Why code in Node.js
often get rejected by
SoundCloud

Phil Calcado - SoundCloud
@pcalcado
http://philcalcado.com

http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://gotocon.com/aarhus-2013/presentation/Why%20code%20in%20Node.js%20often%20get%20rejected%20by%20SoundCloud
http://philcalcado.com
http://philcalcado.com

20II: PRIL ZIEHT NACH BERLIN

i
» ’{' IR e
’; "‘ _..l""'.."
Py et DIEE A A . m
e diow S dawd Favovyrecas “}'.‘:.".’.:‘: .

e el L L e L . v S (‘ ;:’I\:' -

- , -
- l.’_' <. .

e 1 TA e - Y :
. - 4 3. o . ‘-“-—~f"‘ A
\) g5
-‘ 2
A T _—
v B
v'(A A ey bE
"= -

Tuesday, October 1, 13

il

SOUNDCLOUD

> 11 hours of audio
uploaded every minute

~ 200 million users / month

THE WHITE HOUSE

5 SNOOP LION
(' PREINCARN
The White nineinchnails” Pennywise Snoop Dogg’
House
ggv' TWO DOOR CINEMA C
CHANGING OF THE SEASONS

-
» U,
2
’

—
= -

. i’
L VR - r'-l'
A TS
e 12 ‘u._,_
Two Door
Cinema Club™

Skrillex” GreenDay Madonna TheNational

Tuesday, October 1, 13

hiring @SoundCIoud

GET
EXCITED

AND

MAKE
THINGS

http://bit.ly/15DToNK

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

Phone

!

Code Review

Interviews I

!

Offer

Tuesday, October 1, 13

Phone

|

Code Review

Interviews I

!

Offer

Tuesday, October 1, 13

challenge until late 2012

Backend Developer Challenge
Build a system that will accept a multipart form upload while displaying a percentage progress.
Specification

When a user picks a file from their computer, the upload automatically begins. While uploading,
the percentage complete is visible on the page. It should update at least every 2 seconds.

Tuesday, October 1, 13

you can choose any language.

" % of submissions ~2011-2012

40

30

20

|0

Ruby Java JavaScript (Node.js) C Clojure Scala

Tuesday, October 1, 13

you can choose any language.

B rejected before interview " invited for inverview

40

30

20

|0

Ruby Java JavaScript (Node.js) C Clojure Scala

Tuesday, October 1, 13

new challenge

The Challenge

The challenge proposed here is to build a system which acts as a socket server, reading events from an event source and
forwarding them when appropriate to user clients.

Clients will connect through TCP and use the simple protocol described in a section below. There will be two types of clients
connecting to your server:

» One event source: It will send you a stream of events which may or may not require clients to be notified

 Many user clients: Each one representing a specific user, these wait for notifications for events which would be relevant to the
user they represent

Tuesday, October 1, 13

you can choose any language.

" % of submissions on the past ~| year

30

22.5

|5

7.5

Ruby Java JavaScript (Node.js) Go Clojure Scala

Tuesday, October 1, 13

you can choose any language.

" % of submissions on the past ~| year

30

22.5

|5

7.5

Ruby Java JavaScript (Node.js) Go Clojure Scala

Tuesday, October 1, 13

you can choose any language.

Bl rejected before interview " invited for inverview

30

22.5

|5

7.5

Ruby Java JavaScript (Node.js) Go Clojure Scala

Tuesday, October 1, 13

you can choose any language.

Bl rejected before interview " invited for inverview

22.5

|5

7.5

Ruby Java JavaScript (Node.js) Go Clojure Scala

Tuesday, October 1, 13

don’t get me wrong

N1 JISNW

a3s

we are all hipsters

http://bit.ly/J1alLNn

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

o More ~

More

phil@soundcloud.com 2

1-240f24 ¢ 5

.Experteer.com - Search quality executive jobs €80K+ in Germany. Find yours today!

an, Sean, Peter (4)
y Conroy

Kim, Sebastian, me (6)

omés (3)

