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Abstract. MoonWalker is a software model checker for cil bytecode
programs, which is able to detect deadlocks and assertion violations in
cil assemblies, better known as Microsoft .NET programs. The design of
MoonWalker is inspired by the Java PathFinder (jpf), a model checker
for Java programs. The performance of MoonWalker is on par with jpf.
This paper presents the new version of MoonWalker and discusses its
most important features.

1 Introduction

This paper presents MoonWalker
† 1.0 [18], a software model checker for the

verification of cil bytecode programs. cil stands for Common Intermediate
Language and is the platform independent bytecode used within Microsoft’s
.Net. MoonWalker targets programs compiled against the Mono development
platform [16], an open source implementation of the .Net development platform.

MoonWalker is a software model checker that uses the virtual machine ap-
proach of verification: the effect of every cil bytecode instruction is analysed by
the tool. MoonWalker systematically explores all reachable states of the appli-
cation under verification, which involves executing bytecode instructions, stor-
ing and restoring states, and checking for safety properties. During exploration,
MoonWalker will check for deadlocks and assertion violations.

The approach of MoonWalker is inspired by the Java PathFinder (jpf) [12,
15], a very successful software model checker for Java. jpf pioneered the con-
cept of implementing a software model checker around a virtual machine. And
although the object-oriented design and the actual implementation of Moon-

Walker (in C#) and organisation of the classes and algorithms are different, all
credits for the verification approach should go to the developers of jpf.

With MoonWalker 1.0, however, there is now a competitive software model
checker readily available for the .Net framework. An important advantage of
cil over Java bytecode is that cil has been designed to be the target for many
programming languages, not just C#. See [17] for a complete overview. Finally,
version 1.0 of MoonWalker incorporates some new techniques not yet available
in other model checkers.

xrt [5] is an alternative software model checker for .Net, which follows the
same approach as jpf. xrt is not publicly available.

† MoonWalker was previously known as mmc: the Mono Model Checker.



2 MoonWalker 1.0

The architecture of MoonWalker 0.5 has been outlined in [11] and the design
and implementation of version 0.5 are described in detail in [1]. This section
discusses the new features that have been added to MoonWalker over the past
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years. Details can be found in [7], available from [18].
Several improvements have been made to MoonWalker 1.0 to enhance its

usability, including a user-friendly error tracer, an extensive test framework, and
an implementation of structured exception handling. Furthermore, two partial
order reduction (POR) [4] techniques have been implemented into MoonWalker

1.0: (i) POR using object escape analysis (which is also used by jpf) and (ii)
stateful dynamic POR. Finally, two novel techniques have been implemented in
MoonWalker 1.0, which will be discussed in more detail below.

Memoised Garbage Collector. MoonWalker 0.5 used the well known Mark &
Sweep algorithm (m&s) for garbage collection (GC). A drawback of m&s is that
it is global: for each invocation (i.e. after each transition), the whole heap is
visited twice to remove dead objects. In other words, m&s cannot exploit the
locality of transitions within a (software) model checker.

For MoonWalker 1.0 we took a different approach, which is based on an
incremental shortest-path algorithm for single-source directed graphs with posi-
tive weights [9]. We devised and implemented the Memoised Garbage Collector
(mgc) algorithm, which uses information retrieved from changes between suc-
cessive states to determine which objects should be garbage collected.

The basic idea is to track for each object in the heap its depth from the
root elements (on the call stacks of the threads). Upon changes to the heap,
the tracked depth of the changed objects become inconsistent, and their depths
need to be recalculated. When the changes to the heap are small – which they
usually are – only a small part of the heap needs to be traversed. If the depth
of an object becomes infinity, we know that the object has become unreachable.

We know of one other software model checker which uses a non-global garbage
collector: JNuke [2]. JNuke uses a generational garbage collection (ggc) as
described in [3]. Although the objectives of both non-global GC algorithms are
the same, the implementations are substantially different. mgc is provable pre-
cise [7], whereas ggc is not, because the latter exploits the heuristic that only
new objects are likely to be garbage collected. For MoonWalker unpreciseness
is undesired because this may cause the state matcher to determine that two
semantically equivalent states are different [6].

mgc has a better time-complexity than m&s, which is the dominant garbage
collection in use by software model checkers. Experiments showed that the use
of mgc increases performance of about 10-25%, depending on the model and its
state space. Details on mgc can be found in [7, 8].

