
Searching for Close Alternative Plans

Ariel Felner1, Roni Stern1, Jeffrey S. Rosenschein3, and Alex Pomeransky2

1 Department of Information Systems Engineering, Ben-Gurion University, Beer-Sheva, Israel
2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

3 School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Abstract. Consider the situation where an intelligent agent accepts as input a
complete plan, i.e., a sequence of states (or operators) that should be followed in
order to achieve a goal. For some reason, the given plan cannot be implemented
by the agent, who then goes about trying to find an alternative plan that is as
close as possible to the original. To achieve this, a search algorithm that will find
similar alternative plans is required, as well as some sort of comparison function
that will determine which alternative plan is closest to the original.
In this paper, we define a number ofdistance metricsbetween plans, and charac-
terize these functions and their respective attributes and advantages. We then de-
velop a general algorithm based on best-first search that helps an agent efficiently
find the most suitable alternative plan. We also propose a number of heuristics
for the cost function of this best-first search algorithm. To explore the generality
of our idea, we provide three different problem domains where our approach is
applicable: physical roadmap path finding, the blocks world, and task schedul-
ing. Experimental results on these various domains support the efficiency of our
algorithm for finding close alternative plans.4

Keywords: Best-first Search; Shortest path; Scheduling; Replanning; Reschedul-
ing

4 A preliminary version of this paper appeared in the International Joint Conference on Au-
tonomous Agents and Multiagent Systems [8].

2

1 Introduction

Suppose that an intelligent agent accepts as input a complete plan from a supervisor
agent, human or automated (this is related to the “supervisor – subordinate” model
from Ephrati and Rosenschein’s work [6]). Provision of the complete plan implies that
for the supervisor,how the goal is achieved and the exact intermediate states are of
some concern.

A real world analogy might be a police patrol that receives a command to go to
a specific location. The command also instructs the patrol to get there via a specific
route, with special neighborhoods or locations along the way. While getting to the final
location is important, the path that is taken is also specified, and of some independent
value.

The plan is intended to achieve a goal statesg, and the agent is assumed to be
starting in states1. The original plan that was given contained a sequence of states,
and will be denoted here byS = {s1, s2, ..., sn = sg} (we use bothplan andpath
to denote a sequence of states). When the agent examines the plan, it realizes that the
supervisor that generated it did not have accurate data about the current domain. The
agent realizes that this particular plan froms1 to sg cannot be followed because of one
of the following reasons:

– The supervisor that generated the original path did not know the agent’s exact initial
location, and generated a plan for the wrong initial state.

– One or more states in the plan do not exist in the given domain. For example, in the
blocks worldthe plan might have the intermediate state
{ON(A, B), ON(B,C), ON(C, D)}, but a stack of more than 3 blocks might not
be allowed (in our world). The supervisor that generated the plan was not familiar
with this restriction.

– One or more operators cannot be applied. For example, suppose that one of the
operators wascross the bridge to the island, but the bridge has collapsed.

When the original plan cannot be followed, the agent tries to search for an alter-
native path from its current state to the goal state. However, we make the following
assumptions:

1. The most important consideration for the agent is to get to thegoalstate;
2. Since the input plan contains a complete sequence of states and not just the goal

state, we assume that each of the intermediate states has some importance of its
own. Otherwise, the supervisor might have given thegoalstate to the agent (allow-
ing the agent to do its own planning from scratch).

If there is more than one alternative plan that leads to the goal state, we would like
the agent to pick the plan “closest” to the original plan among all potential candidates.
This problem differs from classic search problems because there the agent has to find
the shortest path to the goal, while in our problem it might pick a longer path that is,
nevertheless, closer to the original path. Figure 1 shows an example of such a situation.
PlanB is shorter than planA, but we want our agent to pick planA because it is closer
to the original plan.

3

The original plan

 plan A

plan B

Goal state Initial state

Fig. 1. Plan B is shorter, but plan A is closer to the original plan

In a way, we can view the states of the original plan as subgoals, or as goals with
lower priority than that of reaching the goal state. For the police patrol example men-
tioned above, the goal is to reach the desired location, but there are subgoals, namely
to get there through specific neighborhoods or locations. Thus, the search should be
guided towards the goal state but should be biased in favor of paths or prefixes of paths
that are close to the original path. Note that neither the original plan nor its alternative
are necessarily the shortest path to the goal.

Two basic questions arise here, and answering these questions is the crux of this re-
search. The first question is, given a number of alternative paths, which one should the
agent follow? To answer this, adistance metricbetween plans or paths should be de-
fined. The agent should pick the plan closest to the original according to such a distance
function. We show in this paper that while there is a general theme among distance
functions, there are many domain dependent issues that need to be considered. In Sec-
tion 3, we propose a number of distance functions with different characteristics that are
applicable in different problem domains and circumstances. We study these functions
and their respective attributes and advantages, and try to give general guidance as to
what distance function to use under what circumstances.

The second question the research addresses is, given any of the suggested distance
functions, how does the agent efficiently find a path close to the original path? We have
developed a general search algorithm based on best-first heuristic search; this algorithm
searches the domain (usually represented as a state graph) in order to find a path from
the current initial location of the agent to the goal state. The most important attribute
of our search algorithm is that it should prefer paths that are as close as possible to the
original path. Thus, during the search, the cost function should try to predict whether
the current path from the initial state to the current state is likely to be a prefix of a
path that is close to the original path. States with such a likelihood will be favored to be
expanded first. Below, we suggest a number of such heuristics and study their attributes.

To show the generality of our approach, we then present implementations of our
algorithm in three different domains: 1) physical roadmaps modeled by random Delau-
nay graphs (which simulate real-world road maps), 2) the blocks world domain, and 3)
task scheduling. Experimental results support the efficiency of our algorithm for finding
closest paths in all three domains.

The paper is organized as follows. Section 2 describes related work. Section 3 intro-
duces the various distance functions between plans. Our search algorithm is introduced

4

in Section 4. Implementation and experimental results on the three different testbed do-
mains are provided in Sections 5, 6, and 7. Finally, our conclusions, and possibilities
for future work, are discussed in Section 8.

2 Related Work

The fact that planning agents work in dynamic environments, and therefore previously
prepared plans cannot always be followed, has been understood by a variety of re-
searchers. The field ofreactive planningconsiders agents that must choose the best ac-
tion for the state in which they find themselves, while avoiding the complexities of clas-
sical planning in dynamic, inaccessible environments. Important work in this field in-
cludes the work of Jensen and Veloso [13], Stentz [31], and Koenig and Likhachev [16].

Another related area is replanning and plan reuse. When an agent realizes that its
intended plan cannot be followed, an alternative plan must be created. The search for
a new plan consumes many resources, so an agent may try to use prepared plans. Re-
planning algorithms help the agent find the best way to get the original plan back on
track, as in the work of Russell and Norvig [27], Ambros-Ingerson and Steel [1], Koenig
and Likhachev [15], and Brock and Oussama [5]. Plan reuse and modification help an
agent choose one plan among several prepared plans, and to modify it to fit the current
situation [25].

A focused example of plan reuse is presented in the work of Haigh and Veloso [9].
They create real maps in computer applications that automatically find good map routes.
In their work, they accumulate and reuse previously traversed routes, thus demonstrat-
ing a route-planning method that retrieves and reuses multiple past routing cases that
collectively form a good basis for generating a new routing plan. Other plan reuse work
has been done by Liu [19], where an integrated approach is explored, using knowledge
about the road network, past cases, and an efficient search algorithm for route finding.