Sebastian (2)
omas (2)

me, Matthias (15)
tian Ohm
mélie (2)
tian Ohm
as Georgi

tian Ohm
der, Kim (2)

tian Ohm

Inbox
Inbox
dev-discuss
Inbox
dev-discuss
Inbox
Inbox
dev-discuss
Inbox
Inbox
Inbox
Inbox
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss
dev-discuss

dev-discuss

dev-discuss

dev-discuss

dev-discuss

dev-discuss

dev-discuss
dev-discuss
dev-discuss

dev-discuss

[dev-discuss] Queuing: Bloat, Delays, and Active Queue Management - Nice, thal paper has been q
[dev-discuss) Recursive Drawing - http://recursivedrawing.com/ Marcus just sent this to the design t
[dev-discuss] the gospel of simplicity - hit harder: hitps://twitter.com/#!/PLT_Borat/status/19767910210536%
Interview: Philip Wadler on Functional Programming - Thanks for the links! On Mon, May 7, 2012 at
Herlin Haskell User Group on meetup - Sounds interesting: http://www.meetup.com/berlinhug

[dev-discuss] Fwd: interesting article about probablistic data structures for data mini... - On Thu, Ma
Generating Compiler Optimizations from Proofs - | found this useful as overview of category theory ¢
Rich Hickey keynote @ RailsConf - Keynote: Simplicity Matters Rich Hickey Rich Hickey, the author of Clo
[dev-discuss] ruby + structural types - | know, I'm just saying it doesn' fit very well with the nature ¢
[dev-discuss] Extending Ruby with Ruby - Here's a railsconf presentation, demonstrating how to met
Mendeley's "personalised research advisor” using mahout - If we need to know more about the Musi
[dev-discuss)] John Carmack on Functional Programming - http://www.altdevblogaday.com/2012/04/.
[dev-discuss] mruby - a lightweight implementation of ruby - https://github.com/mruby/mruby mruby is the li
A proof that Unix utility "sed" is Turing complete - http://www.catonmat.net/blog/proof-that-sed-is-turing-com
ScalaDays Videos... - Are already being posted (<3 skillsmatter, wish we had it in Berlin): http://skillsmatter
[dev-discuss] Celluloid: Actor-based concurrent object framework for Ruby - Hey, wondering if anybody has
[dev-discuss] Truth about scala - Inline image 1 On Fri, Apr 13, 2012 at 11:10 AM, Alexander Simmerl <alx(
Ebook: Data-Intensive Text Processing with MapReduce - http://lintool.github.com/MapReduceAlgorithms/N
Cute intro to Lambda calculus, Peano, Y combinator, and many other concepts using Ruby ... - bit.ly/H|Pf1<
Hamster - Efficient, Immutable, Thread-Safe Collection classes for Ruby - hitps://github.com/harukizaemon.
[dev-discuss] Ruby 2.0: New GC and Enumerable::Lazy - Here's an article providing some insight into Ruby
Slides: The Typeclassopedia - hitp://typeclassopedia.bitbucket.org

Skillsmatter's Functional Programming exchange Videos Being published - Skillsmatter is already publishing

. - i A pa—

Share...

16:47

11:40
9 May
7 May
4 May
3 May
3 May
2 May
2 May
30 Apr
27 Apr
27 Apr
20 Apr
20 Apr
18 Apr
18 Apr
13 Apr
12 Apr

6 Apr
30 Mar
24 Mar
16 Mar
16 Mar

Tuesday, October 1, 13

this.fs.stat(fileToServe, function(err, stats) {
1f (stats) {
1f(stats.isDirectory()) {
1f(settings['directory_listing'] === true && !self.path.existsSync(self.path.jo
data = self.print_directory_listing({'parent’ : fileToServe, 'files' : self.f
content_type = 'text/html; charset=utf-8';

}
else {
fileToServe = self.path.join(fileToServe, settings['directory_index']);
}
}
}
else {
stats = false;
try {
stats = self.fs.statSync(fileToServe + ".xml");
}

e oaces Not 00, not Functional...
} Just (bad) Procedural code.

