
Getting to know the Grid
Syed M Shaaf

Red Hat



Goto; conference Aarhus 2013 | Syed M Shaaf

Quick introduction

Solutions Architect at Redhat Nordics

Red Hat JBoss middleware

@sshaaf @RedHatNordics

http://www.redhat.com



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Web/app servers

DB/Storage Integration 
servers

Mgmt/Monitor

One Scenario



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Web servers

Grid servers

DB/Storage Integration 
servers

Mgmt/Monitor

Another Scenario
Data Replication and Cache 



  
Goto; conference Aarhus 2013 | Syed M Shaaf

What is?

● Schema-less key/value 
store

● Compatible with 
applications written in any 
language, using any 
framework

● Easy access through APIs

● Consistent hash-based 
distribution

● Self-healing

● No single point of failure

● Durability (persistence)

● Memory management 
(eviction, expiration)

● XA transactions



  
Goto; conference Aarhus 2013 | Syed M Shaaf

JBoss Data Grid and JSR

● JSR-107: Temporary caching API

● JSR-347: Data grids
● Development led by Red Hat

● JSR-346: CDI1.1
● Programming model for data grids

● JSR-317: JPA2
● Data grids form caching API for database via JPA2



7

And then its a matter of 
scaling..



Goto; conference Aarhus 2013 | Syed M Shaaf

Clustering subsystems
• JGROUPS - toolkit for the underlying communication 

between nodes . Configured with 2 stacks for communication 
UDP (default) and TCP (if the environment is not 
multicasting)

• INFINISPAN - data caching and object replication and comes 
with 3 preconfigured caches: 

• cluster - Replication of objects in a HA cluster

• web - Session replication

• sfsb - Replication of stateful session bean

• hibernate - 2nd level entity caching for JPA/Hibernate 

• MODCLUSTER- software LB spreads requests among two or 
more nodes



Goto; conference Aarhus 2013 | Syed M Shaaf

Clustering architecture



Goto; conference Aarhus 2013 | Syed M Shaaf

Cluster architecture

JGroups

Infinispan

HTTP Session Clustering

EAP Instance

JGroups

Infinispan

HTTP Session Clustering

EAP Instance

Replication



Goto; conference Aarhus 2013 | Syed M Shaaf

mode=replication

All the data is stored on all cluster nodes

Writes are sent to all nodes
– Every node updates its local cache

Reads are always local

New nodes acquire the initial state from the oldest node

Clients can access any node for reading or writing

Scalability is limited by cluster size and data size

10 nodes with 100MB state each: every node needs 1GB



Goto; conference Aarhus 2013 | Syed M Shaaf

mode=replication; action=rw

mod_cluster

K V

K1

K2

K3

K V

K1

K2

K3

K V

K1

K2

K3

Replication

rw



Goto; conference Aarhus 2013 | Syed M Shaaf

Mode=distribution

Data is only stored on N cluster nodes (say N=2)

A consistent hash on a key “id” determines the 2

servers for “id”
– Example: cluster is {A,B,C,D,E,F}

– Hash(“id”) = 8; 8 MOD 6 = 2

– --> Primary owner = B, backup owner = C

Crash of B, new view is {A,C,D,E,F} 
– --> Primary owner = D, backup owner = E

– --> C needs to transfer “id” to D and E and remove it 
locally

Knowing the key, we always find the right server(s)



Goto; conference Aarhus 2013 | Syed M Shaaf

mode=distribution; action=w

mod_cluster

K V

K1

K V

K1

K2

K V

K2

Replication



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Cross Site replication

Cache B

Cache Manager

Cache A

Bergen

[RELAY]
JGroups

Cache B

Cache Manager

Cache A

Trondheim

Cache B

Cache Manager

Cache A

Oslo

[RELAY]
JGroups

[RELAY]
JGroups



16

Data access is important?



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Client and server
Multiple access protocols 

Protocol Format Client type Smart? Load balance 
and failover

REST text any no external

Memcached text any no pre-defined

HotRod binary Java, C#, 
Python

yes auto/dynamic



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Advanced functionality
Eviction, expiration, and passivation

● Expiration – defined per entry or cache

● Eviction – FIFO, LRU, unordered, LIRS, none

● Passivation

Step Action Keys in memory Keys on disk

1 Insert K1 K1 n/a

2 Insert K2 K1, K2 n/a

3 Eviction thread - K1 K2 K1

4 Read K1 K1, K2 n/a

5 Eviction thread K2 K1 K2

6 Remove K2 K1 n/a



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Advanced functionality
Why use consistent hashing?