Lifelong-planning A* [16] and its dynamic version D*-lite [15] also assume that a
path to the goal has already been found, but that the environment has changed. Instead
of starting a new search from scratch, these algorithms try to use old parts of the open-
list (of A*) for the new search on the changed graph whenever possible.

Other related work includes the Distributed Task Plan (DTP) [18]. A mobile agent
plans a DTP according to the current user’s objectives, and knowledge about current
environments — not necessarily seeking the shortest path.

All the above work uses previously prepared plans in order to reduce the search
effort and the complexity of creating a new plan from scratch. However, none of them
assign importance to the intermediate states or actions of the original plan, as our work
does.

2.1 Plan Distance Metrics

Ephrati and Rosenschein [6] considered a situation consisting of two agents, one of
them the supervisor and the other the subordinate. The supervisor created a plan for
the subordinate, but the latter realizes that the supervisor’s intended plan cannot be
followed. Thus, the subordinate tries to find an alternative plan that will please the

5

supervisor, whichinter alia involves assessing the distance between plans. Measuring
distance between plans or paths is a non-obvious problem, and a great deal of work
needs to be done so as to define a distance metric that will prefer plans that satisfy
intuitive notions of closeness.

In their work, Ephrati and Rosenschein suggested a number of distance metrics
between plans. One class of metrics they suggested compares thecostor theutility of the
two plans. If, for example,C(P) is the cost of planP then the distance between the two
plans will beDc(P1, P2) = |C(P1)−C(P2)|. Since we assume that intermediate states
have importance of their own, this class of metrics is obviously unsuitable. Imagine two
plans, both leading to the same goal and having the same cost, but each plan reaches
the goal via a completely different path (via different intermediate states). Thecost
metricdescribed above will evaluate them as equal, disregarding the difference in the
intermediate states.

Related research was carried out by Mayers and Lee [24]. In their work, the inten-
tion is to generate a set of qualitatively different plans, from which the user can pick
one. This was achieved by defining metrics that estimate a value for a set of plans, and
using biases created from metadata over the domain to direct a planner towards differ-
ent sections of the search space. The metric used to estimate a value for a set of plans
was based on the distances between plans in the set. In their work, the distance metric
between two individual plans is similar to thedynamic deviation metric[6], discussed
below. An interesting follow-on to Mayers and Lee’s research would be to employ their
framework to generate sets of plans, but to use the newer distance metrics discussed in
this paper.

Line generalization is yet another subject that is related to comparing a set of points.
In line generalization, the objective is to take a line withn points and create an approx-
imation of that line withm points. As with a set of states in a plan, there are many ways
to measure how close one set of points is to another set of points. A large variety of
line generalization methods and measures of line approximations have been discussed
by McMaster [21–23].

3 Distance between Sequences of States

Ephrati and Rosenschein [6], in addition to the cost metric mentioned above, also ex-
plored another class of metrics that have more geometrical aspects. They suggested
measuring distances between states of the two paths, and provided a number of ways
for doing that.

As one example, they considered using theHausdorff metric[11, 2, 3], which is
used in the field of image processing to measure distance between two shapes. Taking
the state in the first set that is closest to any state in the second set, one measures the
distance between this state in the first set and the farthest state in the second set. They
also suggested theshifting distance metric, in which measurement is done by summing
the distance of each state in one plan from the set of states in the other.

More formally, ifP1 andP2 are two plans thenshiftingDistanceMetric(P1, P2) =∑n
i=1 D(p1

i , P2) wherep1
i is thei-state in the planP1, D(x, P) = minp′∈P d(x, p′),

andd(x, y) is the distance between two nodes.

6

plan A

plan B

inital state
goal state

Z

X Y

Fig. 2. The shifting distance metric

The Hausdorff metric loses a lot of information, as we calculate the distance of just
one representative state. Moreover, both these metrics have an inherent flaw because
they treat a plan as asetof states, while a plan should more correctly be considered a
sequenceof states (we would like the beginning of planA to be close to the beginning
of planB, and so on). Theshifting distance[6] might map a state at the beginning of
one plan to a state at the end of the other plan, only because they are very close to one
another. Figure 2 illustrates such a scenario. StateX in planB is very close to stateY
in planA, so the shifting distance will take their distance as the distance betweenX and
planA. However, considering the internal order of the plans, stateX of planB should
be mapped to stateZ of planA.

In that sense, the best distance metric suggested by Ephrati et al. [6] was thedynamic
deviation metric, which sums the sequential relative deviation produced by operators of
each plan, and is defined asDddv(P1, P2) =

∑m
i=1 d(p1

i , p
2
i), wherep1

i is thei-state in
P1, p2

i is thei-state inP2, andm is the minimum between the number of states in the
two plans.

This metric does treat a plan as a sequence of states, and thus the internal order is
taken into account. However, this metric is rather basic and can be further enhanced.
Below, we introduce a number of distance functions that combine positive aspects from
both thedynamic deviation metricand theshifting metric.

3.1 The Monotonic Mapping Function

In this section, we define themonotonic mapping function(MMF). We assume that
there exists an efficient way to calculate distances between any two states in the search
space (e.g., the straight line distance if the domain is a roadmap).

We assume that the original plan hasn states and denote it byS = {s1, s2, ..., sn}.
We also assume the agent’s plan hasm states and denote it byA = {a1, a2, ..., am}.
Like the shifting distance above, we want to map a state of one path to the closest state
in the other path, but also to take into consideration that a path is a sequence of states.
This means that some kind of monotonicity must be maintained. We therefore use the
following restriction on the allowed mapping:

The monotonic restriction: If a nodeai was mapped to a nodesj , then nodes
that appear later inA such asai+1 cannot be mapped to nodes inS that appear before
sj . Mapping functions between the pathsA andS, Fmap : A → S, that keep this
restriction must maintain the followingmonotonic rule: Fmap(ai) ≤ Fmap(ai+1). In

7

other words, we cannot allowcrossingsin our mapping function. Such a crossing might
occur in the shifting distance (as in Figure 2).

We therefore introduce theMonotonic mapping function(MMF), which calculates
distances between paths as follows.

We first find all the different mappings of states ofA into states ofS, Fmap : A →
S, that maintain the monotonic rule (i.e., thatFmap(ai) ≤ Fmap(ai+1). For each of
these different mappings, we define the distance between two paths according to this
mapping to be

Dmap(A,S) =
m∑

i=0

d(ai, Fmap(ai)).

There are many such mappings that obey this monotonic rule. A trivial example
for such a mapping is that all the states ofA are mapped into the same state ofS. We
want to choose the particular mapping that minimizes the summation of the distances
between the states. Through simple mathematical analysis we can show that the number
of potential mappings ofm states ofA into n states ofS that obey the monotonic rule

is

(
n + m− 1

n

)
. However, thebestsuch mapping can be found by a simple algorithm

(based on dynamic programming), in time complexity ofO(n ∗m). The main idea of
the algorithm is to have a two-dimensional array of sizem× n. Each entryx, y in this
array corresponds to the best monotonic mappings of the firstx state inA into the first
y states inS. An entryx, y is easily calculated from its predecessors. The exact details
and complexity analysis of the algorithm are provided by Felner [7].

The above formulation, which takes the sum of the mapping of each of the states
into a state in the target plan, has a flaw — two long paths might have a large distance
between them, even though the states themselves are very close to one another. The
solution would be to add these distances and then take their average. Therefore, the
MMF is defined as follows:

MMF(A, S) =
∑m

i=1 d(ai, Fmapmin(ai))
m

.

Fmapmin is, of course, the best mapping among all mapping candidatesF : A → S
that obey the monotonic rule thatFmap(ai) ≤ Fmap(ai+1).

