kernels.

Finally, intuitive programming is also very valuable for the sake
of software maintenance. Green-Marl programs like in Figure 3 are
short and intuitive so that they can be easily understood by people
who didn’t originally write the program and thus can be maintained
over a long period of time.

Automatic Application of Optimizations
While generating the Giraph programs, the Green-Marl compiler

automatically applies a set of optimizations that (1) enable express-
ing certain functionalities with the Giraph API or (2) enhance the
performance of the generated code.

For example, the Triangle Counting algorithm requires the in-
coming neighbors as well as the outgoing neighbors (Line 23 in
Figure 3). However, the original Pregel(Giraph) API only provides
outgoing neighbors. In this case, the compiler automatically inserts
extra states in the FSM that compute incoming neighbors. That is,
at the first timestep each vertex sends its own ID to its outgoing
neighbors, and at the next step each vertex construct the incom-
ing neighbor list from those messages. Note that our compiler in-
serts these extra states only if the given program requires incoming
neighbors.

As another example, for PageRank and Random Walk Sampling,
the compiler identifies that there are message passing computation
kernels inside a while loop. In such a case, the compiler automat-
ically combines the message receiving of the last kernel with the
message sending of first kernel in the while-loop. This optimiza-
tion reduces the number of time-steps in the generated program.

Certainly, the programmers could have applied the same pro-
gramming tricks manually when they hand-code the Giraph appli-
cation. However, since these techniques are automatically applied
by our compiler, even the programmers who are not aware of these
techniques can have the same benefits.

Free of Boilerplate Code
Table 1 compares the size of Green-Marl programs and hand-

written Giraph programs using both Lines-of-Code and number of
bytes. Noticeably, Giraph programs are a lot longer than Green-
Marl programs, even though they implement the same algorithm.
Most of the size difference comes from boilerplate code required by
the Giraph API. For instance, the program has to define a message
and vertex/edge data class, implement their serialization methods,
register aggregators, declare input graph loaders and output writ-
ers, and specify job configurations. In our approach, the Green-
Marl compiler automatically generates all this lengthy boilerplate,
thereby providing additional productivity benefits.

3.2 To be Improved
The Learning Curve

Green-Marl | Manual Giraph
Algorithm LOC #Bytes LOC #Bytes
PageRank 19 516 188 6633
Triangle Counting 14 300 168 6272
Random-Walk Sampling 53 1168 444 16766

Table 1: Comparison of Line of Codes (LOC) and number of
bytes between Green-Marl and manual Giraph implementa-
tion of the same algorithms

Being a DSL, Green-Marl requires the user to undergo a certain
amount of learning. The learning curve is not unreasonably steep;
the language looks like just another descendant of C and doesn’t
add too many new concepts other than graph-specific built-in types
and operators

However, since Green-Marl is a research-level language under
development, it certainly lacks a detailed documentation or a user
community, which hampers the learning experience quite a bit.

Non-Giraph-Compatible Algorithms
When the given algorithm is an inherently sequential one, how-

ever, the Green-Marl compiler cannot turn it into a Giraph program.
The compiler simply reports an error when it fails to transform the
given program into a Pregel-compatible form (Section 2). In such
a case, it is up to the programmer to create a new algorithm that is
compatible with Pregel.

Among our examples, the original Random Walk Sampling al-
gorithm [8] is inherently sequential and thus cannot be compiled
into Giraph. We created a parallel version of this algorithm by in-
troducing the concept of tokens; we let multiple agents, as many as
numTokens, walk the graph in parallel, where any vertex having a
token becomes an agent. Note that the resulting Green-Marl pro-
gram (Figure 3.(c)) is still written in an imperative, shared-memory
style without any boilerplate code.

Although a user intervention is disappointing as it diminishes
the benefit of the DSL, it is inevitable for those algorithms that are
inherently not Pregel-compatible. The user has to create a new al-
gorithm which can be targeted to the underlying computational sys-
tem. Indeed, the two sampling algorithms (the original algorithm
and our parallelized one) are not strictly equivalent; the original al-
gorithm produces a sample of the exact size, while the parallel one
produces a sample that is larger (by the number of tokens) than the
requested size.

