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The character of a cell is defined by its constituent pro-
teins, which are the result of specific patterns of gene
expression. Crucial determinants of gene expression pat-
terns are DNA-binding transcription factors that choose
genes for transcriptional activation or repression by rec-
ognizing the sequence of DNA bases in their promoter
regions. Interaction of these factors with their cognate
sequences triggers a chain of events, often involving
changes in the structure of chromatin, that leads to the
assembly of an active transcription complex (e.g., Cosma
et al. 1999). But the types of transcription factors present
in a cell are not alone sufficient to define its spectrum of
gene activity, as the transcriptional potential of a ge-
nome can become restricted in a stable manner during
development. The constraints imposed by developmen-
tal history probably account for the very low efficiency
of cloning animals from the nuclei of differentiated cells
(Rideout et al. 2001; Wakayama and Yanagimachi 2001).
A “transcription factors only” model would predict that
the gene expression pattern of a differentiated nucleus
would be completely reversible upon exposure to a new
spectrum of factors. Although many aspects of expres-
sion can be reprogrammed in this way (Gurdon 1999),
some marks of differentiation are evidently so stable that
immersion in an alien cytoplasm cannot erase the
memory.

The genomic sequence of a differentiated cell is
thought to be identical in most cases to that of the zy-
gote from which it is descended (mammalian B and T
cells being an obvious exception). This means that the
marks of developmental history are unlikely to be
caused by widespread somatic mutation. Processes less
irrevocable than mutation fall under the umbrella term
“epigenetic” mechanisms. A current definition of epige-
netics is: “The study of mitotically and/or meiotically
heritable changes in gene function that cannot be ex-
plained by changes in DNA sequence” (Russo et al.
1996). There are two epigenetic systems that affect ani-
mal development and fulfill the criterion of heritability:
DNA methylation and the Polycomb-trithorax group

(Pc-G/trx) protein complexes. (Histone modification has
some attributes of an epigenetic process, but the issue of
heritability has yet to be resolved.) This review concerns
DNA methylation, focusing on the generation, inheri-
tance, and biological significance of genomic methyl-
ation patterns in the development of mammals. Data
will be discussed favoring the notion that DNA methyl-
ation may only affect genes that are already silenced by
other mechanisms in the embryo. Embryonic transcrip-
tion, on the other hand, may cause the exclusion of the
DNA methylation machinery. The heritability of meth-
ylation states and the secondary nature of the decision to
invite or exclude methylation support the idea that DNA
methylation is adapted for a specific cellular memory
function in development. Indeed, the possibility will be
discussed that DNA methylation and Pc-G/trx may rep-
resent alternative systems of epigenetic memory that
have been interchanged over evolutionary time. Animal
DNA methylation has been the subject of several recent
reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000;
Costello and Plass 2001; Jones and Takai 2001). For re-
cent reviews of plant and fungal DNA methylation, see
Finnegan et al. (2000), Martienssen and Colot (2001), and
Matzke et al. (2001).

Variable patterns of DNA methylation in animals

A prerequisite for understanding the function of DNA
methylation is knowledge of its distribution in the ge-
nome. In animals, the spectrum of methylation levels
and patterns is very broad. At the low extreme is the
nematode worm Caenorhabditis elegans, whose genome
lacks detectable m5C and does not encode a conven-
tional DNA methyltransferase. Another invertebrate,
the insect Drosophila melanogaster, long thought to be
devoid of methylation, has a DNA methyltransferase-
like gene (Hung et al. 1999; Tweedie et al. 1999) and is
reported to contain very low m5C levels (Gowher et al.
2000; Lyko et al. 2000), although mostly in the CpT di-
nucleotide rather than in CpG, which is the major target
for methylation in animals. Most other invertebrate ge-
nomes have moderately high levels of methyl-CpG con-
centrated in large domains of methylated DNA separated
by equivalent domains of unmethylated DNA (Bird et al.
1979; Tweedie et al. 1997). This mosaic methylation pat-
tern has been confirmed at higher resolution in the sea
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squirt, Ciona intestinalis (Simmen et al. 1999). At the
opposite extreme from C. elegans are the vertebrate ge-
nomes, which have the highest levels of m5C found in
the animal kingdom. Vertebrate methylation is dis-
persed over much of the genome, a pattern referred to as
global methylation. The variety of animal DNA methyl-
ation patterns highlights the possibility that different
distributions reflect different functions for the DNA
methylation system (Colot and Rossignol 1999).

Mammalian DNA methylation patterns vary in time
and space

In human somatic cells, m5C accounts for ∼1% of total
DNA bases and therefore affects 70%–80% of all CpG
dinucleotides in the genome (Ehrlich 1982). This average
pattern conceals intriguing temporal and spatial varia-
tion. During a discrete phase of early mouse develop-
ment, methylation levels in the mouse decline sharply
to ∼30% of the typical somatic level (Monk et al. 1987;
Kafri et al. 1992). De novo methylation restores normal
levels by the time of implantation. A much more limited
drop in methylation occurs in the frog Xenopus laevis
(Stancheva and Meehan 2000), and no drop is seen in the
zebrafish, Danio rerio (MacLeod et al. 1999). Even within
vertebrates, therefore, interspecies variation is seen that
could reflect differences in the precise role played by
methylation in these organisms. For mice and probably
other mammals, however, the cycle of early embryonic
demethylation followed by de novo methylation is criti-
cal in determining somatic DNA methylation patterns.
A genome-wide reduction in methylation is also seen in
primordial germ cells (Tada et al. 1997; Reik et al. 2001)
during the proliferative oogonial and spermatogonial
stages.

The most striking feature of vertebrate DNA methyl-
ation patterns is the presence of CpG islands, that is,
unmethylated GC-rich regions that possess high relative
densities of CpG and are positioned at the 5� ends of
many human genes (for review, see Bird 1987). Compu-
tational analysis of the human genome sequence pre-
dicts 29,000 CpG islands (Lander et al. 2001; Venter et al.
2001). Earlier studies estimated that ∼60% of human
genes are associated with CpG islands, of which the
great majority are unmethylated at all stages of develop-
ment and in all tissue types (Antequera and Bird 1993).
Because many CpG islands are located at genes that have
a tissue-restricted expression pattern, it follows that
CpG islands can remain methylation-free even when
their associated gene is silent. For example, the tissue-
specifically expressed human �-globin (Bird et al. 1987)
and � 2(1) collagen (McKeon et al. 1982) genes have CpG
islands that remain unmethylated in all tested tissues,
regardless of expression.