DMMF: Double Monotonic Mapping Function We now have to answer the question
of which path should be the source of the mapping, and which one should be the desti-
nation. In Figure 3, both plans have 9 states. However, as shown in the figure, the states
at the beginning and end ofS are two moves away from states inA, and the states in
the middle ofS are three moves away.

Note that mappingA → S will yield MMF(A,S) = 2 while mappingS → A will
yield MMF(S,A) = 3. Both mappings lose some information by having some states
in the destination plan with no state mapped into them. One solution is to take the sum
or average of each of the mappings. This leads us to theDouble Monotonic Mapping
function:

DMMF(A,S) = MMF(A → S) + MMF(S → A).

8

A

D(S−>A)=D(A−>S)=
 2+2+2+5+5+5+2+2+2

=3
 9

=2
9

2+2+2+2+2+2+2+2+2

S

A

S

Fig. 3. Mapping both ways

S1 S3

B7B6

B5

B4

B3

B2
B1

A2

A1

S3S2S1

S2

Fig. 4. Mapping both ways, again

IDMMF: Improved DMMF Still, there are cases when the DMMF fails to provide
a viable distance metric, as shown in Figure 4. There are two alternative paths in the
figure:A is a simple path to the goal state, andB is another path that first circles the
initial state of the original path. If we calculate the distance between the paths with
DMMF (assuming that the distance between each of the states in the circle toS1 is 5
and that the distance betweenA2 andB7 to S2 is 30), then we get thatMMF(A,S) =
5+30+0

3 = 11.66 while MMF(B, S) = 5+5+5+5+5+5+30+0
8 = 7.5. In this scenario,

we will prefer a plan that circles around a state if it stays close to it, even though it is
not moving forward. To solve this problem, we introduce the IMMF (Improved MMF)
distance function. In IMMF, if we have a number of states mapped into the same state,
we do not sum them, but rather take their average. We divide all the states inA into
different groups according to the state inS that they were mapped into.

We defineGj as follows: given an original planS, an alternative planA, and a
mappingFmap betweenA andS, then for everysj ∈ S we define the group
Gj=∪ai ∈ A|Fmap(ai) = sj . For example, suppose thataj1 ..aj4 were all mapped into
sj . These nodes are all placed into a group that we callGj .

We denoteDj as the average distance of nodes fromGj to sj . If the number of
different groups isN then we define

IMMF(A,S) =
D1 + D2 + . . . + DN

N

9

In Figure 4 the values of IMMF will be:IMMF(A,S) =
5
1+ 30

1 + 0
1

3 = 11.66 and

IMMF(B, S) =
5+5+5+5+5+5

6 + 30
1 + 0

1
3 = 11.66. All the states in the circle of planB

are now combined into one group, and therefore both plans have the same distance to
the original planS. We then, once again, map the two paths both ways, and define a
“double-version” of the mapping function:

IDMMF(A, S) = (IMMF(A,S) + IMMF(S,A))

3.2 TDMF: Time Dimension Mapping

In this section we suggest another distance metric which we call theTime Dimension
Mapping Function(TDMF). In TDMF, the mapping is done according to the time di-
mension, i.e., each state in the original path is mapped to its relative state in the des-
tination path according to the proportion of its relative location on the path. For each
stateai in A, we denoteLai

as the length of a path froma1 to ai. We denoteLA as the
length of pathA, andA[x] as the location on pathA located at distancex from the be-
ginning of the path. We map a stateai fromA to the corresponding state inS as follows:
Fmap(ai) = S[Lai

LA
∗ LS]. If there is no corresponding state at locationS[Lai

LA
∗ LS],

then we choose the neighboring state that minimizes the final TDMF mapping function.
For the complete distance we define

TDMF(A,S) =

∑m
i=1 d(ai, S[Lai

LA
∗ LS])

m

A1

S3S2S1

A4A3A2

Fig. 5. TDMF mapping

Figure 5 shows a mapping according to the TDMF distance function. Statea3 is
closer to states3, but according to the time dimension it is mapped to states2, since
both of them are located at the same relative location in their paths. Again, similar to
DMMF, we define

DTDMF(A,S) = TDMF(A, S) + TDMF(S, A)

Here again we define ITDMF such that if more than one state is mapped into the same
state, we take their average instead of their sum. The complexity of this mapping func-
tion is much smaller than IDMMF, as we only have to calculate the correct mapping for
each of the states. This is unlike DMMF, where we had to look for the minimum among
many relevant mappings.

10

3.3 Comparison between the Distance Metrics

S1

B2

B1

A9
A8

A7
A6

A5

A4

A3 A2
A1

S3S2

Fig. 6. IDMMF versus ITDMF

We now provide an example for comparing the above two “improved” approaches,
namely the IDMMF and ITDMF distance metrics. Figure 6 shows two alternative plans
A andB. In A, there are many states that form a “circle” close to the initial state of the
original planS1 (i.e.,A1 throughA8). In B, we have only one stateB1 near stateS1,
but it is located quite far fromS1. With ITDMF, many of the states in the circle ofA
(e.g.,A4, A5 andA6) will have to be mapped toS2. This will cause a large distance
to be measured between the two paths. With IDMMF, however, all the circle states will
be mapped intoS1, and the distance between the two paths will be much smaller. Thus
ITDMF will prefer planB, while the IDMMF function will prefer planA.

The question of which metric is better is ultimately not a mathematical question, but
is situation dependent. If the desire is to always be located as close as possible to the
original plan, then IDMMF will be preferred. If, however, the desire is to try to imitate
the original plan in other aspects (like the number of states), and the time dimension is
more important, then ITDMF is more suitable.

In fact, since “distance between paths” is not well-defined, other metrics might very
well be considered, as long as these metrics do measure some kind of similarity be-
tween the two paths. For example, if we desire that the subordinate agent visit as many
intermediate original states as possible, then we should give higher priority to plans
that have as many such states as possible. This can actually be done rather easily by ID-
MMF, for example by taking the distance metric between two states to bed(x, y) = 0
if x = y while d(x, y) = K otherwise, for some constantK.

4 The Search Process

We now describe the search process that the agent should carry out, so as to find the best
alternative path as quickly as possible. We introduce a search algorithm that is based on
best-first search, which starts from the initial state and proceeds until the goal state has
been reached.

The input for our problem is:

11

1. The graph that represents the domain;
2. The original pathS;
3. The selected distance metric.

The output of our search algorithm is an alternative path from the initial state to
the goal state that is as close as possible to the original path, according to the selected
distance metric (chosen from the metrics that were defined above).

4.1 The Search Algorithm

To find such an alternative path to the goal state, we activate a best-first search process
from the initial state towards the goal state. This search starts from the initial location of
the agent and proceeds forward; thus, a search tree is spanned. Each node in the search
tree contains a partially developed path from the initial location of the agent. A best-first
search chooses to expand a node that minimizes some cost (or evaluation) function. A
cost function of a node in this search space will be an estimation of the likelihood of
this partial path being a prefix of a plan that will be as close as possible to the original
path. A number of relevant cost functions that estimate this are presented below. At each
expansion cycle, we expand next the state with the lowest such estimation, until the goal
state has been reached for the first time. When that happens, we return the branch of the
search tree with the goal node as the alternative path to the goal. Note that the search
need not stop at this point, and that it could continue in the same manner until other
alternative paths to the goal have been found.

4.2 The Cost Function for the Search

How do we define a cost function to estimate the likelihood of a partial path being a
prefix of a path that will be as close as possible to the original path? At first glance, one
might suggest using the same cost function as that of the well-known A* algorithm [10]
for our best-first search. A* is a best-first search with a cost function off(n) = g(n) +
h(n) whereg(n) is the elapsed distance from the initial state to the current noden and
h(n) is an estimate of the distance betweenn and the goal state.

