
-- --

To appear in the Proceedings of the 1990 International Conference on Parallel Processing

Implementing Sequential Consistency In Cache-Based Systems†

Sarita V. Adve
Mark D. Hill

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin 53706

ABSTRACT

A model for shared-memory systems commonly
(and often implicitly) assumed by programmers is that
of sequential consistency. For implementing sequential
consistency in a cache-based system, it is widely
believed that (1) implementing strong ordering is
sufficient and (2) restricting a processor to one shared-
memory reference at a time is practically necessary.

In this paper we show that both beliefs are false.
First, we prove that (1) is false with a counter-example.
Second, we argue that (2) is false by giving sufficient
conditions and an implementation that allow a processor
to have simultaneous incomplete shared-memory refer-
ences. While we do not demonstrate that this imple-
mentation is superior, we do believe it is practical and
worthy of consideration.

Keywords: shared-memory multiprocessors,
sequential consistency, strong ordering, cache coher-
ence.

1. Introduction

A model of memory for shared-memory MIMD
multiprocessor systems commonly (and often impli-
citly) assumed by programmers is that of sequential
consistency, formally defined by Lamport [Lam79] as
follows:

[Hardware is sequentially consistent if] the
result of any execution is the same as if the
operations of all the processors were exe-
cuted in some sequential order, and the
operations of each individual processor
appear in this sequence in the order

�����������������������������������

† The material presented here is based on research supported in
part by the National Science Foundation’s Presidential Young
Investigator and Computer and Computation Research Programs
under grants MIPS-8957278 and CCR-8902536, A. T. & T. Bell
Laboratories, Digital Equipment Corporation, Texas Instru-
ments, Cray Research and the graduate school at the University
of Wisconsin--Madison.

specified by its program.

Application of the definition requires a specific
interpretation of the terms operations and result. We
assume that operations refer to memory operations or
accesses (e.g., reads and writes) and result refers to the
union of the values returned by all the read operations in
the execution and the final state of memory. With these
assumptions, the above definition translates into the fol-
lowing two conditions: (1) all memory accesses appear
to execute atomically in some total order, and (2) all
memory accesses of each processor appear to execute in
an order specified by its program.

Unlike uniprocessor systems, simple interlock
logic within a processor is not sufficient to ensure
sequential consistency in multiprocessors. Particularly,
as potential for parallelism increases, the conditions for
ensuring sequential consistency become quite complex,
and impose several restrictions on the hardware
[DSB86].

This paper is concerned with the hardware imple-
mentation of sequential consistency, specifically for
cache-based shared memory multiprocessors. We first
show that strong ordering, proposed by Dubois, Scheu-
rich and Briggs [DSB86], is not equivalent to sequential
consistency (Section 2). Next we introduce the second,
common approach for implementing sequential con-
sistency that requires processors to perform memory
references ‘‘one-at-a-time’’ [BMW85, RuS84, ScD87],
and illustrate with sufficient conditions and an imple-
mentation proposal that this one-at-a-time approach is
not necessary in practice (Section 3).

2. Strong Ordering

Strong ordering was defined by Dubois, Scheu-
rich and Briggs in [DSB86] as follows:

In a multiprocessor system, storage
accesses are strongly ordered if 1) accesses
to global data by any one processor are ini-
tiated, issued and performed in program
order, and if 2) at the time when a STORE

- 1 -



-- --

on global data by processor I is observed by
processor K, all accesses to global data per-
formed with respect to I before the issuing
of the STORE must be performed with
respect to K.1

It was claimed earlier that a system that is
strongly ordered is also sequentially consistent
[DSB86, ScD87]. However, Figure 1 shows an execu-
tion that is not precluded by strong ordering, but
violates sequential consistency. Thus, implementing
strong ordering is not sufficient for implementing
sequential consistency (confirmed by Dubois and
Scheurich [DuS89]).