● Cost-effective, speed 
benefits

● Deterministic location of 
keys

● Sufficient copies for fault 
tolerance and durability 
but without an 
overabundance of copies

Key 372
Value “p”

Key 500

Key 0

Node A

Node C

Node B



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Advanced functionality
Consistent hashing

Hash ring
● Cost-effective, speed benefits
● Deterministic location of keys
● Sufficient copies for fault tolerance 

and durability without an 
overabundance of copies

Node A
● Stores values of keys 815-1000-330
● Wraps around

Value “m”
● Stored in Key 743
● Based on key value, located on Node 

C

Value “p”
● Stored in Key 372
● Based on key value, located on Node 

B

Key 743
Value “m”

Key 372
Value “p”

Key 500

Key 0

Node A
Key range [815,330]

Node C
Key range [643,814]

Node B
Key range [331,642]



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Advanced functionality
Consistent hashing

● Event:  Node B goes 
offline

● Node A
● Now stores keys 

815-642

● Node C - unchanged
● Value “m” - unchanged
● Value “p”

● Stored in key 335

● Now located on 
Node A

Key 500

Key 843
Value “m”

Key 335
Value “p”

Key 0Key 1000

Node A
Key range [815,642]

Node B
Key range [331,642]

Node C
Key range [643,814]



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Advanced functionality
Consistent hashing – Virtual nodes
● Addresses 

irregularities in node 
distribution

● Location of entry 
determined 
algorithmically

● Allocates multiple 
blocks throughout the 
hash space when a 
node joins or leaves 
grid

Key 500

Key 843
Value “m”

Key 0

Key 335
Value “p”

Key 1000



23

Conceptual architecture



  
Goto; conference Aarhus 2013 | Syed M Shaaf

JBoss Data Grid conceptual architecture
Client / server

Client 

Server

Persistent 
store

User
app

Cache
API

L1
cache

C
ache 

m
anager

Cache

Cache

Cache

Cache

Cache 
loader/store

Cache 
loader/store

Persistent 
store



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Conceptual architecture
Cache API and L1 cache
User application

● End-user interface (i.e. web 
application, Java server application)

Cache API

Uses memcached, Hot Rod, or REST 
APIs 

L1 near cache

● Stores remote cache entries after 
they are initially accessed

● For fast retrieval and to prevent 
unnecessary remote fetch operations

Client 

User
app

Cache
API

L1
cache



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Conceptual architecture
Cache and cache manager
Cache manager

● Primary mechanism to retrieve a 
cache instance

Cache

● Houses cache instances

Flexible setup

● One cache manager per process

● Multiple caches per cache 
manager

● One interface per cache

C
ache 

m
anager

Cache

Cache

Cache

Cache



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Conceptual architecture
Cache and cache manager C

ache 
m

anager

Cache

Cache

Cache

CacheCache configuration
● Locking policy
● Transactions
● Eviction policy
● Expiration policy
● Persistence mechanism
● Backups
● L1 cache policy

Cache manager configuration

● Name / Alias / JNDI

● Start-up policy

● Transport policies

● Caches



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Conceptual architecture
Cache store, cache loader, and persistent store

Cache loader

● Ready-only interface – locate 
and retrieve data

Cache store

● Cache loader with write 
capabilities

Persistent store

● Permanent store for cache 
instances and entries (i.e. 
relational database)

Persistent 
store

Cache 
loader/store

Cache 
loader/store

Persistent 
store



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Conceptual architecture
The cache store

● Write-behind or write-
through behavior

● A cache has one or more 
cache stores

● Cache stores can be 
chained 

● Can be loaded or purged on 
start

● Open and supported API for 
custom stores

● File, JDBC, remote

Persistent 
store

Cache 
loader/store

Cache 
loader/store

Persistent 
store



30

JBoss Data Grid:  Use cases



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Use case - Local cache
Boost application performance

A more sophisticated HashMap
● Memory management 

● Persistence

● Eviction, expiration

● Eliminate OOM

● Warm-start, preload

● Transaction capable (JTA)