Currently, we are taking a practical approach to this issue. (1)
The compiler recognizes frequent (non-Pregel-compatible) patterns
in graph algorithms and transforms them into Pregel-compatible
ones automatically. (2) We define a subset of Green-Marl program-
ming patterns that are guaranteed to be compilable into Giraph.
Therefore, the compiler points out non-Pregel-compatible portions
of the program so that users can re-write these portions using the
Pregel-compatible Green-Marl subset; thus the compiler is helping
the user with the inevitable algorithm modification.

Compiler Maturity
Conversely, one can ask about the completeness of our approach:

can every Pregel-compatible algorithm be compiled from its Green-
Marl description? Fundamentally, we believe that the answer is
yes 1; however, the current compiler needs more improvement as it
does not support all the features required for the Pregel-compatible
subset. Specifically, the current compiler only provides limited sup-
port for collection data types and aggregation on collections for
Giraph compilation. User-defined data types are also not supported
yet. Nevertheless, these are not fundamental obstacles but mostly

1we can make a mapping from every message-passing call in Pregel to a
write statement in Green-Marl

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

PR TC RW PR TC RW

R
e
l
a
t
i
v
e

R
u
n
t
i
m
e

Manual

Generated

LiveJournal Twitter

Figure 4: Runtime Comparison Between Hand-coded and
Compiler-Generated Giraph Implementations: PR, TC and RW
stands for Pagerank, Triangle Counting and Random Walk Sampling,
respectively

engineering issues that can be improved upon over time.

Overall, we believe that programming in Green-Marl can provide
considerable productivity benefits for graph analysis as it matures.
Ease of programming is especially useful when the user wants to
explore different graph algorithms in a short time and quickly try
out new graph algorithms, or when they wish to customize an ex-
isting graph algorithm for their own purpose.

4. QUALITY OF THE COMPILER GENER-
ATED IMPLEMENTATION

In this section, we discuss the quality of the compiler-generated
Giraph implementations, focusing on their performance. For this
purpose, we evaluate both the hand-coded and compiler-generated
Giraph implementation of the three example algorithms in Sec-
tion 2.32 on an x86 cluster and examine their performance char-
acteristics.

Our cluster is composed of 8 machines, with each machine hav-
ing 16 cores (32 HW threads) and 256GB of memory, running Cen-
tOS 6. We used the 1.0.4 release of Hadoop and a snapshot of
Giraph 0.2.203 taken on Feb 28th, 2013. All applications were
compiled with Oracle jdk 1.7.017 and ran with the correspond-
ing Oracle HotSpot 64-bit JVM. We only instantiate 10 workers
per machine, i.e. 80 workers in total; since each worker process
already consists of a few threads (for computation and communi-
cation), adding more workers per machine impacted performance
negatively.

We ran the algorithms on two public graph instances; one is a
web graph instance (LiveJournal) from the SNAP graph reposi-
tory [3], and the other is a social graph extracted from Twitter user
relationships [7]. LiveJournal is moderate in size (4 million vertices
and 34 million edges), while Twitter is larger (40 million vertices
and 1.8 billion edges). Figure 4 depicts the resulting execution time
of each algorithm on these graph instances while the y-axis shows
the relative execution time, i.e. normalized by execution time of
the hand-coded giraph application.

4.1 Current Benefits
Decent Performance of Compiler-Generated Implementations

As can be seen in Figure 4, the compiler-generated Giraph im-
plementations perform fairly close to the hand-written ones. Even
though the compiler-generated implementations were slower than
manual ones for Pagerank and Triangle Counting, the difference

2We modified the triangle counting algorithm for the sake of this exper-
iment, since there is a fundamental issue related to the BSP computation
model for this algorithm. See Section 4.2 for details.

was only about 10 ∼ 15%. In the case of Random Sampling, there
was virtually no difference at all.

The small difference is the result of several compiler optimiza-
tions applied during code generation. For instance, the compiler
merges multiple states into one as long as there is no data depen-
dency between them, reducing the number of global barriers. We
refer interested readers to a more detailed report that explains how
our compiler works [6]. Reasons for the remaining performance
difference will be discussed in the next subsection.