� �����������������������������������������������������������������������������������������

Initially X = Y = 0 in processor caches

P 1 P 2 P 3

X = 1
x 2 = X
y 2 = Y

Y = 1
x 3 = X

Result - x 2 = 1, y 2 = 0, x 3 = 0

Figure 1. Strong ordering ≠ sequential consistency.
Consider a cache-based system with a general intercon-
nect. X and Y are shared variables initially present in pro-
cessor caches with value 0. x 2 and y 2 are local variables,
possibly registers, belonging to P 2 , and x 3 is local to P 3 .
Let all the accesses be performed in program order. It is
possible for the write on X to be propagated to P 2 before
P 3 , and before the write on Y is propagated to P 2 . Thus
reads issued by P 2 can return a 1 for X and a 0 for Y,
making it appear that X was written before Y. P 3 can still
return a 0 for X, making it appear that Y was written be-
fore X. Therefore, there does not exist any total ordering
of memory accesses for this execution and hence the sys-
tem is not sequentially consistent. However, none of the
sufficient conditions for strong ordering (or concurrent
consistency) are violated.

� �����������������������������������������������������������������������������������������

Admittedly, it appears that the accesses in Figure
1 would never arise in ‘‘real’’ programs. Apparently
for this reason, Scheurich introduces concurrent con-
sistency for systems that are sequentially consistent
‘‘except for programs which explicitly test for sequen-
tial consistency or take access timings into considera-
tion’’ [Sch89]. Without a formal characterization of
these exceptions, however, it is difficult for hardware
�����������������������������������

1. Refer to [DSB86] for a precise definition of the terms is-
sued, initiated, and performed.

designers to determine whether an implementation is
correct and what restrictions, if any, should be given to
software. For this reason, we advocate that hardware
designers build sequentially consistent memory systems
directly, rather than using strong ordering or concurrent
consistency as intermediate models.

3. Relaxing the One-at-a-time Approach

Most implementations of sequential consistency
in shared memory systems require a processor to stall
before issuing a memory access until all effects of the
previous access are observed by all the components of
the system. For cache-based systems where processors
are connected to memory through a common bus, most
of the cache-coherence protocols proposed in the litera-
ture satisfy this condition [ArB86, RuS84]. The RP3 is
a cache-based system that consists of a general inter-
connection network but does not support the caching of
shared variables in hardware [BMW85]. Sequential
consistency is maintained by stalling on every request to
memory until an acknowledgement is obtained, again
satisfying the one-at-a-time condition.

For cache-based systems with general intercon-
nects that allow shared variables to be cached, a cache-
coherence protocol is not sufficient. Scheurich and
Dubois first proposed a sufficient condition for ensuring
sequential consistency in such systems [ScD87, Sch89].
The condition is satisfied if all processors issue their
accesses in program order, and no access is issued by a
processor until its previous access is globally per-
formed. A write is said to be globally performed when
its modification has been propagated to all processors so
that future reads cannot return old values that existed
before the write. A read is globally performed when the
value to be returned is bound, and the write that wrote
this value is globally performed.

Sequential consistency can be maintained, how-
ever, without requiring a processor to globally perform
each reference before beginning the next. Consider a
system with an invalidation-based cache coherence pro-
tocol. A write miss to a line in read-only state is glo-
bally performed only when all the read-only copies have
been invalidated. Scheurich [Sch89] observes that
sequential consistency will be maintained even if a pro-
cessor begins its next reference as soon as the invalida-
tions are buffered at all other processors, provided other
processors process buffered invalidations before han-
dling a cache miss. Such references are not globally
performed, because processors with unprocessed invali-
dates can still read old values. However, a processor
reading an old value has not communicated with other
processors via a cache miss since the invalidation was
posted. Intuitively, therefore, sequential consistency is

- 2 -



-- --

preserved, because these reads could have been done
before the invalidation.