● Monitor-able (JMX)

● Events and notifications

● Plugs into many frameworks to 
boost performance

Application

Cache BCache A
Database

Ideal for: 

● Single processes

● Data unique to a process

● Unshared data



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Use case – Data grid
Achieve massive elastic big data scale 
● Distributed, horizontally 

scalable, unlimited storage

● Move processing to data with 
map and reduce

● Low-latency, fast performance

● Eliminate single point of failure

● Built on Red Hat-led JSR-347 
(data grids) standards

● Multiple access protocols

● Compatible with applications 
written in any language, any 
framework

Standalone server C

Database 
optional

Application A

CacheCache

Application B

CacheCache

CacheStandalone server B CacheStandalone server A

CacheCacheCacheCache

CacheCache



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Use case - Replicated cache
Ultimate failover protection

● Instant reads, linear 
performance scalability

● Network overhead scales 
linearly

● Limited to a single JVM heap 
size

● Replicate the same key/value, 
updates across the cluster

Application A’

Application A

Cache BCache A

Database

Application B

Cache BCache A

Ideal for:

● Small, fixed datasets

● Scenarios requiring extremely 
high fault tolerance



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Use case – Data grid
Achieve massive elastic big data scale 
● Distributed, horizontally 

scalable, unlimited storage

● Move processing to data with 
map and reduce

● Low-latency, fast performance

● Eliminate single point of failure

● Built on Red Hat-led JSR-347 
(data grids) standards

● Multiple access protocols

● Compatible with applications 
written in any language, any 
framework

Standalone server C

Database 
optional

Application A

CacheCache

Application B

CacheCache

CacheStandalone server B CacheStandalone server A

CacheCacheCacheCache

CacheCache



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Use case – Data grid
Achieve massive elastic big data scale 

Ideal for: 

● Massive distributed 
datasets like those from 
global, decentralized 
locations

● Elastic datasets that 
experience large 
fluctuations, periodicity, or 
unpredictability

● Transferring transaction 
loads away from local 
cache and traditional 
databases

Standalone server C

Database 
optional

Application A

CacheCache

Application B

CacheCache

CacheStandalone server B CacheStandalone server A

CacheCacheCacheCache

CacheCache



36

JBoss Data Grid:
Deployment and use patterns



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Deployment
Library mode

● “Bring your own” container

● Within one JVM:

● Multiple caches

● One node / cache

● Multiple caches / application

● ‘Cache hit’ is in memory

● Memory management 

● Transactions, monitoring, events, 
and notifications

JVM

CacheCacheCache

User 
application

User 
application



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Deployment
Client / Server stand-alone mode

● “Remote” clients
● Within one service JVM

● Multiple caches
● One node / cache
● Multiple caches / application

● Cache hit, not in local 
memory

● Compatibility - language 
agnostic

● Separate app and storage life 
cycles

JVM

Data Grid 
Cache
Data Grid 

CacheCache
User

application

User
application



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Usage patterns
Side cache

● Application manages cache

Database

Application

Cache



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Usage patterns
Inline cache - Application speaks only to cache
1) App requests data (K1)

2) Cache loader retrieves 
from persistent store (K1)

Application

Persistent 
store

Cache

Loader

K1

1) App writes data (K2)

2) Cache writes to 
persistent store (K2)

K1

Application

Persistent 
store

Cache

Store

K2

K2

K2



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Searching/Indexing

Cache B

Cache Manager

Cache A

App A. Hibernate Search

App B.

Get Indexed data
Server



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Map/Reduce

1. MAP

K V

K1

K2

K3

K V

K1

K2

K3

K V

K1

K2

K3

M

M
M

2. Reduce

R

R
R



  
Goto; conference Aarhus 2013 | Syed M Shaaf

Web servers

Grid servers

DB/Storage Integration 
servers

Mgmt/Monitor

One Scenario
Data Replication and Cache 



  
Goto; conference Aarhus 2013 | Syed M Shaaf

References

● Http://www.redhat.com

● Http://access.redhat.com

● Http://www.openshift.com

● Http://www.jboss.org/infinispan

● Http://www.jboss.org/jgroups

http://www.redhat.com/
http://access.redhat.com/
http://www.openshift.com/
http://www.jboss.org/infinispan
http://www.jboss.org/jgroups

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

