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Regulatory elements recruit transcription factors that modulate gene expression distinctly across cell types, but the
relationships among these remains elusive. To address this, we analyzed matched DNase-seq and gene expression data for
112 human samples representing 72 cell types. We first defined more than 1800 clusters of DNase I hypersensitive sites
(DHSs) with similar tissue specificity of DNase-seq signal patterns. We then used these to uncover distinct associations
between DHSs and promoters, CpG islands, conserved elements, and transcription factor motif enrichment. Motif analysis
within clusters identified known and novel motifs in cell-type-specific and ubiquitous regulatory elements and supports
a role for AP-1 regulating open chromatin. We developed a classifier that accurately predicts cell-type lineage based on
only 43 DHSs and evaluated the tissue of origin for cancer cell types. A similar classifier identified three sex-specific loci on
the X chromosome, including the XIST lincRNA locus. By correlating DNase I signal and gene expression, we predicted
regulated genes for more than 500K DHSs. Finally, we introduce a web resource to enable researchers to use these results
to explore these regulatory patterns and better understand how expression is modulated within and across human cell
types.

[Supplemental material is available for this article.]

Transcriptional regulation involves a complex interplay of tran-

scription factors (TFs) binding to DNA regulatory elements to

control gene expression. This interplay enables a single genome to

give rise to hundreds of cell types. Understanding transcriptional

regulation requires a full accounting of regulatory elements, in-

cluding (1) their genomic locations, (2) their cell-type specificity,

(3) the identity of factors that bind them, and (4) the genes they

target. Ultimately, this accounting will enable us to determine

how regulatory elements affect tissue-specific gene expression. In

this study, we begin to address these issues by integrating chro-

matin accessibility and expression data from many human cell

types.

Regulatory elements can be identified using chromatin im-

munoprecipitation (ChIP) experiments, but ChIP requires an in-

dividual experiment for each factor and is limited to known factors

with previously derived antibodies. Alternatively, regulatory ele-

ments can be located TF-agnostically by mapping DNase I hyper-

sensitivity sites (DHSs). DHSs indicate open or accessible chro-

matin where DNA is not tightly wrapped within a nucleosome,

leaving the sequence accessible to DNA-binding proteins (Wu

1980). Genome-wide DNase-seq experiments capture a snapshot

of regulatory element dynamics across the multidimensional

landscape of cell types, environmental exposures, and develop-

mental stages. Recently, the ENCODE project has made substantial

progress defining elements by generating DNase-seq data from

more than 100 human cell types (Thurman et al. 2012). Here, we

used this extensive collection to provide new insights into tissue-

specific regulatory programs. We clustered more than 2 million

DHSs from 112 diverse biological samples by tissue specificity into

1856 chromatin profiles and found each cluster to have a distinct

bias relative to location, evolutionary conservation, CpG islands,

and promoter proximity (distal vs. proximal).

Gene expression profiling has emerged as a powerful tool to

classify tumors (Wu et al. 2010). The added resolution of regulatory

information may provide a more robust way to classify cell types.

To test this, we assigned the 112 samples into tissue groups and

developed classifiers to assign tissue type based on DNase I hy-

persensitivity patterns across the cell-type groups. Our models

predicted tissue type with >80% accuracy in leave-one-out exper-
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iments. We used this framework to investigate lineage of cancer

cell types with a predictor developed using only 43 individual

DHSs. A similar model trained to predict the sex of each sample

uncovered a set of sex-specific DHSs surrounding three loci on the

X chromosome, one of which includes the XIST locus. These re-

sults contribute to our understanding of cancer biology and sex

determination and highlight the utility of leveraging DNase-seq

data across many cell types.

DNase-seq assays typically identify more than 100,000 active

regulatory elements in a single experiment, but unlike ChIP ex-

periments, they do not directly reveal which TFs bind to these el-

ements. Many TFs bind to a specific pattern of DNA bases at TF

binding sites (TFBSs), often represented as a motif, which can be

learned by detecting overrepresented sequences in regulatory ele-

ments. Because DNase-seq data from multiple cell types can predict

TF binding (Song et al. 2011), the newly available data enable

a thorough analysis of many cell types. After clustering DHSs, we

used de novo motif discovery to identify relevant known and novel

TF motifs and thus predict active TFs that bind to each regulatory

element.

Even after identifying TF binding, a key remaining problem is

to associate elements with the target genes they regulate (Heintzman

and Ren 2009; Stadhouders et al. 2011). These associations can be

determined empirically by using chromatin conformation capture

(3C) and derivatives to detect long-range chromatin loops (for review,

see Wei and Zhao 2011). Unfortunately, three-dimensional (3D)

chromatin information often is locus and cell-type specific, and lacks

resolution at the level of individual regulatory elements. In practice,

typical analyses link elements to genes using heuristics, most com-

monly by simply assigning them to the nearest gene. Although this is

reasonable, it is not always accurate (Noonan and McCallion 2010).

Recent studies have pioneered new mapping methods using corre-

lations between expression and other genomic features to link reg-

ulators to genes at greater distances and across gene boundaries

(Akalin et al. 2009; Ernst et al. 2011). However, linking gene ex-

pression to DNase I signal has not yet been explored. We used

correlation between DNase I and matched expression data to

identify possible target genes for many regulatory elements.