Exploiting this intuition more formally, we next
give a new set of sufficient conditions for implementing
sequential consistency that do not require a processor to
stall for a write miss to be globally performed (Section
3.1). We then describe an implementation of these con-
ditions on a general cache-based system (Section 3.2)
and qualitatively compare the new implementation to
one based on the one-at-a-time approach (Section 3.3).

3.1. Sufficient Conditions for Sequential Consistency

A processor can be allowed to proceed after issu-
ing a write even while the corresponding invalidations
(or updates) are on their way to the other processors in
the system if some additional precautions are taken.
Particularly, while its previous write is pending, the
effect of the subsequent accesses of a processor should
not be made visible to any other processor in the sys-
tem. Hence to other processors, it is as if these accesses
were actually performed after the pending write was
globally performed. Based on this notion, we give
below a set of conditions that is sufficient for imple-
menting sequential consistency. (Accesses below need
only refer to memory operations on shared, writable
locations. If accesses to read-only and private locations
can be distinguished, they can be handled more aggres-
sively.)

1. Accesses are issued in program order.

2. All processors observe writes to a given location
in the same order.

3. An access cannot be issued by a processor if

(a) a read previously issued by it is not globally
performed or

(b) a write previously issued by it has not
modified some copy of the line it accessed.

4. Let processor Pi issue an access A for a line on
which a write W issued by processor Pj is glo-
bally performed while some writes of Pj before W
are not globally performed. Then,

(a) if A is a write operation, it can be globally per-
formed only after all writes issued by Pj before W
are globally performed,

(b) if A is a read operation, it can return the value
written by W only after all writes issued by Pj

before W are globally performed.

5. Let processor Pi issue a write W for a line on
which a read R issued by processor Pj is globally
performed while some writes of Pj before R are
not globally performed. Then, W can be globally
performed only after all writes issued by Pj

before R are globally performed.

6. A read issued by a processor while some of its
previous writes are not globally performed should
return the last value written on any copy of the
accessed line, where last is defined by the order
ensured by condition 2.

Condition 1 above is required so that accesses
occur in program order. Condition 2 is the requirement
for cache coherence and ensures correct ordering
between writes to the same location. Condition 3 states
when a processor has to stall because of its own incom-
plete accesses. Thus, a processor cannot proceed after
issuing a read until a return value is bound to the read
and all other processors have observed this value. (This
restriction is similar to that in [ScD87, Sch89] and we
do not have any optimizations for it.) A processor can-
not proceed after issuing a write until it has the permis-
sion to write the line requested. A violation of this con-
dition could lead to deadlock or necessitate rollback.

Conditions 4 and 5 state when a processor can be
stalled because of incomplete accesses of other proces-
sors. Condition 4 ensures that if a line l is written by
processor Pj while it has previous writes pending, then
a read on l by another processor can only return an older
value of the line until it observes the pending write of
Pj . Thus it appears to all processors as if the write to l
actually occurred after the pending write. Condition 5
ensures that if a line l is read by a processor Pj while it
has previous writes pending, no subsequent write to l
can be globally performed until the pending writes have
been observed by all processors. This ensures that after
Pj does its read, no other processor can read a later
value of the line until the pending write of Pj is
observed by it. This ensures that the subsequent read of
Pj also appears to occur after the pending write.

Condition 6 ensures that while previous writes are
pending, a processor always procures the latest copy of
any line. Along with condition 3b, this avoids the possi-
bility of deadlock or the need to roll back.

Based on the above reasoning, a proof of correct-
ness of the conditions is given in [AdH89]. The proof is
based on assigning unique hypothetical timestamps to
each access in an execution. The timestamps are
assigned so that an ordering of accesses in increasing
order of their timestamps is consistent with the result of
the execution and program order. This implies sequen-
tial consistency.