A small but significant proportion of all CpG islands
become methylated during development, and when this
happens the associated promoter is stably silent. Devel-
opmentally programmed CpG-island methylation of this
kind is involved in genomic imprinting and X chromo-
some inactivation (see below). The de novo methylation

events occur in germ cells or the early embryo (Jaenisch
et al. 1982), suggesting that de novo methylation is par-
ticularly active at these stages. There is evidence, how-
ever, that de novo methylation can also occur in adult
somatic cells. A significant fraction of all human CpG
islands are prone to progressive methylation in certain
tissues during aging (for review, see Issa 2000), or in ab-
normal cells such as cancers (for review, see Baylin and
Herman 2000) and permanent cell lines (Harris 1982; An-
tequera et al. 1990; Jones et al. 1990). The rate of accu-
mulation of methylated CpGs in somatic cells appears to
be very slow. For example, de novo methylation of a
provirus in murine erythroleukemia cells took many
weeks to complete (Lorincz et al. 2000). Similarly, the
recovery of global DNA methylation levels following
chronic treatment of mouse cells with the DNA meth-
ylation inhibitor 5-azacytidine required months (Flatau
et al. 1984).

How do patterns of methylated and unmethylated
mammalian DNA arise in development and how are
they maintained? Why are CpG islands usually, but not
always, methylation-free? What causes methylation of
bulk non-CpG-island DNA? These burning questions
cannot be answered definitively at present, but there are
distinct hypotheses that have been addressed experimen-
tally. The available data will be conveniently considered
in three parts: (1) mechanisms for maintaining DNA
methylation patterns; (2) mechanisms and consequences
of methylation gain; and (3) mechanisms and conse-
quences of methylation loss.

Maintenance methylation—not so simple

Maintenance methylation describes the processes that
reproduce DNA methylation patterns between cell gen-
erations. The simplest conceivable mechanism for main-
tenance depends on semiconservative copying of the pa-
rental-strand methylation pattern onto the progeny
DNA strand (Holliday and Pugh 1975; Riggs 1975). In
keeping with the model, the methylating enzyme
DNMT1 prefers to methylate those new CpGs whose
partners on the parental strand already carry a methyl
group (Bestor 1992; Pradhan et al. 1999). Thus a pattern
of methylated and nonmethylated CpGs along a DNA
strand tends to be copied, and this provides a way of
passing epigenetic information between cell generations.
The idea that mammalian DNA methylation patterns
are established in early development by de novo meth-
yltransferases DNMT3A and DNMT3B (Okano et al.
1998a, 1999; Hsieh 1999b) and then copied to somatic
cells by the maintenance DNA methyltransferase
DNMT1 is elegant and simple, but, as discussed below,
may not fully explain persistence of methylation pat-
terns during cell proliferation.

Experiments that first showed replication of methyl-
ation patterns on artificially methylated DNA also re-
vealed a relatively low fidelity for the process (Pollack et
al. 1980; Wigler et al. 1981). After many cell generations,
methylation of the introduced DNA was retained, but at
a much lower level than in the starting plasmid. The
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failure of maintenance was estimated to occur with a
frequency of ∼5% per CpG site per cell division. Quan-
titative studies of an endogenous CpG site broadly
agreed with this figure (Riggs et al. 1998). Cell clones in
which this site was initially unmethylated acquired
methylation and clones where it was methylated lost
methylation. The rate of change was estimated at ∼4%
per cell generation. Error rates of this magnitude mean
that a detailed methylation pattern would eventually be-
come indistinct as cells proliferate. Indeed, dynamic
changes in detailed methylation patterns have been ob-
served in monoclonal lyomyomas (Silva et al. 1993) and
at the methylated FMR1 gene (Stöger et al. 1997). These
studies established that clonal populations of cells do
not have the homogeneous methylation patterns that
would be predicted by the replication model of mainte-
nance methylation. Not only does DNA methyltransfer-
ase fail to complete half-methylated sites at a significant
rate, but also significant de novo methylation occurs at
unmethylated sites.

At first sight, these findings appear to undermine the
concept of maintenance methylation, but this does not
follow. Although detailed methylation patterns may not
be maintained at the level of a single CpG nucleotide,
the methylation status of DNA domains appears to be
faithfully propagated during development (Pfeifer et al.
1990). CpG islands, for example, keep their overall un-
methylated state (or methylated state) extremely stably
through multiple cell generations. DNMT1 is partly re-
sponsible for this stability, but there is likely to be an-
other as yet unknown component to the maintenance
process. Dramatic evidence for this alternative mainte-
nance mechanism comes from the finding that CpG-is-
land methylation is stably maintained even in the appar-
ent absence of the only known maintenance DNA meth-
yltransferase, DNMT1 (Rhee et al. 2000). A similar
phenomenon may account for the maintenance of allele-
specific DNA methylation imprints under conditions
where the concentration of DNMT1 is severely limiting
(Jaenisch 1997).

De novo DNA methylation by default?

The origin of DNA methylation patterns is a long-stand-
ing mystery in the field. The de novo methyltransferases
DNMT3A and DNMT3B (Okano et al. 1998a, 1999) are
highly expressed in early embryonic cells, and it is at this
stage that most programmed de novo methylation events
occur. What determines which regions of the genome
should be methylated? An extreme possibility is that de
novo DNA methylation in early mammalian develop-
ment is an indiscriminate process potentially affecting
all CpGs. Compatible with the default model is the ap-
parent absence of intrinsically unmethylatable DNA se-
quences in mammalian genomes. Even CpG islands,
most of which are unmethylated at all times in normal
cells, can acquire methylation under special develop-
mental circumstances or in abnormal cells (permanent
cell lines or cancer cells). It is clear, however, that not all
regions of the genome are equally accessible to DNA

methyltransferases. DNMT3B in particular is known to
be required for de novo methylation of specific genomic
regions, as mice or human patients with DNMT3B mu-
tations are deficient in methylation of pericentromeric
repetitive DNA sequences and at CpG islands on the
inactive X chromosome (Miniou et al. 1994; Okano et al.
1998b; Hansen et al. 2000; Kondo et al. 2000). DNMT3B
may therefore be adapted to methylate regions of silent
chromatin.

