
© 2013 IBM Corporation

How to not Lose Your Hair Doing
Distributed Java Development…

Scott Rich
Distinguished Engineer, IBM Rational
srich@ch.ibm.com

© 2013 IBM Corporation

Rational Development – A Growing, Global Team

Canada – 483 (22%)

Israel – 81 (4%)

China – 154 (7%)
Japan – 13 (1%) France – 69 (3%)

United States – 884 (41%)

India – 296 (13%)

Switzerland – 6 (<1%)

Mexico – 56 (3%)

Brazil – 4 (<1%)

Poland – 3 (<1%)

Australia– 11 (1%)

Sweden – 28 (1%)
UK – 76 (4%)

Russia – 13 (1%)

Taiwan – 12 (1%)

Software Lifecycle
Management

Rational (2002)
Team-based, end-to-end
development tools
Information Lab (2003)
Development tool technology
Systemcorp (2004)
Project portfolio mgmt

BuildForge (2006)
Product development doc
Telelogic (2008)
Embedded systems dev
Green Hat (2012)
Quality management
UrbanCode (2013)
DevOps

2

© 2013 IBM Corporation 3

© 2013 IBM Corporation

Accelerating Delivery in Rational’s CLM Team

4

JazzHub

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Future
Continuous Delivery

Annual releases

On-Premise Installs CloudFirst

Agile DevOps

Rational Team Concert

Rational Quality Manager

Rational Requirements Composer

Agile ALM (CLM)

UrbanCode Deploy

UrbanCode Release

UrbanCode Build

Tools for collaboration

Open Source Development

eclipse.org jazz.net jazz.net/devops

Communities for collaboration

Open Commercial Development Continuous Delivery Story

Publish
milestone
and GA
builds

Sandbox
trials

Paid
hosted
private
projects

Free
hosted
public

projects

jazz.net/downloads jazz.net/sandbox hub.jazz.net

Developer-to-developer engagement

© 2013 IBM Corporation

tl;dr: this stuff is hard, most of the practices are not Java-specific

 We’re nearly ten years into this, and we know we’ve got a long way
to go

 We have been able to eliminate a lot of our pain points

 Most of our practices are general: collaboration, awareness, team
structure

 But there are some Java-specific practices which we think are
important

5

© 2013 IBM Corporation

Seven Years Ago: Our Pain Points…
 joining a team
 get my environment configured to be productive
 what is happening in my team
 collecting progress status
 following the team’s process
 ad hoc collaboration/sharing of changes
 starting an ad hoc team

 is the fix in the build?
 run a personal build
 tracking a broken build
 why is this change in the build?
 reconstructing a context for a bug/build failure

 interrupting development due to a high priority bug fix
 working on multiple releases concurrently
 tracking the code review of a fix
 referencing team artifacts in discussions
 how healthy is a component?
 collecting project data/metrics?
 keeping plans up to date

Boring and painful

Team
awareness

Build
awareness

Project
awareness

© 2013 IBM Corporation

Way of Working: Team Centric

7

Members

Build

Release/
Iteration Plan

Work Categories

Streams

Dashboard

Events

has

produces

defines
generates

delivers

is responsible

monitors

Process

Team

follows
owns

Teams are self-tuned but share a common rhythm

© 2013 IBM Corporation 8

Scaling up: Teams of Teams

8

Process Repository

Jazz
Development

Changes

© 2013 IBM Corporation

Culture – Team Organization – Feature Teams

  Feature teams are virtual teams responsible for delivering a feature as specified in a plan item

  Feature teams may span components/capabilities and applications

  Each affected component/capability/test team must have a representative on the feature team

  Each feature team has a feature team lead and a senior leader from the CLM Project
Management Committee (PMC) who owns the plan item

  Each feature team has its own scrum

Change and Configuration Management Quality Management Requirements
Management

Jazz Team Server
(Jazz Foundation)

W
eb

 U
I

R
ep

os
ito

ry

P
ro

ce
ss

R
ep

or
tin

g

Li
fe

cy
cl

e
P

ro
je

ct
 A

dm
in

W
or

k
ite

m
s

P
la

nn
in

g

B
ui

ld

S
ou

rc
e

C
on

tro
l

E
cl

ip
se

 C
lie

nt

Vi
su

al
 S

tu
di

o
C

lie
nt

W
in

do
w

s
S

he
ll

D
as

hb
oa

rd
s

C
om

m
on

 C
om

po
ne

nt
s

La
b

M
an

ag
em

en
t

Te
st

 E
xe

cu
tio

n

Te
st

 P
la

nn
in

g

S
er

ve
r

W
eb

 U
I

R
ic

h
C

lie
nt

In
te

gr
at

io
ns

E
nt

er
pr

is
e

E
xt

en
si

on
s

New Feature New Feature

New Feature

New Feature

© 2013 IBM Corporation

Culture – Team Organization – Run Teams

  Run teams are permanent virtual sub-teams that handle critical, daily tasks for a component:
– Fix bugs (in existing features)
– Answer questions on the jazz.net forums
– Work with Level 3 support team on customer escalations
– Maintain SCM streams, monitor continuous builds, and manage deployments for testing
– Monitor work items inbox, triage work items, prioritize and plan work