The case of the Triangle Counting algorithm is worth a closer
look as the first hand-coded version was actually slower than the
compiler-generated one. In fact, it did not even finish for the Twit-
ter graph instance in a reasonable time. This was because the pro-
grammer used (from habit) EdgeListVertex as base class, which
has a small memory footprint and provides fast iterate over neigh-
bors, but is very slow when checking whether there is neighborhood
relationship. This mistake was not evident during the initial testing
phase as small graph instances are typically used. Note that with
DSL-apporach, the user doesn’t have to worry about such issues
but can rely on the compiler to handle them.

Readability of Generated Code
We remind the readers that the compiler-generated code is just a

plain Java program that uses the Giraph API. In fact, the generated
code is fairly readable. The code is appropriately indented and vari-
able names in the original Green-Marl programs are preserved as
much as possible. Moreover, each generated Java code block con-
tains the comments of the original Green-Marl source from which
the Java code is generated.

For practical reasons, we strive to ensure that the programmer
is able to read the generated code and even to edit the generated
code; for instance if Giraph introduces a new feature or API, the
programmer can manually apply hot-fixes to the generated code,
before the compiler gets updated.

4.2 To Be Improved
Sub-optimal Performance

Still, there is a certain performance difference between the hand-
coded Giraph implementations and the compiler-generated ones,
for PageRank and Triangle Counting algorithm in Figure 4. In both
cases, the performance overhead came from the more generic ap-
proach taken by the compiler.

For the case of PageRank, the compiler is not utilizing the mes-
sage combiner API at all, since in general there can be multiple
message types that are used (even inside one kernel), while the Gi-
raph API only allows one combiner class which will be applied to
every message. However, it is possible to extend the compiler such
that it can handle special cases differently. In this particular case,
the complier can recognize that there is only one type of message
being used for summing values at the destination, and thus it can
use the summation combiner.

For the case of Triangle Counting, the manual implementation
uses HashMapVertex, which has a large memory footprint, is slow
for iteration, but fast in checking neighborhood relationships. On
the other hand, the compiler-generated implementation, as a trade-
off, uses EdgeListVertex accompanied with a memory-efficient
side structure (i.e. a sorted primitive array), which is good for both
iteration and neighborhood checking.

Again, the compiler can recognize that the given program is
a special case which has only one kernel that does nothing but
neighborhood checking, and it can decide to use HashMapVertex

instead. Fundamentally, the Green-Marl DSL exposes enough se-
mantic information for the compiler the apply these specialization
techniques.

Limitation of the Target Runtime System
The Green-Marl generated implementations are still bound by

the fundamental limitations of the underlying Giraph runtime. For
instance, a Giraph implementation of the original Triangle Count-
ing algorithm in Figure 3 when used with the Twitter graph in-
stance, (or even with the LiveJournal instance), simply fails to exe-
cute.

This is because these graphs show a highly skewed degree distri-
bution such that there exist a small number of high-degree nodes,
i.e. nodes that have millions of neighbors. Note that the Giraph im-
plementation of the original algorithm produces O(degree2) num-
ber of messages per each vertex. For vertices with a millions of
neighbors , this number reaches the trillions. Worker processes run
out of memory, since Giraph keeps these messages in-memory un-
til the next time-step begins. In our experiment, we only counted
triangles that originated from small degree nodes (i.e. smaller than
100) so that we can still evaluate our approach.

It would also be possible, though, for the compiler to warn the
users in advance, if it sees a pattern that might result in a low-
performing implementation due to message count explosion.

5. OTHER BENEFITS AND ISSUES
Debugging New Algorithms

Green-Marl can provide additional benefits for debugging new
graph algorithms. First of all, we believe that programming using
Green-Marl would be less error-prone than directly programming
Giraph, since it is more intuitive and more succinct.

Moreover, since the Green-Marl compiler can generate a fast
running (parallel) shared-memory C++ program from the same in-
put [5], the algorithm developer can test their algorithm in a fast
way with small-sized graphs on a single machine, without having
to use a Hadoop cluster at all. This allows for much shorter turn-
around time in testing a new algorithm.