Evidence that accessory factors are also needed to en-
sure appropriate methylation came initially from plants,
where the SNF2-like protein DDM1 was shown to be
essential for full methylation of the Arabidopsis
thaliana genome (Jeddeloh et al. 1999). An equivalent
dependence is seen in animals, as mutations in human
ATRX (Gibbons et al. 2000) and mouse Lsh2 genes (Den-
nis et al. 2001), both of which encode relatives of the
chromatin-remodeling protein SNF2, have significant ef-
fects on global DNA methylation patterns. Loss of LSH2
protein, in particular, matches the phenotype of the
DDM1 mutation in Arabidopsis, for both mutants lose
methylation of highly repetitive DNA sequences, but re-
tain some methylation elsewhere in the genome. Per-
haps efficient global methylation of the genome requires
perturbation of chromatin structure by these chromatin-
remodeling proteins so that DNMTs can gain access to
the DNA. Collaboration between DNMTs and factors
that allow them access to specialized chromosomal re-
gions may be particularly important in regions that are
heterochromatic and inaccessible. Although the net re-
sult of these processes is apparently global genomic
methylation, the evidence for selectivity means that the
word “default” is probably not appropriate.

Targeting de novo methylation to preferred
DNA sequences

Another hypothesis to explain global methylation is that
the DNA methylation machinery is preferentially at-
tracted by certain DNA sequences in the mammalian
genome (Turker 1999). The presence of high levels of
methylation in DNA outside such a DNA methylation
center could be explained by spreading into the sur-
rounding DNA. Barriers to spreading would lead to the
formation of CpG islands. A hypothetical trigger for
DNA methylation is DNA sequence repetition, which
can promote de novo methylation in filamentous fungi
and plants under certain circumstances (Selker 1999;
Martienssen and Colot 2001). The most suggestive evi-
dence in mammals concerns manipulation of transgene
copy number at a single locus in the mouse genome us-
ing cre-lox technology (Garrick et al. 1998). High levels
of transgene repetition were found to cause significant
transgene silencing and concomitant methylation. The
efficiency of expression increased as copy number was
reduced at the locus, and the level of methylation de-
creased. Whether repetition caused methylation directly,
or indirectly as a consequence of some other event (e.g.,
transcriptional silencing; see below), is not known.

The clearest definition of a DNA methylation center
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comes from the fungus Neurospora, where short TpA-
rich segments of DNA were found to induce methylation
(Miao et al. 2000). Identification of a mammalian DNA
methylation center located upstream of the mouse ad-
enine phophoribosyltransferase (APRT) gene has been re-
ported (Mummaneni et al. 1993; Yates et al. 1999). The
region contains B1 repetitive elements and attracts high
levels of de novo methylation upon transfection into em-
bryonic cells, although the effect is relative, because
many DNA sequences are subject to de novo methyl-
ation in these cells. The APRT methylation center be-
comes methylated in DNMT1-deficient ES cells, sup-
porting the idea that it corresponds to a region that is a
favorable substrate for de novo methylation (Yates et al.
1999).

Because the evidence suggests that replication of
methylation patterns by DNMT1 is only partly respon-
sible for maintenance methylation (see above), an attrac-
tive possibility is that the features of a DNA domain that
help maintain its methylated status are the same fea-
tures that promote its de novo methylation. Imprinting
boxes, for example, whose differential methylation is as-
sociated with genomic imprinting (Tremblay et al. 1997;
Birger et al. 1999; Shemer et al. 2000), tend to retain their
methylation levels tenaciously even when the amount of
the maintenance enzyme DNMT1 is reduced (Beard et
al. 1995). The de novo methylases DNMT3A and
DNMT3B (Okano et al. 1998a, 1999) may be attracted
disproportionately to these sequences, and this attrac-
tion may also underlie the decision to methylate the box
in the first place. In other words, de novo methylation
may not occur once at a discrete and perhaps rather in-
accessible stage of germ-cell development, but may hap-
pen repeatedly (assisted by DNMT1) as embryonic cells
divide.

Unusual DNA structures and RNAi as triggers
for de novo methylation

Studies of purified DNMT1 revealed that the enzyme
prefers to methylate unusual DNA structures in vitro
(Smith et al. 1991; Laayoun and Smith 1995). This led to
the idea that such structures might be generated during
recombination between repetitive elements or during
transposition events and directly trigger de novo meth-
ylation (Bestor and Tycko 1996). Subsequent evidence,
however, does not support a role for DNMT1 in de novo
methylation in vivo (Lyko et al. 1999; Howell et al.
2001), and therefore the biological significance of its
predilection for deformed DNA is uncertain. There is
evidence for transfer of methylation from one copy of a
sequence to a second previously unmethylated copy of
the same sequence in the fungus Ascobolus (Colot et al.
1996). The process might use mechanisms involved in
homologous DNA recombination and may therefore in-
volve deformation of DNA. How identical sequences
sense one another and transfer epigenetic information
remains unknown, however.

Exciting recent developments in the DNA methyl-
ation field have arisen through molecular genetic studies

of posttranscriptional gene silencing in plants. Double-
stranded RNA directs the destruction of transcripts con-
taining the same sequence, but there is compelling evi-
dence that it can also direct de novo methylation of ho-
mologous genomic DNA (Wassenegger et al. 1994;
Bender 2001; Matzke et al. 2001). Posttranscriptional
gene silencing by double-stranded RNA is probably an
ancient genome defence system because it occurs in
fungi, plants, and animals; but DNA methylation is not
an obligatory accompaniment, as silencing is efficient in
C. elegans in the complete absence of genomic m5C.
Even in the fungus Neurospora, where transgene arrays
are often methylated, DNA methylation is not required
for posttranscriptional gene silencing (or quelling; Co-
goni et al. 1996). There are also specific features of RNA-
directed DNA methylation that may not occur in ani-
mals; notably the occurrence of methylation at multiple
non-CpG cytosines in an affected DNA sequence tract.
Although there is evidence for non-CpG methylation in
ES cells, most probably owing to DNMT3A, which
strongly methylates CpA as well as CpG (Ramsahoye et
al. 2000; Gowher and Jeltsch 2001), non-CpG methyl-
ation is barely detectable in adult cells (Ramsahoye et al.
2000). Plants have a CpG methylation system, but it
does not appear to be essential for RNA-directed gene
silencing (for reviews, see Wassenegger et al. 1994;
Bender 2001; Matzke et al. 2001). Optimism that RNA-
directed de novo methylation will also apply in mam-
mals is tempered by this sequence disparity, and by the
absence so far of a clear demonstration that mammalian
double-stranded RNA leads to DNA methylation-medi-
ated gene silencing.