The DNase I and expression data used in this study are ac-

cessible within the UCSC Genome Browser (Rosenbloom et al.

2010). However, the linear nature of genome browsers is not ideal

for viewing results of the type we present here, which include

clustering, motifs, and networks. For that reason, we created a da-

tabase and web interface to better visualize our analytical results

(http://dnase.genome.duke.edu). Through this resource, users can

view DHS chromatin accessibility profiles, locate similar sites,

and view enriched motifs and predicted target genes. Resources of

this type will enable biologists to synthesize meaningful con-

clusions from integrated experimental results. These results and

resources bring us closer to the goal of explaining how chromatin

structure relates to transcriptional regulation across diverse hu-

man cell types.

Results

DNase I hypersensitive sites cluster cell types by biological
similarity

Genomic locations of 2.7 million DNase I hypersensitive sites

(DHSs) from 125 samples were described previously (Thurman

et al. 2012). From these data, we selected a subset of 112 samples

for which we had both DNase-seq and expression data. The 112

samples represent 72 unique cell types and 15 unique tissue

lineages (Supplemental Table S1). Data were generated in one of

two laboratories, each using a distinct DNase I protocol. We

improved on the previously published open chromatin mea-

surements by accounting for batch affects that grouped the data

by laboratory rather than by biological signal (see Methods). We

used ComBat ( Johnson et al. 2007) to remove these batch ef-

fects, after which both the DNase I and expression data clustered

according to expected biological relationships (Supplemental

Fig. S1).

Using these data, we first investigated DNase-seq signals for

common patterns across cell types. Previously, we briefly described

an initial self-organizing map (SOM) (Wehrens and Buydens

2007) that clustered DHSs by their profile of hypersensitivity

across cell types (Thurman et al. 2012). Here, we improved this

clustering by increasing the resolution, introducing a step to

merge highly similar clusters, and using the batch-corrected

data to redefine SOM clusters; we defined 1856 clusters of DHSs

(see Methods). This enabled us to identify subtle patterns in

the data more robustly and to group similarly acting sites more

accurately.

Each DHS was assigned to the single cluster in the SOM that

most closely matched its hypersensitivity profile across cell types

(Fig. 1A; Supplemental Tables S2–S4). An overall cluster profile (or

average DNase I signal in each cell type) was defined by calculating

the average hypersensitivity across the DHSs it contained (Fig. 1B).

Throughout this study, we refer to clusters using the cell types with

increased signal in this averaged DNase I signal profile. We found

that multi-cell-type clusters (those whose DHSs were open in more

than one cell type) generally involved cell types with known re-

lationships (e.g., Fig. 1B; Supplemental Fig. S2A). In cases in which

clusters grouped cell types without obvious biological similarity,

this sharing of DHSs may indicate distant lineage relationships,

reuse of regulatory elements, transformation related to cancer

progression, or may simply reflect a limit in the resolution of the

SOM.

SOM clusters capture variation in CpG-island, promoter,
and conserved element overlap

We annotated each SOM cluster of regulatory elements with re-

spect to overlap with promoters, CpG islands, and evolutionarily

conserved elements (see Methods; Supplemental Table S5). We

found clear associations between cluster assignment and all three

features, which we have illustrated together in a scatterplot (Fig. 2A).

For example, clusters in the upper-right corner of the scatterplot

(Fig. 2A) are enriched for promoters, CpG islands, and conserved

elements, and have a stronger DNase I signal across many cell types

(e.g., cluster 99) (Fig. 2B; Supplemental Fig. S2C). Among clusters

with similar promoter overlap, the distribution of the distance

from DHSs to transcription start site (TSS) varies. For instance,

clusters 1361 and 1259 both have 20%–30% promoter overlap,

but sites from cluster 1259 are more commonly found just down-

stream from the TSS (near 59 introns), whereas sites from cluster

1361 are further from the TSS (Fig. 2B). This finding suggests that

DHSs with similar patterns across cell types are likely to share

relationships with sequence conservation and genomic location.

A striking outlier is the nonpromoter, non-CpG cluster 199,

which has an uncharacteristically high conservation score; this

cluster, along with other similar clusters, contains ubiquitous distal

DHSs that are highly enriched for CTCF motifs (Fig. 2; Supple-

mental Fig. S2D).
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A logistic classifier predicts cell-type
lineage with few DHS inputs

Since some regulatory elements are highly

specific to certain cell types, we reasoned

that a subset of elements could be used

as molecular markers for identifying cell-

type lineage. To test this, we built a mul-

tinomial logistic classifier (Fig. 3) that

assigns a probability among multiple

classes (tissue lineages). Each cell type was

first assigned to one of 15 primary tissue

types based on known biology (Supple-

mental Table S1). We removed all malig-

nant cell types and restricted the model to

the seven tissue types containing at least

four samples each, resulting in a training

set of 80 samples across seven classes. As-

suming that SOM cluster patterns would

be good candidates for differentiating

lineages, we used an initial feature set

consisting of 1856 DHSs: one from each

cluster that was most similar to the aver-

age SOM cluster profile. Trained classifiers

assigned the highest probability to the

correct tissue lineage with >80% accuracy

in leave-one-out cross-validation (Supple-

mental Table S6; see Methods; Supple-

mental Material). The final model trained

using all samples chose only 43 DHSs as

informative features (Supplemental Table

S7; examples are shown in Fig. 3D). These

43 DHSs are thus one minimum repre-

sentative set of DHSs with high tissue

specificity that can be used to predict

tissue identity. The classifier trained using

all 80 samples only misclassified two

(2.5%) of the 80 samples used to build it:

aortic smooth muscle (AoSMC_SFM) and

cardiac myocytes (HCM) (Fig. 3A). In these

two cases, the model assigned ;30%

probability to the correct lineage (mus-

cle), but a higher (albeit still weak) prob-

ability to the fibroblast class. The inability

to distinguish between fibroblast and

muscle lineages may reflect the biological

similarity between them; it is possible to

convert fibroblasts into muscle cells in

vitro (Tapscott et al. 1988). In addition,

regulatory element differences among

the included smooth, cardiac, and skele-

tal muscle samples complicate the mus-

cle lineage and may not be captured by

the 43 DHSs used by the model. Samples

from blood and stem cells were never

misclassified.

To investigate the remaining data,

we used this model to classify the 27

malignant samples as well as the five

primary cell types left out of the training

model (Fig. 3B,C). Fourteen of the malig-

nant samples are presumed to associate

Figure 1. SOM clustering of DHS profiles. (A) A 50 3 50 self-organizing map (SOM). Each box
represents a cluster of DHSs with similar DNase-seq signal profiles across samples, color-coded by tissue
(legend, left). Cluster color corresponds to the combination of cell types in which the associated DHSs
have high signal in the detailed profile. Square size indicates the number of DHSs assigned. (B) Average
DHS profiles across samples for four individual clusters. Clusters contain sites open in highly related cell
types (54 and 25) and less related cell types (1091 and 1295). (*) Malignant samples.
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with one of the seven lineages that were included in the model

(Fig. 3B). For these, the model prediction agreed with this pre-

sumed lineage in nine out of 14 cases. Among the five samples

whose classifications did not agree, four were derived from brain

tumors, and three of these represented specific brain-cell sub-

lineages not present in the training model, which consisted

solely of astrocytes. Astrocytes are a subtype of glial cells, which

are non-neuronal cells of ectodermal origin. These three brain

tumor samples were generally not strongly assigned to any lin-

eage (average maximum probability 34%) (Fig. 3B). The fourth

misclassified brain cancer was glioblastoma, which the model

confidently (86%) classified as epithelial. Glioblastoma, like

astrocytes, originates from glial cells, so this misclassification

may indicate differences between astrocytes and other glial cell

types, or a substantial remodeling of glial cell chromatin struc-

ture that occurs during cancer progression and results in an

epithelial-like pattern. In fact, there are reported glioblastoma

cases with epithelial differentiation (Rodriguez et al. 2008;

Tanaka et al. 2011). This result indicates that this glioblastoma

line is more similar to epithelial cell types than to the astrocytes

at the chromatin level. The only malignant sample correctly

classified as brain was medulloblastoma, which is an embryonal

brain cancer consisting of both neuronal and glial cells (Gilbertson

and Ellison 2008).

The remaining (nonbrain) misclassification was the K562

leukemia cell line, which we expected would associate with the

hematopoietic lineage, but instead weakly associated with mul-

tiple lineages, none with probability >30%. The lack of a strong

assignment to the hematopoietic lineage may be due to its sim-

ilarity to undifferentiated erythrocytes (red blood cells), while

the hematopoietic lines used to build the model are leukocytes

(white blood cells). In contrast, the leukocyte cancer cell types

(CLL, CMK, HL-60, Jurkat, and NB4) are all confidently (>75%)

assigned to the hematopoietic lineage. This indicates that our

blood-specific signatures are not general to all blood cell types,

but of the lymphoid lineage only. Another correctly classified

sample was Ntera2, a teratocarcinoma cell line often used as

a pluripotent stem cell model (Pleasure and Lee 1993), which was

appropriately assigned to the stem cell lineage. We similarly

evaluated the lineage associations for the remaining excluded

samples (Fig. 3C).

We also used SOM-based DHS features to train a predictor to

discriminate between male and female samples. We found a single

cluster (488) containing sex-specific hypersensitive sites (Fig. 3E).