  Members of a component team rotate through the run team

  Run team has its own scrum

  Benefits
– Team acquired knowledge and expertise by working/fixing defects across all areas
– Feature teams are free to focus on new features
–  Increased quality
–  Improved interaction with the support team and improved responsive to customers

Application Team
Component Team

Run Team Feature Team Feature Team

© 2013 IBM Corporation 11

Our Current Practices

11

milestones
first

API
first

end
game

retrospectives

always have
a client

continuous
integration

community
involvement

new &
noteworthy

adaptive
planning

continuous
testing

consume your
own output

component
centric

drive with
open eyes

validate

reduce stress

learn

enable

attract
to latest

transparency

validate
update

dynamic
teams

show progress

enable

explore

validate

live
betas

feedback

sign
off

End of iteration
demos/reviews

Ranked
Product Backlog

Burndown Stories

Daily Standup
Adoptions
Expectations

PMC
Buddy Review

Rules of the
Road

Feature
teams

© 2013 IBM Corporation 12

Rational Team Concert: An Overview

SCM
 Integrated stream management

 Component level baselines
 Server-based sandboxes

 Identifies component in streams
and available baselines

 SVN, Git, CC bridge, connector

Build
 Work item and change

set traceability
 Build definitions for team

and private builds
 Local or remote build servers
 Supports Ant and command

line tools
 Integration with Build Forge

Work Items
 Defects, enhancements

and conversations
 View and share query results
 Support for approvals and

discussions
 Query editor interface
 ClearQuest bridge, connector

Agile Planning
 Integrated release/iteration planning
 Effort estimation & progress tracking taskboards
 Out of the box agile process templates

Project Transparency
 Customizable web based dashboards
 Real time metrics and reports
 Project milestone tracking and status

 Single structure for project related artifacts
 World-class team on-boarding / offboarding

including team membership, sub-teams and
project inheritance

 Role-based operational control for flexible
definition of process and capabilities

Jazz Team Server
 Team advisor for defining / refining “rules”

and enabling continuous improvement
 Process enactment and enforcement
 In-context collaboration enables team members

to communicate in context of their work

© 2013 IBM Corporation 13

© 2013 IBM Corporation

 Aligned milestone schedule across products

Team rhythm and timeline are made explicit

© 2013 IBM Corporation

Team awareness: What’s the plan?

15

© 2013 IBM Corporation 16

© 2013 IBM Corporation 17

© 2013 IBM Corporation 18

© 2013 IBM Corporation

What about those Java-specific practices?

 Continuous Integration with RTC and Jenkins

 Getting our test layers right, implementing mocking

 Using components to increase autonomy

 Enabling desktop test and debug for complex systems

19

© 2013 IBM Corporation

Continuous Integration with RTC and Jenkins

  We perform ~1000 builds per week
– Components run continuous builds
– Nightly Integration candidates
– Weekly Integration builds – “stop the line”
– Monthly Milestone builds

  Make it easy to run personal builds
and builds for Feature Teams

  Build time is a constant focus
– Test refactoring
– Kicking out Integration tests
–  Increasing parallelization
– 12 hours to 8 for full re-build
– 10->3 hrs for average build

20

0
200
400
600
800

1000
1200
1400

05
/2

0
to

 0
5/

26

05
/0

6
to

 0
5/

12

04
/2

2
to

 0
4/

28

04
/0

8
to

 0
4/

14

03
/2

5
to

 0
3/

31

03
/1

1
to

 0
3/

17

02
/2

5
to

 0
3/

03

02
/1

1
to

 0
2/

17

01
/2

8
to

 0
2/

03

01
/1

4
to

 0
1/

20

12
/3

1
to

 0
1/

06

12
/1

7
to

 1
2/

23

12
/0

3
to

 1
2/

09

11
/1

9
to

 1
1/

25

11
/0

5
to

 1
1/

11

10
/2

2
to

 1
0/

28

10
/1

0
to

 1
0/

15

Builds

Builds

0
50

100
150
200
250
300

05
/2

0
to

 0
5/

26

05
/0

6
to

 0
5/

12

4/
22

 to
 4

/2
8

04
/0

8
to

 0
4/

14

03
/2

5
to

 0
3/

31

03
/1

1
to

 3
/1

7
02

/2
5

to
 0

3/
03

02

/1
1

to
 0

2/
17

01

/2
8

to
 0

2/
03

01

/1
4

to
 0

1/
20

12

/3
1

to
 0

1/
06

12

/1
7

to
 1

2/
23

12

/0
3

to
 1

2/
09

11

/1
9

to
 1

1/
25

11

/0
5

to
 1

1/
11

10

/2
2

to
 1

0/
28

10

/1
0

to
 1

0/
15

Build time(min)