Transcriptionally silent chromatin as a de novo
methylation target

Several lines of evidence suggest that DNA methylation
does not intervene to silence active promoters, but af-
fects genes that are already silent. It was reported many
years ago that retroviral transcription is repressed in em-
bryonic cells at ∼2 d after infection, whereas de novo
methylation is delayed until ∼15 d (Gautsch and Wilson
1983; Niwa et al. 1983). De novo methylation of proviral
sequences in embryo cells depends on DNMT3A and
DNMT3B (Okano et al. 1999), but initial retroviral shut-
down occurs as usual even when both these de novo
methyltransferases are absent (Pannell et al. 2000).
Clearly, de novo methylation is not required for silenc-
ing in the first instance, reinforcing the view that meth-
ylation is a secondary event.

Methylation of genes that are already silent is also
observed during X chromosome inactivation in the
mammalian embryo. Kinetic studies showed that the
phosphoglycerate kinase gene is silent on the mamma-
lian inactive X chromosome before methylation of its
CpG-island promoters occurs (Lock et al. 1987). Subse-
quent studies of the mouse, in which the process is best
understood, have established that expression of a non-
coding chromosomal RNA from the Xist gene on the
inactive X chromosome triggers the inactivation process
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in cis. Specifically, activation of the Xist gene and onset
of its late replication precede CpG-island methylation by
several days (Keohane et al. 1996; Wutz and Jaenisch
2000). In other words, methylation affects the X chromo-
some on which genes are already shut down by other
mechanisms. Is transcriptional inertia during embryo-
genesis the trigger for de novo methylation? Studies of
the origin of methylation-free CpG islands offer some
support for this idea. The coincidence between CpG is-
lands and promoters is striking (Bird 1987), and foot-
printing shows that the 5� extremity of CpG islands of-
ten corresponds to the region occupied by transcription
factors in vivo (Cuadrado et al. 2001). Even when CpG
islands are identified in unusual locations, they have
turned out to correspond to promoters. For example, a
CpG island located in intron 2 of the Igf2r gene is an
active promoter (Wutz et al. 1997; Lyle et al. 2000), as is
a CpG island that covers exon 2 of the class II major
histocompatibility gene (MacLeod et al. 1998). The po-
tential importance of promoter function in the genesis of
CpG islands is highlighted by studies in transgenic mice.
CpG-island-containing transgenes normally faithful re-
produce their methylation-free character, but their im-
munity to methylation is lost if promoter function is
impaired (Brandeis et al. 1994; MacLeod et al. 1994).
Similarly, viral DNA integrated into ES cell genomes by
homologous recombination becomes methylated when
the promoter is weakened by absence of an enhancer, but
excludes methylation when an enhancer is present
(Hertz et al. 1999). A parsimonious interpretation of the
results is that failure to transcribe invites de novo meth-
ylation (see Fig. 2 below), although other potential ex-
planations (Brandeis et al. 1994; Mummaneni et al. 1998)
cannot be discounted.

The signal for this putative gene silence-related de
novo methylation is unknown, but the possibility that
chromatin states inform the DNA methylation machin-
ery is attractive (Selker 1990). The acetylation and
methylation state of nucleosomal histones is tightly cor-
related with transcriptional activity (Jenuwein and
Allis 2001) and could be read by the methylation ma-
chinery, leading it to either methylate or fail to methyl-
ate a particular domain. Indeed, recent work on Neuros-
pora (Tamaru and Selker 2001) has shown an intimate
link between histone methylation and DNA methyl-
ation in that fungus, as mutation of a histone methyl-
transferase that methylates Lys 9 of histone H3 abol-
ished genomic methylation. In mammalian and yeast
systems, histone H3 Lys 9 methylation is associated
with transcriptionally repressed heterochromatin (Ban-
nister et al. 2001; Nakayama et al. 2001; Noma et al.
2001; Zhang and Reinberg 2001). If the dependence of
DNA methylation on prior histone methylation turns
out to be applicable to mammals, this would further
strengthen the argument that DNA methylation is tar-
geted to genes that are already silent. The nature of the
molecular cues that trigger transfer of methyl groups to
unmethylated DNA should be illuminated by ongoing
studies of multiprotein complexes that contain DNA
methyltransferases (Fuks et al. 2000, 2001; Robertson et

al. 2000; Bachman et al. 2001) and the identification of
genes that modify DNA methylation patterns (Weng et
al. 1995).

Consequences of methylation gain: stable
transcriptional silencing of genes

Why methylate genes that are already silent? A plausible
answer is: to silence them irrevocably. Methylation
clearly contributes to the stability of inactivation, be-
cause both X inactivation (Mohandas et al. 1981a;
Graves 1982; Venolia et al. 1982) and retroviral silencing
(Stewart et al. 1982; Jaenisch et al. 1985) can be relieved
by treatment of somatic cells with demethylating
agents. Individuals who lack DNMT3B show reduced
methylation of some CpG islands on the inactive X chro-
mosome and also silence X-linked genes imperfectly
(Miniou et al. 1994; Hansen et al. 2000). The implication
that irreversibility involves DNA methylation is sup-
ported by the frequent reactivation of an X-linked trans-
gene in mouse embryo cells and in cultured somatic cells
when DNMT1 is absent or inhibited (Sado et al. 2000).
This view is sustained by differences in the stability of
inactivity states pre- and postmethylation. For example,
X inactivation caused by expression of an Xist transgene
in embryonic stem cells is initially reversed when the
Xist gene is shut down, but after 3 d, inactivation be-
comes irreversible and independent of Xist (Wutz and
Jaenisch 2000). Irreversibility may reflect the arrival of
promoter methylation.

In artificial systems, DNA methylation represses tran-
scription in a manner that depends on the location and
density of the methyl-CpGs relative to the promoter
(Boyes and Bird 1992; Hsieh 1994; Kass et al. 1997a,b).
But what genes are affected by DNA methylation-medi-
ated gene silencing? Early studies relied on the use of the
demethylating drug 5-azacytidine (Jones and Taylor
1980), which was shown to activate genes on the inac-
tive X in rodent–human cell hybrids (Mohandas et al.
1981b; Graves 1982). More recently, mice and murine
cell lines lacking DNMT1 (Li et al. 1992) have clarified
the effects of DNA methylation on gene expression. In
placental mammals, repression of X-linked genes fol-
lows expression of Xist, which sets in train the inactiva-
tion process, culminating in widespread methylation of
CpG islands. The active X chromosome, on the other
hand, must be protected from silencing, and this requires
repression of Xist and again depends on methylation
(Panning and Jaenisch 1996). An intact DNA methyl-
ation system is also essential for genomic imprinting,
because deletion of Dnmt1 leads to disruption of the
monoallelic expression of several imprinted genes (Li et
al. 1993).

