
Taking the hippie bus to the
enterprise

GOTO Aarhus
September 30th 2013

Mogens Heller Grabe

mhg@d60.dk

http://mookid.dk/oncode

@mookid8000

mailto:mhg@d60.dk
http://mookid.dk/oncode
http://twitter.com/mookid8000

What?
What's your problem?
Meet Rebus
Examples
Wrap up

How?
Slides
Talk
4 demos

What's your
problem?

Big system

size

Integration with external
parties

(uhm hello? anybody out there?)

Complex logic
Stuff that makes stuff happen

...that makes other stuff happen

...that makes other stuff happen

...then waits for a while

...then other stuff happens

(you probably get it)

Problem summary
Monolith
Integration
Coordination

The solution: Messaging

(and by "the" I mean "a")

Messaging via durable,
asynchronous queues

Windows FTW!!1

Meet Rebus

"Service bus"?

"Hippie bus"?

No, seriously - what is it?
Messaging library
Layer on top of MSMQ
One single .NET 4 DLL
Additional DLLs if you want RabbitMQ

RavenDB
MongoDB
Castle Windsor
StructureMap
Unity
Autofac
Ninject
Log4net
NLog
...

Motivation
I really like NServiceBus
Can't use NServiceBus where I want to though
Sometimes I lost my patience with NServiceBus
Wanted to use MassTransit
Wanted to fork NServiceBus when it was still Apache V2

Philosophy
Free
Easy

Meta
3700 lines of C# 4
Code on GitHub:

Has contributions from 12 developers besides me
Binaries available via NuGet

Current version: 0.43.1
Has been moving money around since 0.14-alpha
Has controlled power plants since 0.17-alpha

https://github.com/rebus-org/Rebus

http://nuget.org/packages?q=rebus

https://github.com/rebus-org/Rebus
http://nuget.org/packages?q=rebus

Good to know
Messages are POCOs
Each Rebus endpoint has its own input queue
Each message type is owned by one logical service

Demo 0

Examples
The three problems I talked about

1. System that's becoming too big
2. Integration with external parties
3. Complex logic with coordination and timing

1st problem
System that's becoming too big

Summary: We're building a trading platform where traders in "front office" strike deals with counterparts
and record their trades, while administrative personnel in "back office" make sure that the counterparts

are charged.

Cues
ubiquitous language
bounded context
distributed domain-driven design

Demo 1
Split into separate Trading and Billing systems

2nd problem
Integration with external party

Summary: When new trades are made, "middle office" needs to confirm all trades, e.g. depending on the
current credit status of the counterpart. Credit status can be retrieved by querying the CreditAssessment

SOAP service.

Cues
asynchronous
reliable
automatic retries

Demo 2
Web service calls via messaging facade

3rd problem
Complex coordination and timing

Billing needs to charge the customer, but it can be optimized by sending one big invoice if the credit
status is OK. Therefore, when trades are made, billing awaits confirmations' judgment to determine

invoicing terms.

To avoid "forgetting" to send invoices in case something goes wrong, we want to take action if the
automated invoicing is not complete within 10 seconds.

Cues
process manager
timeouts
compensating actions

Demo 3
Complex logic, coordination, timing

Summary
Messaging provides a model that can...

help you glue the pieces together when you break down a
system into bounded contexts
help you overcome glitches when you depend on stuff that
you do not control
be used to make processes explicit by correlating events

Stuff I didn't show
Can also use RabbitMQ, Azure Service Bus, and SQL Server as
transports
Can store subscriptions and sagas in SQL Server, RavenDB,
and MongoDB
Can activate handlers with Castle Windsor, StructureMap,
Autofac, Ninject, and Unity
Can log with NLog and Log4Net
Can send messages in batches
Can do handler pipeline re-ordering
Can do polymorphic dispatch
Can encrypt message bodies
Can compress message bodies

What now?
1.0
Central monitoring
HTTP gateway
Additional transports
Distributor

Litterature

Want to read more?
Check out the work & words of Udi Dahan, Greg Young, Dan

North, Rinad Abdullin etc.

Thank you for listening!
...and a big thank you to for creating the immensely awesome

Mogens Heller Grabe

Hakim reveal.js

Code samples on GitHub

mhg@d60.dk

@mookid8000

http://mookid.dk/oncode

http://hakim.se/
http://lab.hakim.se/reveal-js/
https://github.com/rebus-org/RebusDemos
mailto:mhg@d60.dk
http://twitter.com/mookid8000
http://mookid.dk/oncode

