
to appear AAAI '96

Declarative Camera Control for Automatic Cinematography

David B. Christianson

Sean E. Anderson Li-wei He

David H. Salesin Daniel S. Weld Michael F. Cohen
�

Department of Computer Science and Engineering �Microsoft Research

University of Washington One Microsoft Way

Seattle, Washington 98195 Redmond, WA 98052

fdbc1,lhe,salesin,weldg@cs.washington.edu, seander@cs.stanford.edu, mcohen@microsoft.com

Abstract

Animations generated by interactive 3D computer
graphics applications are typically portrayed either
from a particular character's point of view or from a
small set of strategically-placed viewpoints. By ignor-
ing camera placement, such applications fail to realize
important storytelling capabilities that have been ex-
plored by cinematographers for many years.

In this paper, we describe several of the principles of
cinematography and show how they can be formal-
ized into a declarative language, called the Declara-
tive Camera Control Language (dccl). We describe
the application of dccl within the context of a simple
interactive video game and argue that dccl represents
cinematic knowledge at the same level of abstraction
as expert directors by encoding 16 idioms from a �lm
textbook. These idioms produce compelling anima-
tions, as demonstrated on the accompanying video-
tape.

Introduction

The language of �lm is a complex one, which has
evolved gradually through the e�orts of talented �lm-
makers since the beginning of the century. As a re-
sult the rules of �lm are now so common that they
are nearly always taken for granted by audiences;
nonetheless, they are every bit as essential as they
are invisible. Most interactive 3D computer graph-
ics applications (e.g., virtual chat managers, interac-
tive �ction environments, and videogames) do not ex-
ploit established cinematographic techniques. In par-
ticular, most computer animations are portrayed ei-
ther from a particular character's point of view or
from a small set of strategically-placed viewpoints.
By restricting camera placement, such applications
fail to realize the expository capabilities developed
by cinematographers over many decades. Unfortu-
nately, while there are several textbooks that con-
tain informal descriptions of numerous rules for �lm-
ing various types of scenes (Arijon 1976; Lukas 1985;
Mascelli 1965), it is di�cult to encode this textbook
knowledge in a manner that is precise enough for a
computer program to manipulate.

In this paper, we describe several of the principles of
�lmmaking, show how they can be formalized into a
declarative language, and then apply this language to

the problem of camera control in an interactive video
game. Speci�cally, we describe the Declarative Cam-
era Control Language (dccl) and demonstrate that it
is su�cient for encoding many of the heuristics found
in a �lm textbook. We also present a Camera Planning
System (cps), which accepts animation traces as input
and returns complete camera speci�cations. The cps
contains a domain-independent compiler that solves
dccl constraints and calculates the dynamical con-
trol of the camera, as well as a domain-independent
heuristic evaluator that ranks the quality of the can-
didate shot speci�cations that the compiler produces.
We demonstrate a simple interactive video game that
creates simulated animations in response to user input
and then feeds these animations to cps in order to pro-
duce complete camera speci�cations as shown on the
accompanying videotape.

Our prototype video game serves as a testbed for appli-
cations of dccl and cps. However, there are number of
alternative applications to which both dccl and cps

might be applied. Within the realm of video games,
Multi-user Dungeons (MUDs), and interactive �ction,
automated cinematography would allow an applica-
tion to convey the subjective impression of a particu-
lar character without resorting to point-of-view shots.1

Because manyMUDs operate over long periods of time,
an automated cinematography system could provide
users with customized summaries of events they had
missed while they were away. Alternatively, automated
cinematography could be used to create natural inter-
actions with the \intelligent agents" that are likely to
take part in the next generation of user interfaces. Au-
tomated cinematography could also be used to assist
naive users in the creation of desktop videos, or for
building animated presentations. In the latter case,
Karp and Feiner have shown (Karp & Feiner 1990;
1993) that animated presentations can be e�ectively
designed on a computer, reducing costly human in-
volvement and allowing presentations to be customized
for a particular viewer or situation.

1Most current games, of which Doom is the classic ex-
ample, still provide each participant with a single point-of-
view shot; however, a number of games such as Alone in
the Dark, Fade 2 Black and Virtua Fighter have begun to
employ a wider variety of perspectives.