Both X inactivation and genomic imprinting involve
silencing of one allele only, leaving the other unaffected.
An unusual set of genes that are active in the germ line,
most of which are X-linked, appears to use methylation
for complete silencing in somatic cells (De Smet et al.
1996, 1999). Several of the human and murine MAGE
genes, for example, have CpG-island promoters that are
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methylation-free in germ cells, but are methylated in
somatic cells of the adult. The genes were discovered as
novel antigens in tumors, where genomic methylation
levels are often low and MAGE-gene CpG islands are
undermethylated. MAGE expression can be induced by
treating nonexpressing cells with demethylating agents,
supporting the idea that methylation is an important
component of the repression of these genes in somatic
cells.

Transposable element silencing as a consequence
of DNA methylation

Another well-documented consequence of DNA meth-
ylation deficiency is the activation of transposable ele-
ment-derived promoters. Like much of the mammalian
genome, transposable element-related sequences are
heavily methylated and transcriptionally silent in so-
matic cells. Mouse cells, for example, normally repress
transcription of intracisternal A particle (IAP) elements,
which constitute a homogeneous and transpositionally
active family of elements. In embryos lacking DNMT1,
transcription of IAP elements is massively induced, ar-
guing that methylation is normally responsible for their
repression (Walsh et al. 1998). Derepression of LINE
(Woodcock et al. 1997) and SINE (Liu et al. 1994) pro-
moters in the human genome also occurs when DNA
methylation is reduced. The most abundant SINE in the
human genome is the Alu family, which consists of sev-
eral hundred thousand elements (Smit 1999). Only a tiny
minority of elements are capable of transposition (<1%),
but many carry functional promoters. Interestingly,
these promoters can be activated by stress of various
kinds without altering DNA methylation (Liu et al.
1995; Chu et al. 1998), although artificial demethylation
also stimulates expression.

The biological significance of transposable-element re-
pression is uncertain. Two kinds of explanation have
been discussed: either that repression is required to pre-
vent DNA damage due to unconstrained transposition
(the genome defence model; Yoder et al. 1997); or that
transcription of a large excess of irrelevant promoters
would constitute an unacceptable level of transcrip-
tional noise that would interfere with gene expression
programs (Bird 1995). Increased transcription of elements
in human and mouse cells has not so far been found to
lead to increased transposition. In undermethylated can-
cer cells that show transposon promoter activity, for ex-
ample, mutations caused by transposition are exceed-
ingly rare. It has, however, been claimed that rampant
transposition and reduced methylation are linked in the
case of an interspecific hybrid marsupial (Waugh O’Neill
et al. 1998). The hybrid wallaby concerned was found to
contain an abundant transposable element near the cen-
tromeres of one parental chromosome set, but not the
other. Surprisingly, this element could not be detected in
either of the presumed parent species, and was therefore
hypothesized to have been assembled from related frag-
ments in the parental genomes following fertilization. It
was suggested that, because of perceived depression of

methylation levels in the hybrid embryo, the emergent
element became transpositionally hyperactive, being tar-
geted exclusively to one parental genome. The parents of
the hybrid were not available to verify this unprec-
edented scenario.

Phylogenetic studies of genomic methylation patterns
in animals have not yet offered support for the genome
defence model. Effective silencing due to sequence rep-
etition has been observed in Drosophila and C. elegans,
but it is associated with the polycomb group of proteins
or posttranscriptional gene silencing (Birchler et al.
2000). The possibility that the low level of m5C in Dro-
sophila (Lyko et al. 2000) is relevant to silencing has not
yet been addressed. Studies of the sea squirt C. intesti-
nalis, a chordate belonging to the same phylum as ver-
tebrates, but which does not exhibit global methylation
of the genome, revealed that genes were often present in
domains of methylated DNA, whereas transposable ele-
ment families, some of which appeared to be mobile in
the population, were unmethylated (Simmen et al. 1999).
This is the opposite of expectation, but may represent a
frequent situation in invertebrates, which account for
>95% of animal species (Tweedie et al. 1997).

Colonization of the genome by transposable elements
can only occur in the germ-cell lineage because somatic
transposition events leave no heritable trace. Paradoxi-
cally, transposable elements are often transcriptionally
active and unmethylated in germ cells and totipotent ES
cells (for review, see Bird 1997). IAP elements, for ex-
ample, become unmethylated during the gonial prolif-
eration phase, when primordial germ cell number in-
creases from ∼75 to ∼25,000 (Walsh et al. 1998). The fre-
quent absence of DNA methylation in germ cells, when
transposition can do long-term damage (Malik et al.
1999), contrasts with its repressive presence in somatic
cells, where transposition would be an evolutionary dead
end. It is too early to discount the possibility that trans-
poson promoters, most of which belong to degenerate
elements that are incapable of transposition, must be
silenced to suppress transcriptional noise.

Mechanisms of DNA methylation-mediated
transcriptional repression

Why does DNA methylation interfere with transcrip-
tion? Two modes of repression can be envisaged, and it is
likely that both are biologically relevant. The first mode
involves direct interference of the methyl group in bind-
ing of a protein to its cognate DNA sequence (Fig. 1).
Many factors are known to bind CpG-containing se-
quences, and some of these fail to bind when the CpG is
methylated. Strong evidence for involvement of this
mechanism in gene regulation comes from studies of the
role of the CTCF protein in imprinting at the H19/Igf2
locus in mice (Bell and Felsenfeld 2000; Hark et al. 2000;
Szabo et al. 2000; Holmgren et al. 2001). CTCF is asso-
ciated with transcriptional domain boundaries (Bell et al.
1999) and can insulate a promoter from the influence of
remote enhancers. The maternally derived copy of the
Igf2 gene is silent owing to the binding of CTCF between
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its promoter and a downstream enhancer. At the pater-
nal locus, however, these CpG-rich binding sites are
methylated, preventing CTCF binding and thereby al-
lowing the downstream enhancer to activate Igf2 expres-
sion. Although there is evidence that H19/Igf2 imprint-
ing involves additional processes (Ferguson-Smith and
Surani 2001), the role of CTCF represents one of the
clearest examples of transcriptional regulation by DNA
methylation.