To return the optimal path, A* has some conditions that do not apply in our domain.
In a classic heuristic function of A*, if the estimate is always a lower bound of the exact
distance to the goal, then we say that the heuristic isadmissible. With an admissible
heuristic the complete cost function,f = g + h, is monotonically increasingand is
always a lower bound on the shortest path. Thus, the first solution that is found by A*
is the optimal solution. A hidden condition for the fact that the cost function will be
monotonically increasing is that theg component is always increasing as we proceed
with the search.

In our case, we do not divide the cost function intog andh, but rather want to try to
estimate the distance of the partial path to the original path. Since our defined distance
functions take the average of all the state mappings between the two paths, the distance
between the paths might decrease during the course of the search. This happens if a
path starts at a large distance from the original path but gets closer in later stages. Thus,
a heuristic that will always be a lower bound is not possible here. As a consequence,

12

due to the nature of our distance metrics, we cannot guarantee that the first solution that
will be found will be the best one available. However, our experimental results showed
that it often is.

4.3 IDMMF as Heuristic Evaluation Function

We now turn to defining the heuristics used in our best-first search. As a first step, we
would like to take the IDMMF distance of a partial path from thecompleteoriginal plan.
However, such a heuristic function results in a problem that we call thetail problem.

A1

S3 S5S4S2S1

B2B1

A2

Fig. 7. Tail problem

In Figure 7 we have an original pathS and two partial pathsA andB. Suppose that
both partial paths were developed (after generating two states for each), and now we
have to decide which one looks more promising. Suppose that for the heuristic we take
the regular IDMMF function and measure the distances between each of these paths to
S. A problem arises when we make the reverse mapping of the original pathS into A.
SinceA is only a partial path, all the states in the tail ofS are forced to be mapped into
A2 even though they are located very far from it. For the partial planB, however,B2

is closer to the middle ofS and states from the tail ofS are mapped better (closer) to
B. Thus, using IDMMF the process will prefer planB, while it is obvious that planA,
though partial, better imitates the behavior of the original plan.

4.4 The Prefix Heuristic (PH)

A possible solution to handling the tail problem is to consider, for purposes of the
heuristic value, only the mapping of those states of the original pathS that are close to
the relevant prefix of the alternative path. We call this method theprefix heuristic(PH),
which carries out the following steps:

1: First, a full mapping is done fromA to S. Let sk be the last state fromS that any
node fromA was mapped into.

2: We now only maps1, s2 . . . sk into A. Other nodes ofS are not mapped, since
they are in the tail ofS and are far fromA.

For example, in Figure 8 the mapping of the original pathS into the partial alterna-
tive pathA = {A1, A2} only considers nodesS1 andS2 of the original pathS, since
these are the nodes that are targets of mappings fromA, while the tail nodes ofS are not

13

S4

A1 A2

B1 B2

S3S1 S2

Fig. 8. The PH heuristic

mapped. With this formulation, the mapping of the original pathS into B = {B1, B2}
considers the nodesS1, S2, S3, andS4 of the original pathS. With this calculation,
planA will be preferred because it is closer to the relevant part ofS.

4.5 PH for the ITDMF Distance Function

As explained above, ITDMF maps each state inA into its relative state inS according
to the proportion of its relative location on the path. States inS are mapped into states
of A in the same manner. In order to do that, the length of both paths should be known.
However, during the course of the search the length of the full alternative pathA is
not known, since we only have a prefix ofA. Therefore, for properly using the prefix
heuristic with the ITDMF distance metric we need to estimate the length of the entire
alternative path while only given its prefix.

S0

10
15

201010

25

A2A1

A0

S3S2S1

Fig. 9. Estimating the length ofA

For any nodev in A, we definepredecessor(v) as the node that appears inA just
beforev. For any two nodesx, y in A, we definedA(x, y) to be the total distance in
A from x to y. We propose three approaches for estimating the length of the possible
complete alternative pathA when we want to develop nodev in the current prefix of
pathA that ends at nodev.

Using the Exact Tail inS In this case, since we do not know the length of the tail ofA,
we replace it by the relevant tail ofS. Sincev was not mapped yet, we consider the tail
of A from its predecessor. We therefore define the length of the estimated complete al-
ternative pathL1A(v) = dA(start, predecessor(v))+dS(Fmap(predecessor(v)), Goal).
For example, in Figure 9 we are now developing nodeA2 in the search tree. Its parent

14

is nodeA1, and it was mapped toS1. According to our definition, we getL1A(A2) =
dA(A0, A1) + dS(S1, S3) = 15 + (10 + 20) = 45. Note that the dashed line in the
figure is not an edge, but only signifies that the actual tail would be 25 if we knew it —
but we estimate it here as 20.

The Approximated Tail in A In this approach, sincev is the last state in the prefix,
we just take the straight line distance (which we will denote SLDist, and which we
assumed above is easily calculated) fromv to the goal as an estimation of the tail of
A. That is, we defineL2A(v) = dA(Start, v) + SLDist(v, Goal). In Figure 9, we get
L2A(A2) = (15 + 10) + 25 = 50.

Maximum of Both The third approach simply takes the maximum of the two approx-
imations above:Lmax12A(v)=max(L1A(v), L2A(v)).

These estimated lengths ofA (L1, L2, or Lmax12) are then used as the length ofA
when calculating the PH heuristic (as described above) for ITDMF.

5 Experimental Results for Simple Path Finding

Fig. 10.Delaunay graph with 20 nodes

We have experimented with Delaunay graphs [26], which simulate roadmaps. De-
launay graphs comprise Delaunay triangulations of planar point patterns that are gener-
ated by aPoisson point process[26] that distributes points at random over a unit square
using a uniform probability density function. Delaunay triangulation of a planar point
pattern is constructed by creating a line segment between each pair of points(u,v), such
that there exists a circle passing throughu andv that encloses no other point. This char-
acteristic simulates roadmaps. To construct Delaunay graphs for our experiments, we
used the Qhull software package [4], which is a well known package that generates
Delaunay graphs on a square frame with unit size of 1.

In Delaunay graphs, nodes are connected to the nodes that are near them. In roadmaps,
however, nearby locations might not have roads between them, perhaps due to some sort
of an obstacle like a mountain or a river. To imitate this characteristic in our graphs,

15

we deleted some of the edges in some of our experiments. Another characteristic of
roadmaps is the existence of highways that connect distant locations. To add this effect
to our graphs as well, we added additional random edges to the Delaunay graphs in
some of the experiments. The size of the graph, as well as the number of edges that we
add or delete, are variables. Figure 10 illustrates a Delaunay graph with 20 nodes.

5.1 Creating the Environment

Once the domain graph was created, we used two methods for creating the original path:
(1) Shortest path: The start and goal nodes are randomly selected. Then, the A*

algorithm is carried out and the shortest path between the start and goal nodes is used
for the original path.

(2) Random path: Here, we first determine the number of states in the path. Then,
we choose the start node and make a number of random moves to determine the inter-
mediate states as well as the goal state.

At this stage, we have to make some changes to the graph (which simulates envi-
ronmental changes in the domain) to prevent the original path from being followed (and
force the search for an alternative). Thus we randomly delete vertices and edges from
the graph (some of these edges and vertices were used by the original plan).