A single representative DHS predicted the correct sex in 40 of 43

(93%) nonmalignant cell types with known sex (Supplemental

Table S8). This cluster (488) consists of 30 DHSs on the X chro-

mosome that fall primarily into three loci, one of which sur-

rounds the XIST gene. The second locus includes a noncoding

RNA (LOC286467) recently shown to be the only locus on the X

chromosome, besides XIST, with sex-specific Pol2 binding (Reddy

et al. 2012). The third locus also includes a poorly documented

noncoding RNA (LOC550643). Both the second and third loci

have complex tandem repeat structures, and all three include an-

notated piRNAs, which are known to have vital sex-specific roles

in germline cells (Girard et al. 2006). Interestingly, these two loci

were identified in a recent independent study as having intense

H3K4me2 signals on the metaphase X chromosome (Horakova

et al. 2012). Each locus was also implicated in inactive-X-specific

long-range interactions supporting a role in sex specificity. This

Figure 2. Distribution of conservation, promoters, and CpG islands across clusters. (A) Each cluster is plotted as a bubble. The x-axis indicates
the percent of the top 100 DHSs in that cluster (ranked by nearness to the cluster center) that overlap a CpG island; the y-axis indicates the percent
that overlap a promoter; color indicates the percent that overlap a phastCons conserved element (Siepel et al. 2005). The size of the bubble
indicates the number of DHSs belonging to the cluster. (Red bubbles in the upper-right corner) Clusters capturing primarily highly conserved,
CpG-rich promoter elements. (B) DNase I signal profiles of five example clusters, showing the distribution of distance to the transcription start site
(TSS) of the nearest gene. Cluster 99 is promoter rich; cluster 1259 is preferentially located in an early intron; cluster 199 is highly conserved, but
not associated with promoters or CpG islands; cluster 881 is primarily distal, with no regions within 500 bp of a TSS (see also Supplemental
Fig. S2).
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result indicates that the SOM method can indeed capture differ-

ential regulatory element features in other biological divisions

across cell types besides tissue lineage (Fig. 3E).

DHS clusters are enriched for known and novel transcription
factor motifs

One motivation for clustering DHSs was to find groups of sites with

similar activity profiles, which may indicate commonly bound

transcription factors (TFs). We therefore analyzed the clusters for

enrichment of TF motifs. We used de novo motif discovery to

identify enriched motifs and then assigned motifs to specific

factors based on the JASPAR (Portales-Casamar et al. 2010) motif

database (see Methods). We found that 1279 (69%) clusters had

at least one significant motif (e < 1 3 10�6), while 918 (49%)

clusters had a motif that could be assigned a factor from a data-

base (e-value < 1 3 10�6). Alternatively, 1807 significantly en-

riched motifs were found (some clusters have multiple motifs),

of which 1099 (61%) could be assigned a factor (Supplemental

Table S9).

We found highly cell-type-specific clusters enriched for mo-

tifs known to be important for those cell types, but clusters com-

monly enriched in a specific cell type did not necessarily share

similar motifs, indicating that clusters could discern subtle dif-

ferences in patterns. Figure 4 provides specific examples of in-

dividual clusters and their relevant motif enrichments. For exam-

ple, the stem-cell-specific cluster 3 was enriched for the known

pluripotency factor POU5F1 (Oct-4) motif. The hematopoietic-

specific cluster 24 contained the ETV7 (Tel2) motif, consistent with

its importance in hematopoietic lineages and leukemia (Potter

et al. 2000; Cardone et al. 2005); and an erythroid-specific cluster,

2215, was enriched for GATA family motifs, which are essential for

erythroid development (Zhu and Emerson 2002; Ferreira et al.

2005). Interestingly, the motif for the REST repressor was enriched

in a medullo-repressed cluster (cluster 36), indicating the potential

to also reveal lineage-specific repressive elements. We also found

motifs in ubiquitous clusters, discussed further below.

In 39% of the cases, de novo motifs did not convincingly

match known motifs in JASPAR (Fig. 4B), representing possible

new or poorly characterized regulators (Supplemental Table S9).

For example, in a Urothelium-specific cluster (2090), we identified

a short motif (consensus TCCAAC) without a good match in the

database. Other clusters (e.g., 1694, 607, 1105, 2142) had similarly

high de novo P-values without known motif matches. We found

a series of clusters (of which three are depicted in Fig. 4C) that find

similar motifs with a CANNTG core sequence and an appendage

with ATW consensus 8 bp away. These motifs likely reflect poorly

characterized or unknown TFs not yet present in JASPAR, or a

complex of TFs.

Motif discovery in similar hematopoietic clusters reveals subtle
motif differences

Interferon regulatory factors (IRFs) are DNA-binding proteins that

regulate the entire immune response (Paun and Pitha 2007). The

DNA-binding domain is highly conserved among the nine human

IRF family members (consensus 59-AANNGAAA-39), but different

IRFs bind slight variations of the core sequence (Fig. 5A; Honda

et al. 2006). IRFs may also bind in complex with SPI1, another

hematopoietic factor, forming a longer TFBS (Brass et al. 1999).

In our analysis, we detected IRF1/IRF2/SPI1-like motifs predomi-

nantly in clusters specific to hematopoietic cell lineages, but

among these there was variation in DNase I signal intensity among

LCLs, B cell leukemia (CLL), T cells (CD4, Jurkat, and Th), mega-

karyocytes (CMK), and erythroleukemia (K562). We noticed slight

variations on the motifs accompanying differences in DNase I

Figure 3. Tissue and sex classifiers based on DNase I data. Predictions
from a multinomial logistic regression classifier trained to predict tissue
identity for a given sample with data from 43 DHSs. (A) Predictions for
training data, along with known tissue of origin (left column). Colors within
the heatmaps reflect the predicted probability of belonging to each of the
seven tissue classes. (B) Predictions for malignant samples not included in
the training, but whose presumed tissue of origin was included in the
model. (*) Malignant samples. (C ) Predictions for samples whose tissue (or
presumed tissue) was excluded from the training because tissue types had
fewer than five samples. (D) The DNase I signal profiles of seven (out of 43)
clusters selected by the model with positive coefficients. (E ) The DNase I
profile for the single sex-specific site (chrX:130926460–130926610) se-
lected by the classifier. The enlarged barplot shows the distinction between
samples divided by sex for the subset of samples included in the model.
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signal across hematopoietic cell types (Fig. 5B). This may be due to

differences between IRFs and SPI1 binding, different cofactors that

modulate an IRF’s binding preference, or distinct IRFs in specific

hematopoietic lineages. We reason that these motif variations

represent biological differences in motif preference rather than

statistical noise because in other cases (e.g., in the case of CTCF),

we see less variation among discovered motifs across clusters. We

also see similar patterns when looking at an independent set of

regions from the same clusters (see Supplemental Material; Sup-

plemental Fig. S3A).