1f(stats) {

fileToServe += '.html';

}

else {
fileToServe = "404.xml");
status_code = 404,

}

Tuesday, October 1, 13

FIOTHIMG |= ARY GoOD
IF DOTHER FEQFLE LIKE IT

http://bit.1ly/JiECRp

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

!'

o Y S ' ", N v 3
k |
'/ | (/BJECT-ORIENTED Fuowamymus o
I Do ad | S
ﬁ%‘%%ggé? : y SOFTWARE m/mses TION - OBJ l‘a("'l‘.ORl 2
, DESIGN IN)
| mer 1 4

we don’t need this complicateci stuff

this is not java, you know. PO

so how do we structure our app?

IT'S
COMPLICATED

http://b1t.ly/J1FSng

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

what to use?

(decent)
procedures?

TOM DEMARCO
Foreword by: PJ PLAUGER

EDWARD YOURDON

YOURIDN PRESS COMPUTING SERIES

YOUMIDNR MESS ©

Tuesday, October 1, 13

Get Payroll
Record

Payroil
Record

Payroil
Fecord

Record
Valid

o Valldated

./' Record

Endof
Payroll

Generate
Payroll

Calculate
Net Pay

Employee
o

Total

Print
Check

Deducticns

Read Validate
Payroll Payroll
Record Record

Calculate
Gross Pay

Calculate
eductions

Update
Employee

Record

Gross
Pay

Tax
Hans Tax Gross
Witheid Pay

ss
Witheld

Calculate Calculate
Tax SS
Witheld Witheld

Tuesday, October 1, 13

what to use?

objects?

ture Window Hel - Db B C D0 2 T 36%ET Thu06:53 Q =

[]» Monsters Calling Home

€« C' 8 https://soundcloud.com/runrivernorth/monsters-calling-home kAR !% B R =
a & <% |] Read Later E SG E APIs E DE m compsci ﬁ Reading | | Viewportmarklet 4 Stanford Encyclope: M linkpichos M motivate ﬁ Other Bookmarks
plore Search Q) = pload onste alling Home ore

Run River North

O Monsters Calling Home

“ - =

r 1
& Write a comment ...

¥ tARepost =*Addtoset (2 Share > 28,454 W 166 1319 W2

« Gangster Folk Oriental R« Monsters Calling Home K« ollaboration . Run River North

Recorded by Stephen JW Lee. Mixed by Daniel Chae & Stephen JW Lee.
Jennifer.Daniel.Alex.Sally.John.Joe I Related
@ 21 comments View all unseenmusic

[Indie / Folk / Thoughtful] - "Wild...

Daphney Chang = =
Ur songs r life chang
€© Report copyright infringement
—_ il

SOUNDCLOUD

June 14th, 2012

Building The Next SoundCloud

I This article is also available in Serbo-Croatian: Pravljenje novog SoundCloud.

Nick Fisher

The front-end team at SoundCloud has been building upon our experiences with
the HTMLS widget to make the recently-released Next SoundCloud beta as solid as
possible. Part of any learning also includes sharing your experiences, so here we
outline the front-end architecture of the new site.

Building a single-page application

Tuesday, October 1, 13

what to use?

__functions?

4 BrendanEich 295 days ago | link | parent
Dumb luck, as in winning the lottery? Not really. What did Ben Kenobi say to Han Solo about luck?

Subtle chains of cause and effect were at play among people involved, going back years to Silicon Graphics (Netscape
drew from UIUC and SGI, plus montulli from Kansas, and jwz). Also going back through the living history of programming
languages. SICP and some of the Sussman & Steele "Lambda the ..." papers made a big impression on me years before,
although I did not understand their full meaning then.

Remember, I was recruited to "do Scheme", which felt like bait and switch in light of the Java deal brewing by the time I
joined Netscape. My interest in languages such as Self informed a subversive agenda re: the dumbed down mission to
make "Java's kid brother”, to have objects without classes. Likewise with first-class functions, which were inspired by
Scheme but quite different in]S, especially JS 1.0.

Apart from the "look like Java" mandate, and "object-based" as a talking point, I had little direction. Only a couple of top
people at Netscape and Sun really grokked the benefit of a dynamic language for tying together components, but they
were top people (marca, Rick Schell [VP Eng Netscape], Bill Joy).