The size of the graph, the length of the original path, and how many changes will
be made in the graph are all parameters of the system. We experimented with many
values for these parameters. Below, we present experiments where the graphs were
built as follows. The number of edges in the Delaunay graph was varied from 200 to
6000. Then, 50% of the edges were deleted, and 20% of random edges were added by
randomly choosing two nodes in the graph and creating an edge between them. On this
graph we determine the original path according to the two methods presented above.
After the original path was determined we change the graph as follows. 40% of the
vertices of the original path were marked and all the edges that connected them were
deleted. Then, given an instance of a problem, a best-first search with the different
heuristic functions and the different metrics was activated on this modified graph.

We tested both the IDMMF and the ITDMF, as well as other distance metrics that we
do not mention here (we present only the data on ITDMF and our PH heuristic function
in this paper). However, similar results and conclusions were obtained for the IDMMF
distance metric and for the other distance metrics. Detailed results can be found in
Felner’s thesis [7].

5.2 Original Path Created with the A* Algorithm

Figure 11 presents a graph with 200 nodes. The dashed line is the original path created
by A*. The black line is the alternative path that was found by running our algorithm.
The black square nodes are the nodes that were developed during the search. Our alter-
native path was found quickly, as evidenced in the figure by the fact that only a small
number of nodes were generated by our algorithm, and that they are all located close to
the original and alternative paths.

As mentioned above, we have three approaches for a heuristic function, based on
three different methods to estimate the length of the alternative path when using the

16

Fig. 11.Alternative and original paths

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 n

od
es

 d
ev

el
op

ed
.

Number of nodes in the graph.

Number of nodes developed until the first solution using ITDMF distance function.

Exact tail
Approximated tail

Maximum
Number of nodes in original path

Fig. 12.Number of generated nodes, ITDMF

17

Best pathNumber of runs
1 119
2 107
3 46

≥ 4 28

Table 1. When the best path was found, in 300 runs; each row corresponds to a different case
(that is, row 1 signifies that in 119 cases the best path was the first path reached).

prefix heuristic with the ITDMF distance metric.5 Figure 12 presents the number of
nodes generated by each of the heuristics until the first alternative path was found. All
datapoints are the average of 300 random instances with the same characteristics. The
figure also presents a curve with the average number of nodes of the original path. It
shows that all three heuristics behave approximately the same, and they all generate
only four times as many nodes as the original path. For example, for a graph of size
6000 the length of the original path was 50. Our algorithm needed to generate only
200 nodes in order to find an alternative path. This supports the contention that our
algorithm is quite efficient and finds the alternative path rather quickly. The results of
the three approaches are not significantly different in this set of experiments because
the original path was generated as the shortest path between the initial and goal node.
Therefore, it tends to be a path that is relatively straight, and the heuristics measure
similar values. These approaches performed differently in the set of experiments below
where the original path was created randomly.

As discussed above, our heuristics cannot guarantee the best alternative path since
they are not admissible. However, when we continued to run our algorithm, more alter-
native paths were created, and experiments confirmed that the optimal alternative path
was found very quickly. In most runs it was either the first or the second alternative
path that was found, as illustrated in Table 1. Furthermore, we found that the distance
between the first solution that was found by our algorithm to the original path is larger
than the distance between the optimal solution to the original path by an average of only
2.2%.

Since the original path was found by A* and was a shortest path between the two
nodes in the original graph, one might consider running A* on the current graph (i.e.,
after all the changes were made) in order to determine whether the current shortest path
is also close to the shortest original path. Figure 13 presents two curves that measure
the distance between an alternative plan and the original plan. The first curve presents
solutions that were found by our algorithm. The second curve presents shortest paths
that were found by A* after the graph was changed. The distance is measured according
to the ITDMF distance function. Both algorithms found the goal node rather quickly,
and both generated approximately four times as many nodes as the size of the original
path. However, Figure 13 clearly shows that the alternative path found using the ITDMF
distance function is always closer to the original path than the alternative path found

5 We used straight line distances for measuring distance between two states.

18

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000

D
if

fe
re

nc
e

be
tw

ee
n

or
ig

in
al

 a
nd

 a
lte

rn
at

iv
e

pa
th

s

Number of nodes in the graph.

TDMF distance function
A* algorithm

Fig. 13. ITDMF versus A*

by running the A* algorithm, even though the original path was created with the A*
algorithm.

5.3 Randomly Created Original Path

We now consider our experiments that used original paths that were generated by a
random walk on the graph (and are not the shortest paths, as above). The number of
random walks was 5% of the number of nodes in the graph for graphs with less than
1000 nodes, and a constant of 40 nodes for larger graphs.

Fig. 14.Randomly created original path

19

Figure 14 presents an original path (the dashed line) and an alternative path found
by our algorithm (the black line). Again, the similarity of the two paths is intuitively
clear.

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 n

od
es

 d
ev

el
op

ed
.

Number of nodes in the graph.

Exact tail
Approximated tail

Maximum
Number of nodes in the original path

Fig. 15.Number of generated nodes, ITDMF

Figure 15 presents the number of nodes generated by each of our approaches (for
measuring the estimated length of the alternative path for ITDMF) compared to the
number of nodes in the original path. The quality of the first solution found by all these
approaches was the same, and again, was larger than the optimal solution by no more
than 2.2%. However, the difference in speed between the three approaches of reaching
the goal is much larger than in the previous case (where the shortest path was used
for the original path); it seems that the combined version, which takes the maximum,
produced the best results and was the fastest. This is due to the nature of the path which
was randomly created and could go in different directions. Here again the number of
generated nodes was never larger than the number of nodes in the original by more than
a factor of 5, which confirms that the alternative path was found quickly by all three
approaches.

The experimental results support the applicability and effectiveness of our search
algorithm and the various heuristics. It also illustrates the differences between the three
heuristics. They perform similarly for the set of experiments where the shortest path
was used as the original path, but perform differently when the path was randomly
generated. The combined heuristic — where the maximum between the previous two
heuristics is used — performed best because it incorporates more information.

6 Example in the Blocks World

We presented a number of geometric metrics for measuring the difference between two
plans. We now demonstrate how these metrics might be used for a domain that is not in
itself geometric, namely a modified blocks world.

20

1 2 3 1 2 31 2 3

1 2 3
1 2 31 2 3

B

B

WBW

W

WWW

B
B

B
B

B
BB

S1/A1/B1

B
1 2 3

B2

S3/A5/B3S2

A2 A3
A4

Fig. 16.A modified Blocks World example

Consider the blocks world in Figure 16 which is described by the following predi-
cates:
Blocks(n)– The total number of blocks in the world.
On(A, B, S) – Block A is on block B and located at slot S.
Color(A,C) – The color of block A is C.
At(S) – The robot is at slot S.

The domain operators are:
Go(S, T)– The robot goes from slot S to slot T.
Carry(A, S, T) – The robot carries block A from the top of slot S to the top of slot T.
Destroy(S)– The robot destroys the block at the top of slot S.
Create(A,S,C)– The robot creates a new block A at the top of slot S with color C.

The initial state is at the left-most frame in the middle row, and the goal is to move
the white box (marked by W) to the third slot, as can be seen in right-most square of
that row (which models a goal state). There are three different plans in Figure 16 that all
reach a goal state. The original planS is illustrated in the middle of the figure while two
alternative plansA andB are illustrated below and aboveS respectively. In the original
plan S, the robot takes the white block and puts it on top of the black blocks in slot
2, and then moves it again to slot 3; this is done by performing twocarry operators.
Suppose that there is a restriction on the number of blocks in a given slot and that a
stack of three blocks is not allowed. Both alternative plansA andB must obey these
restrictions. In planA, the robot first destroys the black block at slot 2, moves the white
block to its destination, and then creates the black block again. In planB the agent
destroys the white block in slot 1 and creates it again in slot 3.