The second mode of repression is opposite to the first,
as it involves proteins that are attracted to, rather than
repelled by, methyl-CpG (Fig. 1). A family of five methyl-
CpG-binding proteins has been characterized that each
contains a region closely related to the methyl-CpG-
binding domain (MBD) of MeCP2 (Nan et al. 1993, 1997;
Cross et al. 1997; Hendrich and Bird 1998). Four of these
proteins—MBD1, MBD2, MBD3, and MeCP2—have
been implicated in methylation-dependent repression of
transcription (for review, see Bird and Wolffe 1999). An
unrelated protein Kaiso has also recently been shown to
bind methylated DNA and bring about methylation-de-
pendent repression in model systems (Prokhortchouk et
al. 2001). In vitro, Kaiso requires a 5� m5CGm5CG motif,
and binding is highly dependent on the presence of meth-
ylation. The presence of multiple methyl-CpG-binding
proteins with repressive properties supports the argu-
ment that these may be important mediators of the
methylation signal, but their involvement in specific
processes that require transduction of the DNA methyl-
ation signal has yet to be shown. Targeted mutation of
the gene for MeCP2 is, however, associated with neuro-
logical dysfunction in humans and mice (Amir et al.
1999; Chen et al. 2001; Guy et al. 2001), and mutation of
the mouse Mbd2 gene leads to a maternal behavior de-
fect (Hendrich et al. 2001).

Excluding DNA methylation by denying access

The preceding discussion has considered some mecha-
nistic aspects of de novo DNA methylation and its bio-
logical consequences. Although methylation affects
most of the mammalian genome, it is conspicuously ab-
sent from certain regions. Ways in which these non-
methylated domains may arise will now be considered.
A simple mechanism for creating a nonmethylated do-
main within an otherwise densely methylated genome is
to mask a stretch of DNA by protein binding. The DNA-
binding protein would accomplish this passive demeth-
ylation by, for example, sterically excluding DNMTs
(Bird 1986). The feasibility of this mechanism has been
verified using an artificially methylated episome con-
taining EBNA1 or lac repressor binding sites (Hsieh
1999a; Lin et al. 2000). The idea that CpG islands are
entirely attributable to exclusion of this kind is in doubt,
however, as in vivo footprinting and nuclease accessibil-
ity studies show CpG islands to be more accessible to
proteins (nucleases) than bulk genomic DNA, not less
(Tazi and Bird 1990). Of course, it is possible that pro-
tection is only present at the transient embryonic stage
when mammalian de novo methylation occurs and has
therefore escaped detection. A protein that is reported to
bind unmethylated CpGs might be a candidate CpG-is-
land protector (Voo et al. 2000).

Immunity to DNA methylation caused
by transcriptionally active chromatin:
the origin of unmethylated CpG islands

Many of the known biological effects of DNA methyl-
ation are associated with CpG islands. It has been argued
above that their methylation in the early embryo follows

Figure 1. Mechanisms of transcriptional
repression by DNA methylation. A stretch
of nucleosomal DNA is shown with all
CpGs methylated (red circles). Below the
diagram is a transcription factor that is un-
able to bind its recognition site when a
methylated CpG is within it. Many tran-
scription factors are repelled by methyl-
ation, including the boundary element
protein CTCF (see text). Above the line are
protein complexes that can be attracted by
methylation, including the methyl-CpG-
binding protein MeCP2 (plus the Sin3A
histone deacetylase complex), the MeCP1
complex comprising MBD2 plus the
NuRD corepressor complex, and the un-
characterized MBD1 and Kaiso complexes.
MeCP2 and MBD1 are chromosome-
bound proteins, whereas MeCP1 may be
less tightly bound. Kaiso has not yet been
shown to associate with methylated sites
in vivo.
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silencing events that are likely to be DNA methylation-
independent. If transcriptional silence indeed triggers
DNA methylation, then the corollary is that promoter
activity early in development should create a methyl-
ation-free CpG island (Fig. 2). In other words, unmethyl-
ated CpG islands might be footprints of embryonic pro-
moter activity. An obvious prediction of this model is
that all unmethylated CpG islands, including those at
promoters of highly tissue-specifically expressed genes,
should contain promoters that function during early de-
velopment when the methylation memory system is
most active. Although very limited, the data so far favor
this theory, because a CpG-island promoter whose prod-
uct RNA is not expected to occur in the early embryo
(�-globin) is nevertheless expressed, whereas transcripts
from a CpG-deficient promoter (�-globin) are not de-
tected (Daniels et al. 1997). Similarly, expression of the
68k neurofilament gene, which has a CpG-island pro-
moter, was detected in ES cells, but opsin and casein
genes, which are CpG-deficient genes, appeared to be
silent (MacLeod et al. 1998).

Why should active promoter regions escape de novo
methylation? CpG islands often colocalize with origins
of DNA replication (Delgado et al. 1998), and, according
to one speculation, an early replication intermediate cre-
ates the DNA methylation-free footprint (Antequera and
Bird 1999). A more direct (but not mutually exclusive)
mechanism would involve the sensing of chromatin
states by the de novo methylation system as discussed
above. Whereas histone H3 tails modified by methyl-
ation on Lys 9 might recruit DNA methyltransferases
(Tamaru and Selker 2001), modifications associated with
active chromatin, such as acetylation of H3 or H4 or
methylation of Lys 4 of histone H3, may actively exclude
these enzymes. Biochemical evidence addressing this is-
sue is eagerly awaited.

Active demethylation of DNA

Protection against de novo methylation by bound pro-
teins or chromatin can ensure that DNA methylation
never reaches a DNA sequence domain. Unmethylated

Figure 2. A hypothetical scenario relating embryonic transcriptional activity to DNA methylation status in mammals. Starting from
a notional transcription ground state, embryonic demethylation leads to substitution of methylated sites (red circles) by nonmethyl-
ated sites (yellow circles). Two alternative fates are then envisaged: either transcription persists leading to restoration of the unmeth-
ylated CpG island (bracket) flanked by methylated non-island-flanking DNA (pink arrows); or transcription is extinguished by other
mechanisms in the embryo and this invites de novo methylation of the CpG island and its flanks. In this way the activity of embryonic
promoters is imprinted for the duration of that somatic lifetime.
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domains could also arise by actively removing the modi-
fication from DNA. This so-called active demethylation
could be accomplished either by the thermodynamically
unfavorable breakage of the carbon—carbon bond that
links the pyrimidine to its methyl group, or by a repair-
like process that excises the m5C base or nucleoside,
leading to its replacement with C (Kress et al. 2001).
Several laboratories have striven to isolate demethylase
enzymes (for review, see Wolffe et al. 1999). The most
impressive catalytic activity was shown by a fraction
derived from human cells (Ramchandani et al. 1999) that
was subsequently identified as MBD2 (Bhattacharya et
al. 1999). The expressed protein reportedly showed ro-
bust demethylation in vitro in the absence of added co-
factors and released methanol as a by-product. Attempts
to observe this property of MBD2 in other laboratories
have not been successful.