Rather than dumb luck, I think a more meaningful interpretation is that I was a piece of an evolving system, exploring
one particular path in a damn hurry. That system contains people playing crucial parts. Academic, business, and personal
philosophical and friendship agendas all transmitted an analogue of genes: ideas and concrete inventions from functional
programming and Smalltalk-related languages.

You might think "it's still luck, it could have been Forth, or TCL". Not likely. There were not years or even months to
spare. I had hacked language implementations for fun since I was an undergrad, and for SGI's packet sniffing tools earlier
my career. I was a C/Unix fanboy, I knew the C grammar by heart. Independent of me, the "Make it look like Java" order
was not just lucky, it was congruent as a consequent, even predictable, given the rise of C in the '80s and C++ in the
'90s, and the direct influence of C++ on Java.

My point is simple: the likelihood of any other language syntax than C (C++ -> Java, but really: C) was low. The
likelihood of something without "objects” was also low. Netscape recruited me in part because I could hack quickly, and
in part because I had some language implementation chops (not enough, in hindsight). I was "that guy"”, not in any
brag-worthy sense, just the only person who was in the position to do the deed, with (barely) enough skills to pull it off.

Many hackers could have done a better job with more time, or perhaps a better job had they been in my shoes. Who
knows? But no one at Netscape could have, and the opportunity was there and then.

The path dependence part is spot on. Netscape's business plan for 1.0 was getting out in six months or someone else
would kill Mosaic and take over. The entire platform push in 1.1 (plugins) and 2 (frames, JS) was about getting on first.
We knew Microsoft was coming, because Netscape had rejected a low-ball offer from them in late '94.

/be

Tuesday, October 1, 13

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

“SICP and some of the Sussman & Steele "Lambda
the ..." papers made a big impression on me years
before, although | did not understand their full
meaning then.

Remember, | was recruited to "do Scheme' ... 1 My
interest in languages such as Self informed a
subversive agendar...]. Likewise with first_class
functions, which were inspired by Schemer...1”

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

http://bit.1ly/JiEQYM

Tuesday, October 1, 13

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

HOW TO DESIGN PROGRAMS

An Introduction to Programming and Computing

That is, f stands for x-adder5, a function, which adds 5 to its argument.

Using this example, we can write add’s contract and a purpose state-
ment:
5 add : number — (number — number)
;; to create a function that adds x to its input
(define (add x)
(local ((define (x-adder y) (+ x y)))
x-adder))

The most interesting property of add is that its result “remembers” the value
of x. For example, every time we use f, it uses 5, the value of x, when add

Tuesday, October 1, 13

(local ((define (¥ ¢+ x ¥)))
x-adder))

(define (add x)
(local ((define (x-adder y) (+ X y)))
X-adder))

Welcome to Racket v5.2.1.
(define adder (add 7))
adder
#<procedure:x-adder>
> (adder 10)
14

Tuesday, October 1, 13

function (x) {
return function (y) {
return y + X,
| ¥
$

var = add(7);
console.log(adder);
console.log(adder(10));

Tuesday, October 1, 13

(x) 1
' (y) 1

Y + X

= add(7);
console.log(adder);
console.log(adder(10));

» var adder = add(7);

» console. log(adder);
function (y) {
return y + X;

}

» console. logladder(]

17

-
> |

Tuesday, October 1, 13

going old school

http://bit.ly/JiF7ef

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

e.g. passing functions around

we see a lot of this

function () 1
try {
Vels = connectToDatabase(credentials());

execute(db, asSqlInsert(user));
} catch (e) {

handleDatabaseError(e);

ks
}
function 'rack(k) {
try {
Vels = connectToDatabase(credentials());

execute(db, asSqllInsert(track));

} catch (e) {
handleDatabaseError(e);}

Tuesday, October 1, 13

1st, we extract what is common

el (:)1
var = connectToDatabase(credentials());
functionToExecute(db, argument);

} catch (e) {
handleDatabaseError(e);
}
}

Tuesday, October 1, 13

then we refactor our functions

function (db,) 1
execute(db, asSqglInsert(user));

¥

'if' unc -_. 1 on (’) {
execute(db, asSqllInsert(track));