We would like to use the IDMMF function and measure the distance between these
two plans to the original plan. The IDMMF function assumes that there exists a distance
function between any two states in the domain. While this is trivial for a physical graph,
we should first define a distance metric between the states of the blocks world. There

21

are several sensible ways to define such a distance metric in this domain. We introduce
two metrics that were also proposed in the work of Ephrati et al. [6].

Since we consider each state to be described by a set of predicates, a straightforward
metric can be generated by the summation of the differences between the conflicting
predicates of the two states in question. In our example the difference between different
predicates can be defined in the following way:
Diff(Blocks(N),Blocks(M))= 3× |N −M |
Diff(At(S),At(T))= |S − T |
Diff(On(A,B,S),On(A,C,T))= 2× |S − T |

Another approach would be that the distance between any two states is defined by
the plan needed to bring about the differing predicates of one state, starting from the
other. Therefore, we defined(x, y) to be the minimal plan fromx to y. In this example,
we set the following values for the different operators:Destroy = 2, Create = 3,
Go(S, T) = |S − T | and finallyCarry(A,S, T) = 2 × |S − T |. Of course, in some
circumstances finding this minimal plan might be costly and another distance function
should be used.

By defining a distance function between any two states in the blocks world, we
make it possible to use any of the geometric distance functions defined in the previous
section in the context of the blocks world. This is mainly for purposes of illustration,
and in more realistic domains other distance functions could be explored.

6.1 Using IDMMF in the Blocks World

Here we describe the steps of our algorithm on the example of Figure 16. For the dis-
tance metric between the states we use a plan that unifies the two states. For the distance
between paths and for the PH heuristic we use the IDMMF distance function.

The purpose of the search is to find an alternative plan that is “as close as possible”
to the original planS. During the search, a tree is developed and at every stage of the
search each leaf defines a unique partial plan that corresponds to its branch in the tree.
Each branch is given a heuristic value. Based on this heuristic, we activate a best-first
search that prefers those branches that are most likely to be the prefixes of the plans that
are very close to the original plan.

The search starts at states1. According to the best-first search, states1 is expanded
and its two neighborsa2 andb2 are generated. In order to decide which state to expand
next,a2 or b2, we use our PH heuristic function. The branches are{a1, a2} and{b1, b2}.
The closest branch to the original plan according to the heuristic will be expanded next.

We now calculate the heuristic value of the branchA = {a1, a2}. For this we first
need to map the states ofA into the states ofS. a1 is mapped into itself (s1). Fora2, we
need to find the closest state inS. We get the following:
d(a2, s1) = Destroy(2) + Go(2, 1) = 3
d(a2, s2) = Create(A, 2, Bl) + Go(2, 1) + Carry(A, 1, 2) = 6
d(a2, s3) = 13

Thus,a2 is also mapped intos1. Sinces1 was the last state inS that was a desti-
nation, then for the reverse mapping we only need to map this node,s1, to the closest
node froma0 ands1, a2. Of course, sincea1 ands1 are identical, it is mapped to itself.

22

Thus we get that
ph({a1, a2}, S) = Fmap({a1,a2}→S1)

2 + Fmap(S1→{a1,a2})
1 = 2.

In the same manner, we need to find the distance between{b1, b2} and the original
plan S. Similar calculations show thatph({b1, b2}, S) = 4.5. Thus, the node in the
search tree that includesA = {a1, a2} is selected and expanded. However, in the end
we get that planB is closer, and this is the plan that is chosen.

7 Searching for an Alternative Schedule

The basic idea considered above, of applying best-first search to find alternative plans,
is also relevant to problem domains that are not purely state-space domains. To further
explore the generality of our approach, we expand it to the problem of rescheduling. In
this domain, a given schedule of tasks (i.e., the internal order in which they should be
executed) cannot be followed as planned, and thus an alternative schedule is required.
There are many real world examples, such as flight or delivery scheduling.

Consider the flight scheduling problem. Flights are often delayed or canceled due to
mechanical failures or weather. When this happens, the original flight schedule cannot
be executed as planned and a new schedule is required. One of the important properties
of the new schedule might be that it should require “a small number” of changes from
the original schedule, so as to minimize the discomfort of passengers. Therefore, we
might want to find a plan — a schedule — that is “as close as possible” to the original
plan.

Scheduling algorithms attempt to create good schedules under a set of constraints.
The field of scheduling algorithms is both broad and complex; there exist many surveys,
reviews, and handbooks of scheduling problems and algorithms (e.g., [12, 28, 14, 17]).
In this section, we do not present a general scheduling algorithm, but rather an algorithm
for finding a schedule that is as close as possible to a given original schedule. We show
how our approach to finding an alternative solution (discussed above), is also applicable
to scheduling. We propose distance metrics, and employ a best-first search algorithm
similar to the search described in previous sections.

7.1 The Scheduling Model

There are many classes of scheduling problems, and many associated ways to model
them. However, since our focus is not on scheduling per se, but rather on the search
for an alternative plan (or schedule), we choose a simple and well-known domain-
independent scheduling problem and its associated model. Letj1, j2, . . . , jn be a set
of homogeneous jobs (i.e., jobs requiring exactly the same amount of time to execute),
that can be executed sequentially. A scheduleS defines the order of job execution, such
that S(j1) designates the position in the sequence of execution. For example, if the
schedule defines performingj1 first, thenj2 followed by j3, S(j1) would be 1, with
S(j2) = 2 andS(j3) = 3. Therefore, a schedule can be viewed as a permutation of
the job indices. For example forn = 3, a scheduleS =< 3, 1, 2 > states that jobj3 is
executed first, thenj1, and thenj2.

23

7.2 Distance between Schedules

Our first need is to define distance metrics between two schedules. There are many con-
siderations that apply to schedule comparison, depending on the specific problem.6 We
have used here two simple and intuitive approaches, and formalize them into distance
metrics that will later be used in the search process.

There are many research fields in which distances between permutations are con-
sidered. For example, in the sorting community distance metrics between permutations
are used to measure the amount of “presortedness” of an unsorted sequence, as can be
seen in the work done by Mannila [20]. A comprehensive discussion of various dis-
tance metrics between permutation-type representations (such as the scheduling model
mentioned here) is provided in the work of Sorensen [29, 30].

We now turn to defining metrics between schedules for the purposes of our research.
These metrics can be used along with other metrics.

Mismatch and Index-based Metrics In mismatch metrics, two schedules are con-
sidered closer to one another if they contain many jobs that are performed, in both
schedules, in the same time slot. A simple distance metric counts the number of jobs
that are not executed in the same time slot in both schedules. More formally, we define
eq(a, b) = 0 if a = b, andeq(a, b) = 1, otherwise. We then define the mismatch metric
as:

mismatch(S1, S2) =
n∑

i=1

eq(S1(i), S2(i))

wheren is the number of jobs.
However, this approach to counting the number of misplaced jobs only measures

how many jobs were given different time slots in the compared schedules. The mis-
match metric does not consider how many time slots each job was moved (i.e., the
distance between a job’s position in the two schedules). For example, consider sched-
ulesSorg =< 1, 2, 3, 4, 5, 6 >, S1 =< 6, 2, 3, 4, 5, 1 >, andS2 =< 1, 2, 3, 4, 6, 5 >.
According to the mismatch distance metric, schedulesS1 andS2 have the same dis-
tance toSorg — that is, mismatch(S1, Sorg) = mismatch(S2, Sorg) = 2. However, the
two misplaced jobs inS1 (jobs 1 and 6) were moved by five time slots from the original
schedule, while inS2 the change was of only a single time slot (for each misplaced job).
To address this issue, we generalize the above metric to theindex-basedmetric:

indexBased(S1, S2) =
n∑

i=1

|S1(i)− S2(i)|.