3.2. Implementation

This section discusses an implementation of the
new conditions on a cache-coherent system with a gen-
eral interconnect. A straightforward directory-based,
write-back, invalidation cache-coherence protocol,

- 3 -



-- --

similar to those discussed in [ASH88], is assumed. Our
protocol allows, however, a line requested by a write to
be forwarded to the requesting processor in parallel with
the sending of its corresponding invalidations. On
receipt of an invalidation, a cache is required to return
an acknowledgement message to the directory (or
memory). When the directory (or memory) receives all
the acknowledgements pertaining to a particular write, it
is required to send its acknowledgement to the proces-
sor cache that issued the write. The implementation
described below allows only one write miss of any
given processor to be outstanding. In [AdH89], we
describe how more outstanding misses might be accom-
modated.

Condition 1 of the algorithm is ensured directly
by requiring a processor to issue accesses in program
order. Condition 2 is satisfied due to the cache-
coherence protocol. For condition 3a, it is sufficient to
stall a processor on a read until the requested line is pro-
cured. Satisfying the remaining conditions discussed
below will not allow the line to be procured until the
read is globally performed. For condition 3b, a proces-
sor is made to wait on a write until it obtains a read-
write copy of the line in its cache and updates it.

For conditions 4 and 5, a one-bit counter is asso-
ciated with every processor and a reserve bit is associ-
ated with every cache line. The counter is set when a
line originally in read-only state is returned in response
to a write request. It is reset on the receipt of the ack-
nowledgement from memory. Thus, a counter that is set
implies that a write issued by the corresponding proces-
sor has its acknowledgement outstanding, and hence is
not globally performed. If a read or a write to a cache
line is globally performed while the counter is set, then
the reserve bit of the line is set. In addition, when a
write returns a line which was originally read-only, its
reserve bit is also set. All reserve bits are reset as soon
as the counter is reset.

A reserved line written with the counter set is the
only valid copy of the line in the system, and hence a
request to this line is routed to the processor holding it
reserved. Similarly, a write to a reserved line read with
the counter set will result in an invalidation request
reaching the processor with the reserved line. These
read, write and invalidation requests are not serviced as
long as the line is reserved which is until the processor
counter is reset, i.e., until all previous writes of the pro-
cessor are globally performed2. Now conditions 4 and 5
�����������������������������������

2. This might be accomplished by maintaining a queue of
stalled requests to be serviced when the counter reads zero, or a
negative acknowledgement may be sent to the processor that is-
sued the request, asking it to try again.

can be met if it is ensured that a line with its reserve bit
set, is never flushed out of a processor cache. A proces-
sor that requires such a flush is made to stall until the
pending write is globally performed. To ensure condi-
tion 6, while the counter is set, a read access is con-
sidered a hit only if the line accessed is held in read-
write state in the processor cache. All other read
accesses are sent to the directory and the processor
stalls until they are serviced.

3.3. A qualitative analysis

Figure 2 illustrates how the implementation
described in the previous section can perform better
than one based on the one-at-a-time approach for a gen-
eral cache-based system. The one-at-a-time approach
requires a processor to stall on a write miss, until the
line requested is procured by its cache, and until all
other copies of the line in the system are invalidated
(indicated by an acknowledgement). In the new imple-
mentation, a processor is allowed to proceed on a write
miss as soon as the requested line is procured by its
cache. Subsequent accesses to lines held in read-write
state in the processor cache are immediately serviced
from the cache. A read to a line that is held in read-only
state is also serviced, albeit from memory. Thus, the
new implementation can perform better than one based
on the one-at-a-time approach by allowing more
memory accesses to be overlapped.

For applications involving a lot of sharing, how-
ever, it is possible for accesses to be blocked often due
to outstanding writes of other processors. In the case a
blocked access belongs to the critical path of the com-
putation, performance could be adversely affected.

In any case, the one-at-a-time approach is not
necessary in practice, and the new implementation can-
not be rejected outright since its additional cost is small
-- only a one bit counter per processor, a reserve bit per
cache line and a mechanism for a processor to stall
requests from other processors directed to it.