Principles of Cinematography

Although a �lm can be considered to be nothing but a
linear sequence of frames, it is often helpful to think of
a �lm as having structure. At the highest level, a �lm
is a sequence of scenes, each of which captures some
speci�c situation or action. Each scene in the �lm is
composed of one or more shots. A single shot covers
the small portion of a movie between when a camera is
turned on and when it is turned o�. Typically, a �lm is
comprised of a large number of individual shots, with
each shot's duration lasting from a second or two in
length to perhaps tens of seconds.2

Camera Placement
Directors specify camera placements relative to the line
of interest, an imaginary vector connecting two inter-
acting actors, directed along the line of an actor's mo-
tion, or oriented in the direction the actor is facing.
Figure 1 shows the line formed by two actors facing
each other.

"The Line"

X Y

Internal External

Parallel

Apex

Parallel

External

a

b

c

d

e

f

g

Figure 1: Camera placement is speci�ed relative to the
\line of interest." (Adapted from �gure 4.11 of (Arijon
1976))

Shooting actor X from camera position b is called a
parallel camera placement. Filming X from position
c yields an internal reverse placement. Shooting from
position d results in an apex shot that shows both ac-
tors. Finally, �lming from g is called an external re-
verse placement.

Cinematographers have identi�ed that certain \cutting
heights" make for pleasing compositions while others
yield ugly results (e.g., an image of a man cut o� at the
ankles). There is a set of (roughly) �ve useful camera
distances (Arijon 1976, p. 18). An extreme closeup
cuts at the neck; a closeup cuts under the chest or at
the waist; a medium view cuts at the crotch or under
the knees; a full view shows the entire person; and a
long view provides a distant perspective.

Heuristics and Constraints
Filmmakers have articulated numerous heuristics for
selecting good shots and have informally speci�ed con-

2A notable exception is Alfred Hitchcock's Rope, which
was �lmed in a single shot, albeit with disguised breaks.

straints to be placed on successive shots to lead to
good scenes. Several of the more important rules in-
clude (Arijon 1976):

� Parallel editing: Story lines (visualized as scenes)
should alternate between di�erent characters, loca-
tions, or times.

� Only show peak moments of the story: Repetitive
moments from a narrative should be deleted.

� Don't cross the line: Once an initial shot is taken
from the left or right side of the line, subsequent
shots should maintain that side, unless a neutral,
establishing shot is used to show the transition from
one side to the other. This rule ensures that suc-
cessive shots of a moving actor will maintain the
direction of apparent motion.

� Let the actor lead: The actor should initiate all
movement, with the camera following; conversely,
the camera should come to rest a little before the
actor.

� Break movement: A scene illustrating motion should
be broken into at least two shots. Typically, each
shot is cut so that the actor appears to move across
half the screen area. A change of the camera-to-
subject distance should also be made in the switch.

Idioms
Perhaps the most signi�cant invention of cinematogra-
hers is the notion of an idiom | a stereotypical way
to capture some speci�c action as a series of shots.
For example, in a dialogue between two people, a �lm-
maker might begin with an apex view of both actors,
and then alternate views of each, at times using in-
ternal reverse placements and at times using external
reverse. While there is an in�nite variety of idioms,
�lm directors have learned to rely on a small subset of
these. Indeed, �lm books (e.g., (Arijon 1976)) are pri-
marily a compilation of idioms along with a discussion
of the situations when a �lmmaker should prefer one
idiom over another. Figure 2 presents a three-shot id-
iom that serves as an extended example throughout the
remainder of this paper. The idiom, adapted from Fig-
ure 13.2 of Arijon's text (1976), provides a method for
depicting short-range motion of one actor approaching
another. The �rst shot is a closeup; actor X begins in
the center of the screen and exits left. The second shot
begins with a long view of actor Y ; actorX enters from
o�-screen right, and the shot ends when X reaches the
center. The �nal shot begins with a medium view of Y ,
with actor X entering from o�-screen right and stop-
ping at center.

DCCL

This section provides an informal description of the
Declarative Camera Control Language dccl. The
speci�cation of dccl is important because it allows
cps to formalize, encode, and implement common �lm
idioms, such as the one presented in Figure 2.