A cell extract showing demethylase activity was de-
tected in rat myoblast cells (Weiss et al. 1996). Initial
indications that the reaction was RNA-dependent were
not sustained upon further enrichment of the activity
(Swisher et al. 1998). An RNA-containing demethylating
complex was, however, reported in chicken cells (Jost et
al. 1997, 1999). These investigators searched for proteins
with m5C-DNA glycosylase activity and identified the
previously known thymine DNA glycosylase TDG,
which can remove the pyrimidine base from T:G or U:G
mismatches (Zhu et al. 2000b). MBD4, an unrelated
DNA glycosylase with similar properties, was also found
to be active against m5C:G pairs (Zhu et al. 2000a). As
the efficiency of these reactions was much lower than
that seen with the cognate mismatched substrates, it
might be argued that the m5C glycosylase activity rep-
resents a minor side reaction of little in vivo signifi-
cance. Set against this is evidence that stable expression
of a chicken TDG results in significant activation and
concomitant demethylation of a reporter gene driven by
a methylated ecdysone-retinoic acid-responsive pro-
moter (Zhu et al. 2001). The normally silent reporter
could also be activated by demethylation with 5-azacyti-
dine, but generalized demethylation of the genome was
not observed in TDG transfected cells. Previous studies
showed an association between retinoid receptors and
TDG, and implicated TDG in transcriptional activation
(Um et al. 1998). Time will tell if the stimulation of
retinoid-responsive promoters by TDG depends on its
demethylating activity.

The need to isolate demethylating enzymes has be-
come more acute with the finding that the paternal ge-
nome is subject to active demethylation soon after fer-
tilization (Mayer et al. 2000; Oswald et al. 2000). Similar
processes have been reported in pig and bovine embryos
(Bourc’his et al. 2001; Kang et al. 2001a,b). This dramatic
illustration of methylation loss in the absence of DNA
replication raises questions about the prevalence of de-
methylation by this mechanism. Interestingly, the ma-
ternal genome, which also demethylates during early
mouse development, does so by a different mechanism:
passive failure to methylate progeny stands (Rougier et
al. 1998). Why should maternal and paternal genomes

choose such different routes to the same end? An intrigu-
ing possibility is that the parental struggle over maternal
resources for the embryo that is thought to underlie ge-
nomic imprinting (Moore and Haig 1991) may be in-
volved. The oocyte may be equipped to directly disarm
the sperm genome of methylation imprints that might
overexploit maternal resources (Reik and Walter 2001). It
is even possible that the paternal genome, in delayed
retaliation, may organize a campaign of interference
with the maintenance methylation (e.g., by exporting
maternal DNMTs to the cytoplasm). The extraordinary
need for an oocyte variant of DNMT1 to translocate into
the nucleus for only one cleavage cycle (the doubling
from 8 to 16 cells; Howell et al. 2001) could represent
maternal measures to compensate for interference of this
kind.

Consequences of methylation loss: gene activation
during development

Interest in DNA methylation has long been fueled by the
notion that strategic loss of methyl groups during devel-
opment could lead to activation of specific genes in the
appropriate lineage. As has been emphasized (Walsh and
Bestor 1999), much of the evidence for this scenario is
inconclusive, but recent studies have revived the idea. In
the frog, gene expression is suppressed from fertilization
until the mid-blastula stage (∼5000 cells), at which time
transcription is activated. Inhibition of DNMT1 using an
antisense strategy caused reduced methylation and pre-
mature activation of certain genes, suggesting a direct
role for DNA methylation in maintaining their early si-
lence prior to the blastula stage (Stancheva and Meehan
2000). Deletion of the Dnmt1 gene in cultured somatic
cells of the mouse also caused widespread gene activa-
tion (Jackson-Grusby et al. 2001). About 10% of all genes
detected using microarray technology were activated,
whereas only 1%–2% were down-regulated. Some of the
up-regulated genes are normally only expressed in termi-
nally differentiated cells. These findings raise the possi-
bility that DNA methylation contributes to silencing of
tissue-specific genes in nonexpressing cells, and they
confirm DNA methylation as a global repressor of gene
expression. The scenario has been modeled using an ar-
tificial construct that contained a DNA sequence ca-
pable of excluding methylation locally during early de-
velopment (Siegfried et al. 1999). When this sequence
was present, the reporter gene stayed unmethylated dur-
ing development, and widespread expression occurred.
Deletion of the element in situ in the early embryo led to
methylation of the reporter gene and concomitant si-
lencing in several adult tissues.

A subtle potential role for loss of methylation at a
specific gene has been reported for the rat tyrosine ami-
notransferase gene (Thomassin et al. 2001). When a
methylated form of this gene is induced by glucocorti-
coids, delayed demethylation occurs at specific sites in
an enhancer and additional DNA-associated factors are
subsequently recruited. Demethylation (whether active
or passive is not known) persists after the wave of TAT
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expression has subsided, and reinduction of the silent
gene by a further hormone treatment is significantly
stronger as a result. This system provides a model for a
DNA methylation-mediated memory of the first hor-
mone induction (Kress et al. 2001). Its significance is
somewhat less certain in normal development, however,
because demethylation of these sites occurs before the
gene becomes hormone-inducible.

There is suggestive evidence that programmed rear-
rangement of the immunoglobulin genes during B-cell
development may involve DNA methylation (Mosto-
slavsky et al. 1998). Demethylation of one of the two
parentally derived alleles of the kappa light chain gene is
observed in small pre-B cells, and there is evidence that
this early loss of methylation predisposes the affected
allele to rearrangement. By precluding rearrangement of
one allele, differential DNA methylation may help to
explain allelic exclusion at the kappa chain locus. It is
not certain whether transcriptional regulation per se
plays a role, although the process is dependent on the
intronic and 3� kappa gene enhancers.

Loss of genome integrity as a consequence of DNA
methylation loss?

Early studies with the DNA-methylation inhibitor
5-azacytidine revealed bizarre chromosomal rearrange-
ments in treated cultured cells (Viegas-Pequignot and
Dutrillaux 1976). Although these findings might be at-
tributed to the effects of reduced DNA methylation, they
could also be a result of the chemical reactivity of the
incorporated base analog, in particular, its ability to
cross-link proteins to DNA (Juttermann et al. 1994). The
former possibility is supported somewhat by the finding
that mitogen-stimulated lymphocytes from patients
with mutations in DNMT3B show very similar chromo-
some rearrangements, involving coalescence of centro-
meric regions that contain methylation-deficient repeti-
tive sequences (Jeanpierre et al. 1993; Xu et al. 1999).
Oddly, the rearrangements are not seen in cells of the
patients, despite similar hypomethylation of these re-
gions. It seems that loss of genomic integrity is not an
obligatory consequence of hypomethylation of juxtacen-
tromeric repeat elements.