¥

function ¢ ’)
try {
var = connectToDatabase(credentials());
functionToExecute(db, argument);
} catch (e) {
handleDatabaseError(e);
h
$

Tuesday, October 1, 13

and we send them as arguments

function ser(db, user) {
execute(db, asSqlInsert(user));
5
function addTrack(db, ck) {
execute(db, asSqgllInsert(track));
}
function ex N1 on(1 onToEXx , O)4
try {
var = connectToDatabase(credentials());

functionToExecute(db, argument);
} catch (e) {
handleDatabaseError(e);

¥
¥

executeWithConnection(addUser, {'name’:'Phil'});
executeWithConnection(addTrack, {'title':'The JavaScript Blues'});

Tuesday, October 1, 13

e.g. closures not only for objects

we see a lot of this

function writeComment(count, author, text) {
1f(count > 3){
throw new Error(author +

executed too many actions!!™);
}

saveComment(author, text);

return count + 1;

¥

var counter = 0;

counter = writeComment(counter, 'pcalcado', "Check my stuff");
counter = writeComment(counter, 'pcalcado’, "Check my stuff");
counter = writeComment(counter, 'pcalcado', "Check my stuff");
counter = writeComment(counter, 'pcalcado’, "Check my stuff");
counter = writeComment(counter, 'pcalcado’', "Check my stuff");

Tuesday, October 1, 13

we can keep writeComment as itis

inction (, ,) 1
L f(count > 3)4
hr W ErrorCauthor +)
5
saveComment(author, text);
'n count + 1;

Tuesday, October 1, 13

and we add a function with two closures

FUnNcCCcLoOn (’ P) {
Lf(count > 3){
throw new Error(Cauthor + -
ks
saveComment(author, text);
"'n count + 1;

Function (i1
"n function () {
counter = writeComment(counter, author, text);

¥
¥

Tuesday, October 1, 13

and we add a function with two closures

FUnNcCCcLoOn (’ P) {
Lf(count > 3){
throw new Error(Cauthor + -
ks
saveComment(author, text);
"'n count + 1;

Function (i1
"n function () {
counter = writeComment(counter, author, text);

¥
¥

Tuesday, October 1, 13

and we add a function with two closures

ANCTLON (’ 3) {
Lf(count > 3)4
throw new Error(Cauthor +);
5
saveComment(authg?”, text);
'n count »1;

Function ()1
var = 0;
curn function () {
counter = writeComment(counter, author, text);

¥
¥

Tuesday, October 1, 13

now we don t need to pass in the kitchen sink

funCt"l_Oﬂ -_ LE ‘:__ ommen (ount , author ,) {
1f(count > 3){
throw new Error(author +
}
saveComment(author, text);
return count + 1;

"

executed too many actions!!™);

$
function makeWriteCommentFunction(author){

var counter = 0;

return function (text) {

counter = writeComment(counter, author, text);

$
}
var currentUserWritesComment = makeWriteCommentFunction('pcalcado’);

currentUserertesComment(Check my stuff");
currentUserWritesComment("Check my stuff");
currentUserWritesComment("Check my stuff");
currentUserWritesComment("Check my stuff");
currentUserWritesComment("Check my stuff");

Tuesday, October 1, 13

e.g. functions all the way down

we see a lot of this

function deleteUser(currentUser, userToDelete){

1f(currentUser == userToDelete || currentUser.admin) {
deleteRecord(userToDelete);
} else {
throw new Error(currentUser.login + " trying to delete "+ userToDelete.login);
¥
}
function activateUser(currentUser, userToActivate){
1f(currentUser == userToActivate || currentUser.admin) {
activate(userToActivate);
} else {
throw new Error(currentUser.login + " trying to activate "+ userToActivate.login)
¥

}

deleteUser(admin, pcalcado);
deleteUser(pcalcado, pcalcado);
deleteUser(tiga, pcalcado);

activateUser(admin, pcalcado);
activateUser(pcalcado, pcalcado);
activateUser(tiga, pcalcado);