(AcFilmIdiom name Arijon-13-2
:parameter (AcParamApproach :actor1 :actor2 :start :stop)
:line (AcLineIdiom :primary ?actor1 :other ?actor2 :side left)
(AcFilmShot name shot1

(AcFragGoBy name frag1
:time ?start :primary-moment beginning :entry-pos center :exit-pos out-left
:placement (AcPlaceInternal :primary ?actor1 :other ?actor2 :range closeup :primary-side center)))

(AcFilmShot name shot2
(AcFragGoBy name frag2
:time ?frag3.first-tick :primary-moment end :entry-pos on-right :exit-pos center
:placement (AcPlaceExternal :near ?actor1 :far ?actor2

:primary-subject near :range longshot :primary-side center)))
(AcFilmShot name shot3

(AcFragGoBy name frag3
:time ?stop :primary-moment end :entry-pos out-right :exit-pos right12
:placement (AcPlaceApex :primary ?actor1 :other ?actor2 :range mediumshot :primary-side right12))))

Figure 3: dccl code corresponding to the idiom depicted in Figure 2.

1

2

3

1.

2.

3.

Figure 2: (Adapted from �gure 13.2 of (Arijon 1976)). A
common idiom for depicting short range movement of one
actor approaching another. Camera positions are shown
on the left side of the �gure; the resulting image is shown
on the right. Arrows indicate motion of actors into and
out of the screen.

There are four basic primitive concepts in dccl: frag-
ments, views, placements, and movement endpoints;
these primitives are combined to specify higher-level
constructs such as shots and idioms.

Fragments
In the previous section, we discussed how cinematog-
raphers treat a shot as the primitive building block in
a �lm. For our automated system, we have found it
useful to further decompose each shot into a collec-
tion of one or more fragments. A fragment speci�es
an interval of time during which the camera is in a
static position and orientation or is performing a sin-
gle simple motion. dccl de�nes �ve fragment types
(illustrated schematically in Figure 4).

A fully-speci�ed fragment requires additional informa-
tion. Some of these arguments are obvious| for exam-
ple, to track the motion of an actor, one must specify
which actor to track and over what time interval to roll
the �lm. In addition, one must also specify the desired
camera range| extreme, closeup, medium, full, or long,
as well as the placement of the camera relative to the

actor (or actors) | internal, external, parallel, and apex.
Three of the fragments, go-by, panning, and tracking,
require an additional argument, called the primary mo-
ment, which speci�es the moment at which the place-
ment command is to take e�ect during a shot in which
there is motion.

Finally, two of these fragments, go-by and panning, re-
quire another argument called a movement endpoint,
which is used to indicate the range of motion to be cov-
ered by the actor relative to the screen.3 As Figure 5
illustrates, dccl recognizes seven movement-endpoint
keywords.

Note that although the movement-endpoint keywords
refer to locations on the screen, they are used to
calculate the temporal duration of go-by and panning
fragments.4 For example, the �rst shot of the idiom of
Figure 2 can be de�ned as a go-by moving from center
to out-left.

Shots and Idioms
In many cases, a shot is composed of a single frag-
ment, but sometimes it is e�ective to merge several
fragments together to form a more complex shot. For
example, one can start with a panning fragment in

3To understand why this argument is necessary, recall
that a go-by fragment results in a static camera position
directed at an actor who moves across the �eld of view. An
example of a go-by fragment is the �rst shot of Figure 2.
Note that Arijon (1976) expresses the shot not by specify-
ing the temporal duration, but rather by indicating (with
arrows) the range of motion that the actor should cover
while the �lm is rolling. dccl uses movement endpoints to
allow the same type of declarative speci�cation and relies
upon the compiler to calculate the temporal bounds that
will yield the proper range of motion.

4This explains the de�nition of out-right and out-left.
Arijon (1976) speci�es that shots in which an actor moves
o�-screen (or onto the screen) should be cut three frames
after (of before) the actor disappears (or appears). As a re-
sult we de�ne out-right and out-left in terms of the distance
traveled while three frames transpire.

Actor stands still

line of action

Static Fragment

Actor moves across screen
line of action

Go−by Fragment

Actor stays near center of sceen as camera turns
line of action

Panning Fragment

Actor stays near center of screen as camera moves parallel to line
line of action

Tracking Fragment

Actor and camera move together
line of action

Point of View (POV) Fragment

Figure 4: dccl fragments specify the type of camera
motion.

which a running actor moves from out-left into the
center of the screen, then shift to a tracking shot by
terminating camera rotation and increasing its lateral
motion to match that of the actor (Figure 6). Multi-
fragment shots typically combine panning, tracking and
go-by fragments in di�erent orders.

In multifragment shots, it is often important to be
able to synchronize (in \simulation time") the end of
one fragment with the beginning of the next. For this
reason, dccl supports the ability to export computed
variables, such as the starting or ending time of a frag-
ment, for use by other fragments in the same idiom.
The duration of a scene can decrease if fragments do
not cover the entire scene, producing \time contrac-
tion."