Collapsing Interleaving Information. The dynamic POR algorithm by Flanagan
& Godefroid [4] only works correctly for stateless exploration. The issue lies in
the correct dynamic POR semantics upon a state revisit. A naive and incorrect



stateful adaptation of dynamic POR would backtrack upon exploration of a re-
visited state. This is incorrect, because mutual dependencies between transitions
in the state space below the revisited state and the current path to the revisited
state would not be considered. This leads to over-aggressive reduction. Both [10]
and [13] independently observed this, and proposed similar solutions. The idea
is to mimic a stateless search upon a revisit by recalling all necessary interleav-
ing information about the state space below the revisited state and inject the
appropriate transitions in the working sets on the current DFS stack.

[10, 13] observe that stateful dynamic POR uses a lot of memory and suggest
(as future work) to compress the interleaving information used for stateful dy-
namic POR. MoonWalker 1.0 improves upon [13] by compressing the interleaving
information by canonicalisation followed by collapse compression. The collapse
compression step exploits the notion that the interleaving information of states
do not change much between successive states. We reuse the structered state
collapsion scheme that was already present in MoonWalker 0.5.

Experiments show (again depending on the model and the state space) that
dynamic POR may reduce the memory consumption by a factor of two.

Implementation. The current version of MoonWalker is version 1.0. The total
development of the tool took roughly two man years of work. The code base of
MoonWalker 1.0 consists of 17k lines of C# code and constitutes 475Kb of source
code. Both a binary and source distribution are available from [18].

MoonWalker 1.0 supports 74 cil bytecode instructions. These are all possible
instructions that can be emitted by Mono’s C# 1.x compiler. Support for the
last nine missing instructions is future work.

Experiments. Apart from using small experiments that synthesise a small sce-
nario, we also used the Java Grande Forum Benchmarks (JGF) [14] for evalu-
ating MoonWalker against jpf. JGF is a mature benchmark suite developed for
the scientific community, which contains real life examples. Of the three multi-
threaded parallel benchmarks within this suite, we used the MolDyn benchmark
(loc: 965, size: 26Kb) and Raytracer benchmark (loc: 1540, size: 49Kb). We
ported these two benchmarks to C# for use with MoonWalker.

Results show that MoonWalker and jpf are on par in terms of performance.
Differences between the two tools are small. Both tools typically explore about
1000-5000 states/sec. MoonWalker is faster in terms of states per second, but jpf

is better at reducing the state space because its POR object escape analysis al-
gorithm also uses locking information. The results also indicate that MoonWalker

utilises memory relatively less efficiently than jpf. This is caused by the memory
overhead incurred by stateful dynamic POR. Details on the experiments can be
found in chapter 5 of [7].

3 Conclusions

In this paper we presented MoonWalker 1.0, a model-checker for cil bytecode
programs. Due to several refactorings, the design and implementation of Moon-



Walker is clear, readable and extensible. We feel that MoonWalker is a useful plat-
form in an academic environment where ease of experimentation with different
implementations is an important virtue. To extend the usability of MoonWalker

further, several improvements are planned:

– Further improvements to POR and state compression;
– Optimisations to the (memoised) garbage collector;
– Mixing of symbolic and concrete data;
– Multi-threaded and distributed version of MoonWalker;
– Case studies with other programming languages than C#;
– Support for C# 3.0 and .Net 3.5.

References

1. N. H. M. Aan de Brugh. Software Model Checking for Mono. Master’s thesis,
University of Twente, Enschede, The Netherlands, August 2006.

2. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke:
Efficient Dynamic Analysis for Java. In Proc. of CAV 2004, LNCS 3114, pages
462–465. Springer, 2004.

3. P. Fargas. Garbage Collection for JNuke. Master’s thesis, ETH Zürich, Switzerland,
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