Motif discovery results are consistent with experimental
ChIP data

We used ChIP data from the ENCODE project to validate our dis-

covered motifs (Fig. 6A; Supplemental Table S9). Using represen-

tative DHSs from each cluster with enriched motifs (see Methods),

we compared overlap with ChIP peaks from 43 experiments

(Dunham et al. 2012). We expected some incongruence in overlap

between motif and ChIP results because ChIP data come from only

a subset of cell types included in the motif analysis. For example,

we compared ChIP results for a single IRF from just three cell types,

while our motif analysis considered 14 hematopoietic lineages.

Without ChIP data for all cell types, we expect to find many in-

stances of a positive motif result without a corresponding ChIP

signal. Additionally, ChIP reports signal at indirectly bound sites

where a motif would not. Despite these limitations, there is good

correspondence (Mann-Whitney P-values between 10�5 and 10�133)

between motif enrichment and ChIP results. The correspondence

is particularly high for CTCF (Fig. 6A), which is probably due

to its cross-cell-type consistency; DHSs in clusters with CTCF

motif enrichment and CTCF sites based on ChIP experiments

have 96% median overlap, compared with 4% overlap with

other clusters. A similar trend is seen for other factors tested.

There is high overlap among the IRFs, SPI1, and RUNX1 ChIP

and motif results, consistent with all three factors coregulating

hematopoietic lineages (Huang et al. 2008). The SP1-motif

clusters overlap not only SP1 ChIP peaks, but also ChIP peaks

for most of the other factors, consistent with the role of SP1 as a

general, promoter-enriched factor with many interacting part-

ners (Kaczynski et al. 2003).

Global transcription factor trends suggest AP-1
is a chromatin-accessibility factor

We wanted to know whether individual TFs whose motifs are

present in several clusters revealed biologically interesting prop-

erties about their function (Fig. 6B; Supplemental Fig. S3). For each

TF, we summarized motif results from all clusters and identified

lineage trends. We found that TFs with roles in certain cell types

were most often enriched in clusters with a small number of rel-

evant tissue lineages. For example, the myogenic factor (MYF)

family motif was enriched primarily in muscle-specific clusters,

HNF4 in liver clusters, POU5F1 in stem cell clusters, and SPI1 in

hematopoietic clusters (Fig. 6B); these are all biologically relevant

enrichments (Scott et al. 1994; Nichols et al. 1998; Odom et al.

2004; Cao et al. 2006). This starkly contrasted with ubiquitously

expressed transcription factors SP1, AP-1, and CTCF, which did not

have a bias toward a single lineage (Fig. 6B). We examined the CpG-

content, genomic location, and tissue specificity of clusters where

Figure 4. De novo motif discovery results. (A) Representative examples of de novo motif discovery results and highly significant known motif matches.
(B,C ) De novo motif discovery identified several enriched motifs for which there were no convincing matches to the TF databases. We sometimes found
a similar motif across multiple clusters associated with similar cell types.
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each TF motif was enriched to characterize the regulatory elements

that bind each factor. For example, SP1 was enriched in clusters

with CpG-island promoters that are present in many cell types

(Fig. 6C); this may partly reflect the GC-rich SP1 motif. CTCF was

enriched in clusters representing distal DHSs present in many cell

types, which is consistent with previous reports (Fig. 6D; Xi et al.

2007; Lee et al. 2012). In fact, we found that the CTCF motif was

enriched in all 12 nonpromoter, highly conserved clusters (Sup-

plemental Fig. S2D). The absence of another motif with this

property reinforces the uniqueness of function of the CTCF pro-

tein. SPI1, MYF family, and IRF family motifs were preferentially

enriched in cell-type-specific distal clusters (Fig. 6D). Plots similar

to those in Figure 6C were generated for each TF in JASPAR (Sup-

plemental Material).

The most commonly enriched motif discovered was that of

Activating Protein 1 (AP-1), found in ;12% (220) of the clusters.

By comparison, the second most common motif, for SP1, was

found in ;8% of clusters (152 clusters) (Fig. 6E). AP-1 is the well-

studied FOS:JUN heterodimer that activates both basal and in-

ducible expression (Angel and Karin 1991). It has been implicated

in a variety of cellular functions, including cell proliferation, im-

munity, apoptosis, and differentiation (Angel and Hess 2012). We

found the AP-1 motif enriched exclusively in nonpromoter, non-

CpG-island clusters (Fig. 6D). In contrast to the tissue-specific

factors like MYF family members and SPI1, AP-1 was found in both

tissue-specific clusters as well as those shared among many cell

types. As detailed in the Discussion, these results suggest that AP-1

may play a general role in chromatin accessibility in many differ-

ent tissues and genomic locations.