4. Conclusions

A memory model for shared-memory multipro-
cessor systems most commonly assumed by program-
mers is that of sequential consistency. Strong ordering
has been believed to be a sufficient condition for imple-
menting sequential consistency. We have shown with a
counter-example that this is not true. As a necessary
condition for a practical implementation of sequential
consistency, it has been widely believed that a processor
should not be allowed to issue an access until all effects
of its previous access are observed. We have shown that
this belief is also false by giving a set of sufficient con-

- 4 -



-- --

� �����������������������������������������������������������������������������������������

One-at-a-time New Implementation

Write X; assume miss. Write X; assume miss.

STALL. STALL.

Block for X returned. Block for X returned.

STALL. Do additional reads and
writes to blocks cached in
read-write state.

STALL. For read miss or read hit
to block in read-only
state, stall until block can
be re-acquired from
memory.

Acknowledgement for X
returns.

Acknowledgement for X
returns.

Perform accesses already
done by new implementa-
tion.

Continue.

Continue.

Figure 2. Qualitative analysis of new implementation.
� �����������������������������������������������������������������������������������������

ditions and an implementation that allow a processor to
proceed after a write miss even if the write is not pro-
pagated to other processors.

Although our new conditions are less strict than
the one-at-a-time approach, they still impose several
restrictions on hardware. For higher performance,
software support can be solicited
[AdH90, DSB86, ShS88].

5. References

[AdH89] S. V. Adve and M. D. Hill, Weak Ordering
- A New Definition And Some
Implications, Computer Sciences Technical
Report #902, University of Wisconsin,
Madison, December 1989.

[AdH90] S. V. Adve and M. D. Hill, Weak Ordering
- A New Definition, To appear in the 17th
Annual International Symposium on
Computer Architecture, May 1990.

[ASH88] A. Agarwal, R. Simoni, M. Horowitz and J.
Hennessy, An Evaluation of Directory
Schemes for Cache Coherence, Proc. 15th
Annual International Symposium on
Computer Architecture, Honolulu, Hawaii,

June 1988, 280-289.

[ArB86] J. Archibald and J. Baer, Cache Coherence
Protocols: Evaluation Using a
Multiprocessor Simulation Model, ACM
Transactions on Computer Systems 4, 4
(November 1986), 273-298.

[BMW85] W. C. Brantley, K. P. McAuliffe and J.
Weiss, RP3 Process-Memory Element,
International Conference on Parallel
Processing, August 1985, 772-781.

[DSB86] M. Dubois, C. Scheurich and F. A. Briggs,
Memory Access Buffering in
Multiprocessors, Proc. Thirteenth Annual
International Symposium on Computer
Architecture 14, 2 (June 1986), 434-442.

[DuS89] M. Dubois and C. Scheurich, Private
Communication, November 1989.

[Lam79] L. Lamport, How to Make a Multiprocessor
Computer That Correctly Executes
Multiprocess Programs, IEEE Trans. on
Computers C-28, 9 (September 1979),
690-691.

[RuS84] L. Rudolph and Z. Segall, Dynamic
Decentralized Cache Schemes for MIMD
Parallel Processors, Proc. Eleventh
International Symposium on Computer
Architecture, June 1984, 340-347.

[ScD87] C. Scheurich and M. Dubois, Correct
Memory Operation of Cache-Based
Multiprocessors, Proc. Fourteenth Annual
International Symposium on Computer
Architecture, Pittsburgh, PA, June 1987,
234-243.

[Sch89] C. E. Scheurich, Access Ordering and
Coherence in Shared Memory
Multiprocessors, Ph.D. Thesis, Department
of Computer Engineering, Technical Report
CENG 89-19, University of Southern
California, May 1989.

[ShS88] D. Shasha and M. Snir, Efficient and
Correct Execution of Parallel Programs that
Share Memory, ACM Trans. on
Programming Languages and Systems 10, 2
(April 1988), 282-312.

- 5 -

-- --