At a finer level, two laboratories have examined the
effects of greatly reduced DNA methylation levels on
mutation rates in mouse embryonic stem cells, with
somewhat differing results. In one study, the mutation
rate at two endogenous loci was found to have increased
∼10-fold compared to the same loci in wild-type cells
(Chen et al. 1998), suggesting that lack of methylation
predisposed to aberrant recombination events. A second
study examined transgenes of exogenous origin using a
selection system to detect mutations (Chan et al. 2001).
This allowed screening of large numbers of mutations at
two independent loci, but neither point mutations nor
genomic rearrangements were increased under condi-
tions of limiting DNA methylation. In fact, mutations
appeared to be suppressed by genomic hypomethylation.
These inconsistencies raise questions about the pro-

posed relationship between genome integrity and DNA
methylation that will need to be addressed by further
research.

Developmental memory: DNA methylation
and Polycomb/trithorax complexes
as interchangeable systems

The foregoing discussion has highlighted features of the
DNA methylation system in mammals that resemble
another established system of cellular memory: Pc-G/
trx. The final section of the review will compare the two
systems. The credentials of Pc-G/trx protein complexes
as an epigenetic system in development are compelling
(Paro et al. 1998; Pirrotta 1999; Francis and Kingston
2001). This multiprotein assembly is targeted to specific
regions of the genome where it effectively freezes the
embryonic expression status of a gene, be it active or
inactive, and propagates that state stably through devel-
opment. Elegant experiments with model gene con-
structs have shown that brief activation (or inactivation)
of a promoter during early Drosophila development leads
to stable activity (or inactivity) thereafter (Cavalli and
Paro 1998, 1999; Poux et al. 2001). Attempts to alter
expression at most other stages of development were un-
successful, indicating that there is a window of time dur-
ing which transcription patterns can be committed to
developmental memory. The Pc-G/trx system is reactive
rather than proactive, as the setting up of segment-spe-
cific patterns of active genes is not disrupted by muta-
tions in Pc-G group genes. Only the capacity to sustain
the patterns is lost in the mutants. This ability to copy
and propagate the expression patterns without influenc-
ing or perturbing them makes this a subtle and flexible
memory system. Little is known, however, about the
mechanisms responsible for the heritability of Pc-G/trx.

What do Pc-G/trx and DNA methylation in mammals
have in common? First, both systems are able to repress
transcription in a heritable manner. Second, both appear
to be reactive in that they lock in expression states that
they played no part in setting up (e.g., DNA methylation
in viral genome silencing and CpG-island methylation
on the X chromosome). Third, both are activated prima-
rily during a discrete window of time in early develop-
ment. Thus, like Pc-G/trx, DNA methylation has the
properties of a developmental memory.

What is memorized by DNA methylation? Arguably,
its major role is to stably demarkate by its absence a set
of embryonically active promoters, namely, CpG is-
lands, so that they remain potentially active throughout
development and adulthood. At the same time, regions
devoid of promoter activity in the embryo become meth-
ylated and carry this repressive influence with them
through development. The degree of repression may be
weak or strong depending on the density of methylation
(Boyes and Bird 1992; Hsieh 1994). Thus, CpG islands
that are silenced by other mechanisms during embryo-
genesis would acquire dense methylation leading to ir-
reversible silencing. When, however, the density of
methylated CpGs is low, as it is in most of the genome,
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repression is likely to be weak and may be overcome by
the presence of strong activators. Weak repression of tis-
sue-specific genes (e.g., �-globin) that are embedded in
regions of low-density methylation may contribute to
their silence in inappropriate tissues.

It is proposed here that DNA methylation and Pc-G/
trx are alternative systems of cellular memory that are
interchangeable over evolutionary time. In C. elegans
and Drosophila, for example, Pc-G group proteins
(Birchler et al. 2000) have been implicated in silencing
of repetitive-element transcription in somatic cells,
whereas DNA methylation may play this role in mam-
mals (Yoder et al. 1997). The involvement of DNA meth-
ylation in genome defence may, therefore, be to memo-
rize the silent state of elements imposed by primary ge-
nome defence systems. The most striking evidence for
interchangeability is the finding that X chromosome in-
activation in extraembryonic tissues of the mouse de-
pends on the polycomb group protein Eed. Loss of the
eed gene leads to reactivation of the inactive X in extra-
embryonic tissue, but has no effect in somatic cell types
(Wang et al. 2001). In contrast, Dnmt1 mutations reac-
tivate the inactive X of the embryo proper, but not the
extraembryonic inactive X (Sado et al. 2000). The finding
that certain CpG islands on the inactive X chromosome
are methylated in somatic cells but not in extraembry-
onic tissues (Iida et al. 1994) fits with the view that
methylation replaces Pc-G in somatic tissues. Therefore,
even within a single species, it appears that different
tissues employ Pc-G/trx and DNA methylation inter-
changeably. From an evolutionary perspective, it is pos-
sible that varying degrees of functional substitution by
Pc-G (or vice versa) can explain the dramatic differences
between DNA methylation levels across animal species.

Concluding remarks

Our understanding of the relationship between DNA
methylation and transcriptional control is growing fast,
but is still far from complete. Ongoing biochemical
analysis of the growing number of components of the
DNA methylation system (and their partners), coupled
with genetic approaches, will strengthen the links be-
tween DNA methylation and mainstream transcrip-
tional mechanisms. Regulation of gene expression is
complex (Lemon and Tjian 2000), and the emerging evi-
dence hints that the roles of DNA methylation will be
too. It may be unrealistic to expect that any unified
theory will encompass all the biological consequences of
DNA methylation.

Least understood are the mechanisms by which meth-
ylation patterns are generated. Following consideration
of the criteria for attracting and repelling DNA methyl-
ation, this review has entertained the possibility that a
primary function of de novo DNA methylation is to
memorize patterns of embryonic gene activity, creating
CpG islands that are competent for transcription
throughout development, or their antithesis, regions
that are methylated and transcriptionally incompetent.
The idea depends on evidence that methylation does not

intervene to silence genes that are actively transcribed,
but only affects genes that have already been shut down
by other means. There is reason to believe that transcrip-
tional activity may somehow imprint the methylation-
free status of CpG islands. The involvement of DNA
methylation in inactivation of transposable elements
could likewise be due to its capacity for stabilizing the
transcriptional shutdown organized by other systems.
Parallels between these emerging attributes of DNA
methylation and the Pc-G system in Drosophila suggest
that both are mechanisms for sensing and propagating
cellular memory.
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