Chromatin and expression signal correlation corresponds
with known long-range interactions

The DNase-seq experiment naturally leads to the question of

identifying target genes for DHSs. Song et al. (2011) used cross-cell-

type correlation among DHSs to identify blocks of similar regu-

latory elements and coexpressed genes. Thurman et al. (2012)

approached this by correlating distal DHSs with promoter DHSs.

We reasoned that if the pattern of a DNase-seq signal across cell

types matched the pattern of expression of a gene across cell

types, this provided evidence that the gene is a regulatory target

of the DHS. Therefore, we correlated DNase I hypersensitivity

with gene expression data to infer the target genes (both pro-

tein-coding and RNA) for each of the ;2.7 million DHSs (see

Methods). About 530,000 of the 2.7 million sites (20%) corre-

lated significantly with at least one gene within 100 kb (per-

mutation P-value < 0.05), a significant enrichment over the 5%

expected by chance (Supplemental Table S10). Of these, 71%

correlate with a single gene, but some correlate with as many as

44 genes (Supplemental Fig. S4A). 31,000 Ensembl genes (98%)

correlated with at least one DHS, and the median number of

DHSs associated to a gene was 19 (Supplemental Fig. S4B). Protein-

coding genes tended to have more associations than RNA genes

(Supplemental Fig. S4C). Figure 7, A and B, illustrates representa-

tive examples showing correlations of DHSs to genes that are color-

coded to indicate the tissue types that are driving the correlation

with gene expression (see Methods). These examples show that

associated DHSs can be very far away, crossing multiple gene

boundaries.

Long-range regulatory interactions have been previously re-

ported based on chromosome conformation capture (3C) ex-

periments (e.g., Tolhuis et al. 2002). 3C data are not a perfect

comparison for several reasons (see the Supplemental Material).

Despite these limitations, we compared our results to 3C data and

found the 3C and correlation results corroborate one another in

eight of 12 cases we investigated (Supplemental Table S11). Two of

these are discussed below, with the others described in Supple-

mental Table S11.

Beta-globin locus

The beta-globin locus control region (LCR) is a collection of five

well-characterized DHSs upstream of the beta-globin genes (Molete

et al. 2002). The LCR is located near the epsilon-globin gene and

has been shown to regulate the other globin genes (HBB/HBD)

;30–50 kb away in erythrocyte but not in brain cell lineages

(Tolhuis et al. 2002). The globin genes are expressed in erythroid

cells at different times in development; for example, HBE1 is em-

bryonic, HBG1 and HBG2 are fetal, while HBD and HBB are adult

forms (Molete et al. 2002). Our study is limited to detecting con-

nections by the cell types we characterized, and the primary cell

type driving connections at this locus is K562 (representing un-

differentiated erythrocytes), which is known to express the

embryonic globin gene HBE1 ( Jackson 2003). Previous 3C ex-

periments showed erythroid-specific proximity between beta-

Figure 5. Variations in IRF-like motifs in hematopoietic clusters.
(A) Motifs for IRFs and SPI1 from JASPAR show both common and distinct
features. (B) MEME motifs discovered in several hematopoietic-specific
clusters. The clusters vary in cell-type specificity among the hematopoietic
cell types, and the motif logo varies as well, while retaining some semblance
of the known SPI1/IRF family motifs.
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globin genes and the LCR located ;40 kb from the HBE1 gene

(Tolhuis et al. 2002; Palstra et al. 2003). Our results reproduced

these findings with a K562-driven link between HBE1 and sev-

eral downstream hypersensitive sites (Fig. 7A). Most notable,

a highly significant correlation linked the beta-globin gene to

one of the DHSs in the LCR, hypersensitive site 4 (HS4). This

provides a specific association between a particular gene and

a particular DHS within the LCR. In addition, there were several

Figure 6. Motif specificity in SOM clusters. (A) Concordance ([yellow] high, [blue] low) between ChIP results (x-axis) and motif discovery in DNase I
clusters (y-axis). (B) The cell-type specificity for selected motifs. This heatmap shows the distribution of most-open tissues for each motif. For example,
100% of the clusters where the POU5F1 motif was found had stem cells (Stem) as the most open tissue type, whereas MYF family motifs were found
predominantly in muscle clusters. (C,D) Each colored square represents a cluster with enrichment for the given motif. (x-axis) overlap with CpG islands;
(y-axis) overlap with promoters; (color) the number of tissues with at least one sample above a cutoff. Each factor shown here has a different distribution of
cell-type specificity and promoter/CpG-island overlap. The size of a square indicates the number of DHSs in the cluster. (E ) Number of clusters that are
enriched for the most common motifs.
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other hematopoietic-driven (cyan-colored) links throughout

the region (Fig. 7A).