Tuesday, October 1, 13

first we extract common protocol

function (){
return functior ‘l(’) {
Lf(currentUser == userToModifyl| currentUser.admin) {
functionToExecute(userToModify);
} else {
throw new Error(currentUser.login + . + functionToExecute.name + u
ks
ks
ks

Tuesday, October 1, 13

then we clean up our functions
function ()4
deleteRecord(userToDelete);

$
function ()4
activate(userToActivate);
$
function ()4
return function(,) {
LfCcurrentUser == userToModifyl| currentUser.admin) {
functionToExecute(userToModify);
}+ else {
throw new Error(currentUser.login + " trying to "+ functionToExecute.name + u
$
ks
$

Tuesday, October 1, 13

then we use them.

function deleteUser(userToDelete){
deleteRecord(userToDelete);

}

function activateUser(userToActivate){
activate(userToActivate);

}

function makeAuthorisationCheckingFunction(functionToExecute){
return function(currentUser, userToModify) {

1f(currentUser == userToModify!|| currentUser.admin) {
functionToExecute(userToModify);

} else {
throw new Error(currentUser.login + " trying to "+ functionToExecute.name + u

}
}
}

var safeActivateUser = makeAuthorisationCheckingFunction(activateUser);
var safeDeletelUser = makeAuthorisationCheckingFunction(deleteUser);

safeDeleteUser(admin, pcalcado);

safeDeleteUser(pcalcado, pcalcado);
safeDeleteUser(tiga, pcalcado);

Tuesday, October 1, 13

then we use them redundant?

function deleteUser(userToDelete){
deleteRecord(userToDelete);

}

function activateUser(userToActivate){
activate(userToActivate);

}

function makeAuthorisationCheckingFunction(functionToExecute){
return function(currentUser, userToModify) {

1f(currentUser == userToModifyl| currentUser.admin) {
functionToExecute(userToModify);
} else {
throw new Error(currentUser.login + " trying to "+ functionToExecute.name + u
}

}
}

var safeActivateUser = makeAuthorisationCheckingFunction(activateUser);
var safeDeleteUser = makeAuthorisationCheckingFunction(deleteUser);

safeDeleteUser(admin, pcalcado);
safeDeleteUser(pcalcado, pcalcado);
safeDeleteUser(tiga, pcalcado);

7S S .
// / ‘,_ aa U1V o X e Jde

- 4 L - y /L - CACTLWLCT & L w - LOUVOoC] /I | LA LU

Tuesday, October 1, 13

IT'S FUN TO
USE LEARNING
FOR EVIL!

http://bit.ly/JiETnd

http://bit.ly/J1aLNn
http://bit.ly/J1aLNn

our “framework”.
1 _ Extract protocol in
“‘combinators”
2 _ Keep mutable state in
closures

no scary monads required

r/ FIAVYY T0O DESIGN PROGRAMS

A Introdu. fon to Py
* Frogramming and Computing

Structure and 3\

interpretation g N
of Computer W
Programs o X
A\
Secand Ednson \

thereis plenty to learn from

Tuesday, October 1, 13

Introducing Functional Programming with Underscore.js

Functional
JavaScript

Michael Fogus
Forewords by Steve Vinoski

O’REILLY" & Jeremy Ashkenas

in the javascript community too

Tuesday, October 1, 13

phil calcado

http://philcalcado.com
@pcalcado

www.soundcloud.com

e

SOUNDCLOUD

http://www.soundcloud.com
http://www.soundcloud.com

How to Design Programs - http://bit.ly/K@BfrL

Structure and Interpretation of Computer
Programs - http:.//bit.ly/K@OBjYm

The Art of the Metaobject Protocol
http://amzn.to/KOBgUl

Purely Functional Data Structures
http://amzn.to/JFEn4KG

Let Over Lambda - http://amzn.to/IMMKNO

An Introduction to Lambda Calculi for Computer
Scientists - http://amzn.to/IX8d1B

All drawings are available as t-shirts from the
awesome Diesel Sweeties -
http://dieselsweeties.com/

Tuesday, October 1, 13

http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://bit.ly/K0BfrL
http://dieselsweeties.com/
http://dieselsweeties.com/
http://dieselsweeties.com/
http://dieselsweeties.com/