Thus, for the example above, indexBased(S1, Sorg) = 5 + 0 + 0 + 0 + 0 + 5 = 10,
while indexBased(S2, Sorg) = 0 + 0 + 0 + 0 + 1 + 1 = 2.

6 Of course, there may be many domain-specific considerations that make one schedule “closer”
to another. We are exploring domain-independent aspects of the problem.

24

Sequence metricAnother distance metric of schedules might take as its main criterion
the comparison of internal sequences in the schedule. According to this notion, a sched-
ule is considered close to another schedule if they contain a large identical sequence of
jobs. Formally, we define thelongest sequencefunction as:

longestSequence(S1, S2) = n−MaxSequence,

where

MaxSequence= max(Q) s.t.∃t 1≤t≤n, ∀i t≤i < (t + Q) | S1(i) = S2(i).

MaxSequenceis therefore the maximal internal sequence of jobs that appears in
both schedules.

Consider the distance between the following schedules,Sorg =< 1, 2, 3, 4, 5, 6, 7 >,
andS1 =< 2, 3, 4, 5, 6, 7, 1 >, computed by the different distance metrics described
above. Then:

– mismatch(S1, Sorg) = 7;
– indexBased(S1, Sorg) = 6 + 1 + 1 + 1 + 1 + 1 + 1 = 12;
– longestSequence(S1, Sorg) = 7− 6 = 1.

Of course, one can suggest hybrids incorporating features of these metrics (and
others), but the overall principles remain the same.

7.3 The Search Process

After having defined distance metrics, we now turn our attention to a search algorithm
for finding a schedule close to the original. We can easily adopt the same search mech-
anism that was used above for state spaces, with only a few necessary modifications;
here too, each node in the search tree will be a partial plan. In this case, of course, a
partial plan is a schedule where not all the jobs have been assigned a time slot. Here
we also require a heuristic that will evaluate the probability that the partial schedule
will lead to a full schedule that will be close to the original schedule (according to the
distance metric).

In domains we previously considered, the cost functions used by the search algo-
rithm to evaluate nodes on the open list were not admissible. That is, we were not
guaranteed that the current distance between the two partial paths is a lower bound
on the final distance between the two complete paths. Therefore, when expanding the
first possible goal node (the first node representing a full alternative plan), we did not
necessarily have the alternative plan with the smallest possible distance to the origi-
nal plan. In the scheduling domain, however, it is possible to have an admissible cost
function, i.e., distances between a partial schedule and a full schedule will always be
a lower bound on the distance between the two full schedules. Therefore, when using
a best-first search mechanism to expand nodes, when the first goal node is chosen for
expansion we are guaranteed to have the solution with the lowest cost — in our case,
the closest schedule.

Creating admissible cost functions for the distance metrics described above can be
done via problem abstraction by deleting constraints. This is achieved by computing

25

the distance metric between the partial schedule and the original schedule, while not
considering any jobs that have not yet been scheduled (in the partial schedule). This
is easy to calculate in all distance metrics we presented for the scheduling problem.
For example, suppose thatSorg=< 1, 2, 3, 4, 5, 6, 7 > is the original schedule, and
Spar=< 3, 4, 2, 1, ∗, ∗, ∗ > is the partial schedule for which the heuristic is needed. For
the mismatch metric the heuristic distance ish(Spar, Sorg) = 4 because all 4 jobs are
mismatched. For the index-based metric it ish(Spar, Sorg) = 2+2+1+3+0+0+0 =
8. Finally, for the sequence metric since the maximal sequence is of size 1 we get
h(Spar, Sorg) = 3.

7.4 Experimental Results for the Scheduling Environment

Since in the scheduling domain we use admissible heuristics, we have the best alterna-
tive schedule as soon as the first full alternative schedule is chosen for expansion. In
this subsection we assess the performance of our search process empirically, by experi-
menting on a number of randomly created problem instances.

We experimented on what we refer to asscheduling search trees. Each node in
this tree corresponds to a partial or full schedule (i.e., a partial or full permutation
of the tasks). The root of this tree contains the empty schedule. Expanding a node
means adding the next task to the end of the partial schedule. The leaves of this tree
are complete schedules.

In real life, there are usually scheduling constraints among the various tasks as-
signments that define which partial and full schedules are allowed. Therefore, when
expanding a node in the scheduling search tree we only add tasks that will not violate
scheduling constraints.

To better simulate a wide variety of scheduling rules, we ran our experiments on
randomly createdscheduling search treesthat were created as follows. We first deter-
mined two parameters, theschedule size(which is the number of tasks to be scheduled),
and thetree size(which is the number of nodes in the tree).7 We built the tree as follows:
we randomly generated a schedule, then added it to the search tree. We continued this
process as long as the number of nodes in the tree did not exceed thetree sizeparameter.
Schedules that were not added to the tree are assumed to be schedules that violate the
constraints.

We performed several experiments on random scheduling search trees with differ-
ent schedule sizes and tree sizes. For each of these trees, we ran our best-first search
algorithm with the various heuristics and distance metrics defined above.

Figure 17 shows the average number of nodes generated during the search with the
various heuristics, as a function of the number of nodes in the tree. Figure 18 provides
the ratio of generated nodes to the number of nodes in the graph, on the same set of
experiments. Each data point in these figures is the average of 100 random scheduling
search trees with the same characteristics.

The curves denoted “Indices 20” and “Sequence 20” refer to using the index-based
and longest sequence metric, respectively, for schedules of size 20. “Indices 30” and
“Sequence 30” correspond to the same metrics, but for schedules of size 30. The size of

7 Note that schedule size is actually the depth of the tree.

26

 0

 5000

 10000

 15000

 20000

 25000

 5000 10000 15000 20000 25000

Nu
m

be
r o

f g
en

er
ate

d n
od

es

Number of nodes

Number of nodes
Indices metric 30

Sequence metric 30
Indices metric 20

Sequence metric 20

Fig. 17.Number of nodes generated during the search

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5000 10000 15000 20000 25000

Nu
m

be
r o

f g
en

er
ate

d n
od

es

Number of nodes

Indices metric 30
Sequence metric 30

Indices metric 20
Sequence metric 20

Fig. 18.Percentage of nodes that were generated during the search

27

the search tree was varied between 5,000 and 25,000. To better emphasize our results,
we also added to Figure 17 another line, denoted “nodes,” that displays the number of
nodes in the tree (graph).

As would be expected, when the tree size is larger, we need to expand more nodes
in order to find the best alternative schedule. However, for all metrics and graph sizes,
the number of generated nodes is always significantly smaller than the actual number
of nodes in the tree. This shows the benefit of our approach — we need to generate only
a part of search tree to find the optimal alternative schedule. For example, search using
the index-based metric in a scheduling search tree of size 15,000 required generating
6,499 nodes for a schedule of size 30, and only 4,726 nodes for schedule size 20.

Furthermore, as can be seen in Figure 18, the ratio of generated nodes decreases
when the size of the graph increases. This is because as the number of nodes increases,
the graph becomes denser, and thus enables the heuristic to prune more nodes during
the search. This also suggests that for even larger graphs, the benefit of our algorithm
would increase.

Note that even though the graphs used here were extremely sparse (a full tree for
schedule size 20 will contain20! nodes, which is much larger than the 25,000 nodes
used here), the search was able to prune large portions of the graph — thus suggesting
the efficiency of our method.