H19/IGF2 ICR

Another well-studied example is the H19/IGF2 locus, which

has been shown to have an imprinted long-range interaction

(Leighton et al. 1995). In this original study, a 6.2-kb deletion af-

fected expression differently when inherited maternally versus

paternally, but this study did not identify individual DHSs that

may be involved. An imprinted control region (ICR) located be-

tween H19 and IGF2 binds CTCF on the maternal but not paternal

allele. When CTCF binds, an enhancer located on the other side

of H19 is unable to interact with the IGF2 gene and instead only

enhances H19 expression. On the paternal allele, the ICR is

methylated, which blocks CTCF binding and allows the enhancer

to bind the IGF2 promoter and increase IGF2 expression. While we

did not detect interactions with the ICR, we did detect strong

correlations between the IGF2 gene and several DHSs located in the

H19 enhancer region (Fig. 7B). The correlations were driven pri-

marily by liver lineages, consistent with the role for IGF2 in liver

cells. This interaction was detected without any knowledge about

allele specificity.

A web resource for exploring DHS sequences, clusters,
and TF motifs

The results presented here begin to provide more detailed and in-

formative annotations for 2.7 million DHSs contributing to gene

regulation in 112 samples across 72 diverse cell types. To facilitate

the further exploration of these data by the research community,

we have created a web resource (http://dnase.genome.duke.edu/)

to query, display, and extract data. The resource allows queries

by regulatory element, by gene, by genome coordinates, by tran-

scription factor, or by cell-type specificity. For researchers starting

from a single regulatory element, the web interface provides a list

of other regulatory elements with similar cell-type profiles via the

SOM clustering. For each SOM cluster, the user can view enriched

motifs, genomic distribution, CpG and conserved element over-

lap, and associated genes and pathways. For any gene of interest,

users may view expression, download sets of connected regulatory

elements, and explore the clusters to which these connected ele-

ments belong. The web resource also enables data to be down-

loaded in text format for input into genome browsers or external

computational pipelines.

Discussion
Our global clustering of DHSs revealed novel open-chromatin

pattern relationships among a diverse set of human cell types.

Many clusters grouped cell types of common lineage, enabling

accurate lineage classifications based on only a few DHSs. We

also identified several biologically relevant pathway enrich-

ments for genes near particular clusters (see the Supplemental

Material). In future work, we could further delineate among

clusters by adding ChIP data for TFs or histone marks, DNA

methylation, or DNase I footprinting (Hesselberth et al. 2009;

Boyle et al. 2011; Pique-Regi et al. 2011). Creating clusters from

a larger set of cell types and developmental stages along with

epigenetic data could be a powerful way to characterize cell-type

lineage.

Figure 7. Correlation between DHS and expression. (A) Tie-plot showing the top 50 connections at the beta-globin locus, color coded by tissue type.
Red marks below indicate DHSs. Blue bars above represent genes. Connecting lines represent significant correlations, where the width of the lines
is proportional to the correlation strength. To simplify the illustration, connections to the olfactory receptors have been removed (see Supplemental
Material). (B) Tie-plot for the H19/IGF2 locus (see also Supplemental Fig. S4D).
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The primary experimental data for cell-type-specific TF

binding come from ChIP of TFs known in advance (Dunham

et al. 2012). We showed that characterizing hypersensitivity across

cell types also yields convincing de novo motif discovery results,

including identifying novel regulators and new roles for known

regulators. This approach provides an unbiased (no a priori

knowledge/antibodies required) complement to ChIP, and motifs

we discovered in more than 1000 clusters provide a rich resource

for further investigation. Our results invite followup study into the

function of AP-1, and motifs not yet found in the databases. This

resource will also be useful for motif scanning to narrow results

based on DHS profiles.

In our motif analysis, the AP-1 motif was the most commonly

detected, both in ubiquitous and cell-type-specific clusters of

DHSs. Since its subunits (FOS and JUN) are ubiquitously expressed,

the cell-type specificity is probably conferred by other factors. This

is consistent with a role for AP-1 as a pioneer factor that opens DNA

for other factors, or it may be an otherwise general and universal

chromatin-accessibility factor. This hypothesis is consistent with

experimental results confirming a role for AP-1 in diverse path-

ways (Angel and Hess 2012). Recent evidence also corroborates

the general role of AP-1 in forming accessible chromatin; for ex-

ample, Shibata et al. (2012) found AP-1 motifs to be associated

with chromatin accessibility differences among primates. Simi-

larly, Biddie et al. (2011) showed that inhibiting AP-1 impedes

formation of accessible chromatin and reduces glucocorticoid re-

ceptor (GR) binding, suggesting that AP-1 has a role in transcrip-

tional pathways mediated by GR. There is also evidence in neurons

that AP-1 functions as a general chromatin-accessibility factor,

with tissue specificity conferred by cofactors or post-translational

modification (Angel and Karin 1991; Weber and Skene 1998).

These results are consistent with our finding, which further sug-

gests that this role for AP-1 may be even more general.

Our motif results also highlighted the uniqueness and

prominence of CTCF. It is well known that CTCF is an extremely

conserved and important factor (Phillips and Corces 2009). Con-

sistent with this, we found the CTCF motif highly significantly

enriched in all 12 highly conserved clusters with low promoter

overlap (Supplemental Fig. S2). These clusters typically had ex-

treme motif discovery e-values, with >90% of the sequences con-

taining the motif.