However, the user may still suspect that the compiler injects er-
rors in code generation. Currently, we allow the users to inspect the
generated code since it is very readable. The compiler can also be
asked to print the code at each intermediate compilation step.

Future Benefits for Portability
This effort focused on the translation of abstract Green-Marl pro-

grams into one specific analysis framework: Giraph. However,
Green-Marl is not defined only for the Giraph framework, but for
general graph algorithms.

Therefore one can imagine a Green-Marl compiler that translates
the same Green-Marl program into other different graph processing
frameworks (e.g. GraphLab [9] and Trinity [16]) as well as Giraph.
Since these systems generally show different performance charac-
teristics depending on the algorithm or size/shape of input graph,
users may choose the appropriate runtime for their purpose.

Indeed, as of now, the user can generate a shared-memory imple-
mentation and Giraph implementation from the same Green-Marl
program. If the size of the target graph fits in a single machine’s
memory space, one can use the shared-memory implementation
which is generally faster than Giraph execution as it does not suffer
from communication cost.

System Integration
Another practical issue is how to integrate the Green-Marl DSL

with the rest of a complete data analysis system, in which graph
analysis is only one phase in the analysis flow. A complete data
analysis system may include persistent storage of graph instances
or the materialization of a temporary graph out of raw data. It may
also include other off-line analysis engines (e.g. Hadoop jobs for
filtering out uninteresting data) as well as a connection mechanism

to on-line systems that make use of the result of off-line analysis.
Currently, our compiler-generated programs (both Giraph and

shared-memory applications) load data files either from the local
file system or from HDFS assuming that the graph is available as
one of a few popular formats such as an adjacency list. Supporting
more formats or user-defined loaders would make it more flexible.

On the other hand, we can also think of extending the DSL such
that it can declare inputs and outputs of a graph analysis in a more
abstract and declarative way. For instance, the input can be loaded
from a data file, database or even directly pipelined from other anal-
ysis. Similar approaches of other successful DSLS (e.g. Pig and
LINQ) can be applied for extending Green-Marl as well.

6. CONCLUSION
This paper reported on our early experience with using Green-

Marl as a front-end language for large-scale graph analysis, by
compiling Green-Marl programs into Giraph applications. We ob-
served that Green-Marl programs are concise and intuitive while
the performance of the compiler-generated code closely matches
hand-tuned applications. Overall, we think this approach could
provide considerable productivity benefits as the compiler matures.

Acknowledgements
We appreciate Sam Shah, Roshan Sumbaly and Evion Kim at LinkedIn
for their collaboration in this study.

7. REFERENCES
[1] Apache Giraph Project. http://giraph.apache.org.
[2] Green-Marl DSL. http://github.com/stanford-ppl/Green-Marl.
[3] Stanford network analysis library. http://snap.stanford.edu/snap.
[4] Apache Hadoop. http://hadoop.apache.org/.
[5] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A

DSL for Easy and Ffficient Graph Analysis. In ASPLOS, 2012.
[6] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Tech Report:

Compiling Green-Marl into GPS.
http://ppl.stanford.edu/papers/tr_gm_gps.pdf.

[7] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? WWW ’10, 2010.

[8] J. Leskovec and C. Faloutsos. Sampling from large graphs. In
KDD, 2006.

[9] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proceedings of the
VLDB Endowment, 5(8):716–727, 2012.

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-scale
Graph Processing. In SIGMOD ’10. ACM.

[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-so-foreign Language for Data Processing. In
SIGMOD. ACM, 2008.

[12] L. Page. Method for node ranking in a linked database, Sept. 4
2001. US Patent 6,285,999.

[13] S. Salihoglu and J. Widom. GPS: Graph Processing System.
http://infolab.stanford.edu/gps.

[14] S. Suri and S. Vassilvitskii. Counting triangles and the curse of
the last reducer. In WWW. ACM, 2011.

[15] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing
Solution Over a Map-Reduce Framework. Proceedings of the
VLDB Endowment, 2(2):1626–1629, 2009.

[16] Trinity.
http://research.microsoft.com/en-us/projects/trinity/default.aspx.

[17] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