Build time(min)

© 2013 IBM Corporation 21

© 2013 IBM Corporation 22

Information Radiators: Wallboards

Gummy bears

© 2013 IBM Corporation

Culture – Continuous Testing

  Build quality in with testing by everyone, everywhere, all the time
–  Instill the mindset throughout the team that quality and testing is everyone’s responsibility
– Avoid throwing untested code “over the wall” to the next team to test

  Automate as much testing as possible to increase confidence in builds
– Some teams wrote JUnits from the beginning

•  Jazz Foundation – 55,000 Junits
•  Rational Team Concert – 18,000 JUnits

– Other teams started later but have made good progress
•  Rational Quality Manager – 2,000 JUnits
•  Rational Requirements Composer – 2,000 Junits

– Use tests in the pipeline to test application, product, and integration functions
•  CLM Build Verification Test (BVT)
•  Integration tests
•  Performance acceptance tests

Develop Automated Test Manual Test Build Production

Shift testing upstream

© 2013 IBM Corporation

Java-specific practices: layered testing

Slide from Jan

24

© 2013 IBM Corporation

Java-specific practices: component-based development

“Good fences make good neighbors.”!

25

© 2013 IBM Corporation

Java-specific practices: desktop dev/testing of complex Systems

So how does a developer debug and test a Java EE beast?

- Our runtime topology relies on a relational DB, Java EE app server, user
registry, etc.

Development-time profile uses lightweight components

-  Jetty application container hosts our bundles

- Derby database

-  Shared Eclipse launch configs for dev-time servers

-  Version-controlled target platforms contain server pre-reqs

26

© 2013 IBM Corporation

Ra#onal	
Jazz	 Build	

Ra#onal	
Collabora#ve	
Lifecycle	
Management	

Selenium	

InfoSphere	
Op#m	
Managed	
DataCenter	

•  Long static pipeline

•  Limited automation

•  Inconsistent deployment mechanisms
•  Deployments driven by schedule and not by results

We are here: CLM Continuous Delivery Pipeline

27

Develop Build (multiple per day) Test (daily)

Function
Test

Performance
Test

System Test
Build Unit

Test
CLM

Integration
Test

Develop

Staging
(weekly)

Production
(end of each
milestone)

Staging
Environment

Production
Environment

IBM	 Workload	
Deployer	

JUnit	 IBM	
SmartCloud	
Con#nuous	
Delivery	

Ra#onal	
Performance	
Tester	

Integration
Test

3 month delivery

© 2013 IBM Corporation

Ra#onal	
Collabora#ve	
Lifecycle	
Management	

CLM Continuous Delivery Pipeline – Evolution

28

~1 week delivery

Develop
Test (continuous) Manual Test

(daily)
Usability Test

Other Manual Test

Unit
Test

Develop

Production
(on demand)

Production
Environment

JazzHub

System
Test

Performance
Test

Integration
Test

Function
Test

IBM	
UrbanCode	
Build	

IBM	 UrbanCode	 Deploy	 	

Build
(continuous)

Build

IBM	 UrbanCode	 Release	

Deployments

Release Management

Production-Like Environment Production-Like
Environment

•  Push testing upstream and automate as much as possible

•  Use the same deployment mechanisms everywhere

•  Strive to maintain a constant state of ship-readiness

© 2013 IBM Corporation

Unsolved problems…

•  Incremental builds for Java, build avoidance
•  Building in hours is still not fast enough for true continuous delivery

•  Solving the platform permutations nightmare for packaged software
•  OS times DB times App Server times Browser
•  Increasing our focus on “Golden Topologies”
•  Evaluating delivering products as Virtual Machine images – one pre-

configured topology

•  Others?

29

© 2013 IBM Corporation

Want to learn more?

  Follow our DevOps activity and blog at https://jazz.net/DevOps

  More articles from Jan and the team:
– How to build quality in — A layered testing approach for continuous delivery [

https://jazz.net/wiki/bin/view/Main/LayeredTestingApproach]
– Mocking without the Hangover — Unit test complex systems with stubs, spies and

matchers [https://jazz.net/wiki/bin/view/Main/UnitTestingInTheRealWorld]
– Fluent Artifact Builders — A foundation for developing tests faster [

https://jazz.net/wiki/bin/view/Main/FluentBuilders]
– Hiding Selenium in UI tests — Web UI testing with maintainable abstractions [

https://jazz.net/wiki/bin/view/Main/WorkItemWebUITests]

30