Using correlations between DNase I signal and gene expres-

sion levels, we predicted mappings between greater than 500

thousand potential regulatory elements and their target genes. We

showed that correlation results were often supported by 3C results

where these data were available. However, the agreement was not

perfect, which is understandable (Supplemental Material): Most

importantly, this may be due to either looping interactions or in-

dividual DHSs creating poised states without actually affecting

expression (Margaritis and Holstege 2008). Nevertheless, open

chromatin correlation offers a complement to lower resolution,

time-consuming, and expensive chromatin capture-based experi-

ments. This increased level of resolution is necessary for some

followup studies, such as increasing resolution of chromatin in-

teraction data, or examining particular SNPs that occur in regula-

tory elements. Since regulatory mutations likely contribute to

complex diseases (Epstein 2009), this type of data will be of clinical

interest going forward. By narrowing down vast stretches of non-

coding DNA to individual DHSs, we can look for individual SNPs

specifically within these sites. As such, DNase I/expression corre-

lation is a powerful additional source of information to inform

models of transcriptional regulation.

Methods

Data normalization and processing
See Supplemental Material for the complete Methods. Read data
are available at the Sequence Read Archive (Duke: SRX100886-
SRX100920 and SRX189386-SRX189433; UW: SRX191006-
SRX191058 and SRX201249-SRX201305). DHSs from all samples
were combined as described previously (Thurman et al. 2012). For
each cell type, we counted the number of DNase I cuts in each
DHS. Counts were quantile-normalized and scaled, and protocol
batch effects were corrected using ComBat (Supplemental Fig. S1;
Johnson et al. 2007).

We used Affymetrix Human Exon 1.0 ST microarrays to
measure gene expression. We estimated gene-level expression
by normalizing 332 microarray replicates measuring 140 cell
lines (data available at GEO; Duke: GSE15805; UW: GSM651582,
GSM472913, GSM651582) that included all samples for which we
had DNase-seq data (see the Supplemental Material). We combined
microarray replicates by taking the median, corrected batch effects,
then extracted data for the 112 samples used in this study.

Classifying regulatory elements with a self-organizing map

A self-organizing map (SOM) was constructed using the kohonen
R package (Wehrens and Buydens 2007), which was modified to
handle more data. Our SOM consisted of a hexagonal 50 3 50 grid
(2500 total clusters, or nodes). Since SOMs typically identify many
similar clusters, the initially learned SOM was refined by merging
similar clusters, resulting in 1856 unique final clusters.

CpG-island, promoter, and conserved element overlap

For each cluster, we extracted the 100 DHSs closest to the cluster
center, as assessed by Mahalanobis distance, and tested these for
overlap with promoters, CpG-islands, and conserved elements.
Promoters were defined as 2 kb upstream of the TSS for the UCSC
RefGene annotation (Kent et al. 2002). CpG-island annotations
(Bock et al. 2007) and phastCons vertebrate conserved elements
(Siepel et al. 2005) were downloaded from the UCSC Genome
Browser. We used R bioconductor packages GenomicRanges
(P Aboyoun, H Pages, M Lawrence. GenomicRanges: Represen-
tation and manipulation of genomic intervals. Bioconductor.
http://watson.nci.nih.gov/bioc_mirror/packages/2.10/bioc/html/
GenomicRanges.html) and rtracklayer (Lawrence et al. 2009) to
do the overlap analyses.

Tissue lineage identity classifier

We used multinomial logistic regression to classify samples by
tissue type on the basis of hypersensitivity. Each nonmalignant
sample was assigned to one of 15 tissue lineage classes (Supple-
mental Table S1). Nonmalignant samples from classes with too few
(less than five) samples were not used, leaving 80 samples dis-
tributed across the remaining classes: brain (five), endothelial (12),
epithelial (14), fibroblast (27), hematopoietic (12), muscle (five),
and ES (five).

For features, we identified the single hypersensitive site clos-
est to each cluster center based on the Mahalanobis distance. We
fit a multinomial logistic regression model using the glmnet R
package (Friedman et al. 2010) with leave-one-out (79-fold) cross-
validation. We used misclassification frequency as the distance
model and used LASSO regularization (alpha = 1) for sparcity. We
chose the lambda (regularization) parameter that minimized the
misclassification error during cross-validation. Classifications for
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the malignant cell types were predicted using a model trained with
data from all 80 cell types. For the sex classifier, we used a similar
model, after filtering malignant samples and those with unknown
sex.

Motif analysis

We selected the 100 DHSs from each cluster that were nearest the
cluster center, as assessed by Mahalanobis distance. We extracted
sequences for these regions and searched them for motifs using
MEME (Bailey and Elkan 1994) with the following settings: zero
or one occurrence per sequence (ZOOPS), a motif size range of
8–22 nt, and an e-value cutoff of 3 (Supplemental Table S9). After
identifying motifs, we used the Bioconductor package motIV
(Mercier et al. 2011) to compare the discovered motifs to the
JASPAR (Portales-Casamar et al. 2010) motif database, recording
the top five matches in each case (Supplemental Table S6).

Mapping regulatory elements to the target genes they regulate

We calculated the Pearson correlation across samples between gene
expression and normalized DNase I scores for each DHS within
100 kb of each gene. To reduce noise, we set a minimum value for
DNase I signal (0.1) and for gene expression (4). We calculated
a permutation P-value by calculating a null distribution of DHS
correlations for each gene to a random sample of 10,000 DHSs
from different chromosomes, and considered P < 0.05 significant.

Data access
Processed data are available at http://dnase.genome.duke.edu.
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