Another observation is the following. Figure 17 shows that when the search is per-
formed to find the best alternative schedule according to the index-based metric, it gen-
erates a smaller number of nodes than when it searches for the longest sequence metric.
This was valid for all sizes of schedules and schedule trees. The reason for this is that
the index-based metric allowed a wider range of values than the largest sequence met-
ric. In the largest sequence metric, the maximum value that a schedule can have is the
schedule size minus 1 (which happens when the compared schedules have no identi-
cal sequences), while in the index-based metric, values can get much higher. A larger
range of values suggests a larger variety of node costs during the search. This enables
the heuristic to prune more nodes, thus explaining the improved performance of the
index-based metric.

Notice also from Figure 18 that when comparing searches for different schedule
sizes on a fixed tree size, we see that it is harder to find an alternative schedule for longer
schedules. This is because, for a given tree size, a larger schedule size will produce a tree
with a smaller branching factor. A smaller branching factor enables a smaller amount
of pruning with admissible heuristics, and thus more nodes will be generated during the
search.

8 Conclusions and Future Work

We have presented an algorithm that efficiently helps an agent find an alternative path
that is close to an original path it has been given. We have demonstrated the use of this
algorithm in three different environments: physical roadmaps, the blocks world, and
scheduling. For the physical environment, we presented two complex metrics for the
purpose of assessing path “closeness”, and presented a heuristic function to guide the
search. Experimental results confirm that such an alternative path is reached relatively

28

efficiently. For the scheduling environment, we have discussed two distance metrics
that enable the use of admissible heuristics during the search process. With admissible
heuristics, the “closest” schedule can be found efficiently, by pruning parts of the search
space.

Future work can proceed in four different directions. The first direction is to fur-
ther explore the heuristics and distance metrics that were used. New “closeness” dis-
tance metrics can be devised for various environments; for example, a hybrid metric
for physical environments that is a combination of IDMMF and ITDMF may be a good
metric for considering both time and distance considerations. All examples presented
in this paper show a simple model with simple distance metrics. Creating more sophis-
ticated distance metrics for more interesting models, and eventually creating a method
for creating distance metrics, is in our view a subject worthy of future study. A general
automated method for providing distances could also be a subject of future research.

The second direction is to focus on the search algorithm itself. In this paper, we
presented a general (domain independent) search method for our problem. Devising
domain-specific search algorithms may prove useful.

The third direction is to explore more intricate models of domains. In this work, we
assumed that the domain can be modeled as a state graph, and that every node in the
original plan is equally important. Future work can address different types of domains
where these assumptions do not hold. For example, the supervisor that defined the orig-
inal plan may be able to define which states in the original plan are not important, and
thus the distance from them in the alternative plan may be ignored.

Finally, in this paper we dealt only with discrete domains. Future work could ad-
dress the implementation of our various techniques in continuous domains.

9 Acknowledgments

The research was supported by the Israeli Ministry of Science, Infrastructure grant No.
3-942.

References

1. J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring. InPro-
ceedings of AAAI-88, pages 735–740, St. Paul, Minnesota, 1988.

2. E. Arkin, L. P. Chew, D. P. Huttenlovher, K. Kedem, and J. S. B. Mitcjell. An efficiently
computable metric for comparing polygonal shapes. InProceedings of the first ACM-SIAM
Symposium on Discrete Algorithms, pages 209–216, 1990.

3. M. J. Atallah. A linear time algorithm for the Hausdorff distance between convex polygons.
Information Processing Letters, 17:207–209, 1983.

4. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hull.
Geometry Center Technical Report GCG53, University of Minnesota, 1993.

5. O. Brock and K. Oussama. Real-time replanning in high-dimensional configuration spaces
using sets of homotopic paths. InProceedings of the IEEE International Conference on
Robotics and Automation, pages 550–555, San Francisco, USA, 2000.

6. E. Ephrati and J. S. Rosenschein. Planning to please: Following another agent’s intended
plan. Group Decision and Negotiation, 2(3):219–235, 1993.

29

7. A. Felner. Searching for an alternative plan. Master’s thesis, Department of Computer
Science, The Hebrew University, Jerusalem, Israel, 1995.

8. A. Felner, A. Pomeransky, and J. S. Rosenschein. Searching for an alternative plan. In
Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-
Agent Systems, pages 33–40, Melbourne, Australia, 2003.

9. K. Z. Haigh and M. Veloso. Route planning by analogy. InProceedings of the International
Conference on Case-Based Reasoning, 1995.

10. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, SSC-
4(2):100–107, 1968.

11. F. Hausdorff.Grundzuege der Mengenlehre. Viet, Leipzig, 1914.
12. A. Jain and S. Meeran. A state-of-the-art review of job-shop scheduling techniques, 1998.
13. R. M. Jensen and M. M. Veloso. OBDD-based universal planning: Specifying and solving

planning problems for synchronized agents in non-deterministic domains.Artificial Intelli-
gence Today, Recent Trends and Developments, pages 212–248, 1999.

14. D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In M. J. Atallah, editor,Handbook
of Algorithms and Theory of Computation. CRC Press, 1997.

15. S. Koenig and M. Likhachev. D* lite. InProceedings of the Eighteenth National Conference
on Artificial Intelligence, pages 476–483, Edmonton, Canada, July–August 2002.

16. S. Koenig and M. Likhachev. Incremental A*. InAdvances in Neural Information Processing
Systems 14 (NIPS). MIT Press, Cambridge, MA, 2002.

17. J. Leung and J. H. Anderson.Handbook of Scheduling. CRC Press, May 1, 2004.
18. W. Li and M. Zhang. Distributed task plan: A model for designing autonomous mobile

agents. InProceedings of the International Conference on Artificial Intelligence, pages 336–
342, Las-Vegas, 1999.

19. B. Liu. Intelligent route finding: Combining knowledge, cases and an efficient search algo-
rithm. In Proceedings of ECAI-96, pages 380–384, Budapest, Hungary, 1996.

20. H. Mannila. Measures of presortedness and optimal sorting algorithms.IEEE Transactions
on Computers, 34(4):318–325, 1985.

21. R. B. McMaster. Measurement in generalization. InProceedings of the 20th International
Cartography Conference, pages 20–82, August 2001.

22. R.B. McMaster. A statistical analysis of mathematical measures for linear simplification.
The American Cartographer, 13(2):103–117, 1986.

23. R.B. McMaster. The integration of simplification and smoothing algorithms in line general-
ization. Cartographica, 26:101–121, 1989.

24. K. L. Myers and Thomas J. Lee. Generating qualitatively different plans through metatheo-
retic biases. InProceedings of the Sixteenth National Conference on Artificial Intelligence,
pages 570–576, Menlo Park, CA, USA, 1999. American Association for Artificial Intelli-
gence.

25. B. Nebel and J. Koehler. Plan reuse versus plan generation.Artificial Intelligence, 76:427–
454, 1995.

26. A. Okabe, B. Boots, and K. Sugihara.Spatial Tessellations, Concepts, and Applications of
Voronoi Diagrams. Wiley, Chichester, UK, 1992.

27. S. Russell and P. Norvig.Artificial Intelligence, A Modern Approach, Second Edition. Pren-
tice Hall, 2005.

28. J. Sgall. Line scheduling — a survey, On-Line Algorithms. Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1997.

29. K. Sorensen. Distance measures based on the edit distance for permutation type represen-
tations. InProceedings of the Workshop on Analysis and Design of Representations and
Operators, pages 29–35, Chicago, USA, 2003.

30

30. K. Sorensen, M. Reimann, and C. Prins. Permutation distance measures for memetic algo-
rithms with population management. InProceedings of MIC 6th Metaheuristics Interna-
tional Conference, Vienna, Austria, 2005.

31. A. Stentz. Optimal and efficient path planning for partially-known environments. InPro-
ceedings of ICRA, pages 3310–3317, 1994.