To de�ne an idiom, one must specify the activities for
which the idiom is deemed appropriate, a name, ar-
guments (e.g., actors and times), and a list of shot
descriptions. For example, Figure 3 shows the actual
dccl encoding of the idiom illustrated in Figure 2; this
idiom is a good choice for showing one actor approach-
ing another.

The Camera Planning System

The Camera Planning System (cps) codi�es and im-
plements the previously described cinematographic

111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111

center in−right on−right out−right

Screen

out−left on−left in−left

Figure 5: dccl allows the user to delimit the temporal
duration of go-by and panning fragments by specifying
the desired initial and terminal locations of the actor on
the screen.

Panning Tracking

Figure 6: Schematic illustration of a shot composed of
two fragments: a panning fragment that melds impercep-
tibly into a tracking fragment.

principles of camera placement for the case of simple
movement sequences on the part of one or two actors.

As input, cps requires an animation trace: informa-
tion about the positions and activities of each charac-
ter, as well as directives stating which actors are to be
�lmed over what intervals of time. In our interactive
game, this information is produced by a simple com-
puter simulation generated in response to a user com-
mand. Given this trace information, the cps chooses
which subintervals of time to capture with the camera
and from which vantage points and with which lenses
(i.e., what �eld of view). The animation can then be
played back to the user using the intervals and camera
placements selected by the cps.

The primary data structure used by cps is the �lm tree
(Figure 7), which represents the �lm being generated.
Of primary consequence are the scene and candidate
idiom levels of the tree: each scene in the �lm is associ-
ated with one or more possible idioms, with each idiom
representing a particular method of �lming the parent
scene. The cps operates by expanding the �lm tree
until it has compiled detailed solutions for each idiom,
and then selecting appropriate candidate idioms and
frames for each scene.

Internally, the cps is implemented as a three-stage
pipeline involving a sequence planner, dccl compiler,
and a heuristic evaluator, as shown in Figure 8. An id-
iom database (not shown) provides idiom speci�cations
relevant to each scene in the animation being �lmed.

The Sequence Planner

The current implementation of the cps sequence plan-
ner is quite simple. Unlike the other portions of the cps

DCCL
Compiler

Idioms Heuristic
Evaluator

Candidate
Frames

Final
Frames

Simulation
Data

Sequence
Planner

Figure 8: The cps is implemented as a three-stage pipeline.

Scenes

Film

Candidate
Idioms

Candidate
Frames

Sequences

Figure 7: Successive modules in the cps pipeline incre-
mentally expand the �lm tree data structure.

the code implementing the sequence planner is speci�c
to the domain (plot) of the application (e.g.chase and
capture interactions). As input the planner receives an
animation trace describing the time-varying behavior
of a group of actors. As output, the sequence planner
produces a �lm tree (Figure 7) that is speci�ed down
to the scene level.

The animation trace speci�es position, velocity, and
joint positions for each actor for each frame of the an-
imation. The trace also labels the activity being per-
formed by each actor in each frame, as well as higher-
level information encoded as a set of �lm sequences,
with each �lm sequence including an interval of time,
an actor to use as the protagonist, and (optionally) a
second actor. In the current application, multiple �lm
sequences are used to create parallel editing e�ects by
having the cps intermix scenes featuring one set of ac-
tors with scenes featuring a di�erent set of actors (see
accompanying videotape).

Given the information in the animation trace, the se-
quence planner generates scenes by �rst partitioning
each �lm sequence according to the activities per-
formed by the protagonist during the given sequence.
For the current application we have identi�ed ten ac-
tivity types (Table 1). After partitioning a sequence,
the sequence planner generates scenes parameterized
by the activity, actors, and time interval of each parti-
tion.

Once the sequence planner has created the scene nodes,
the cps must instantiate the idiom schemata relevant
for each scene. Relevance is determined by matching
the scene activity against a list of applicable activities
de�ned for each idiom. The current implementation of
the database contains 16 idioms (Table 1). The plan-
ner instantiates idioms by substituting actual param-
eters (actor names, and scene start and ending times)

Activity Solitary Idioms

Stopping/Starting Y 1
X-Approaches-Y N 2
X-Retreats-From-Y N 2
X-Follows-Y N 2
Moving Y 2
Turning Y 1
HeadTurning Y 1
Stationary Y 1
Looking Y 1
Noticing N 1
Picking Up N 1
Holding N 1

Table 1: Activity classi�cations for prototype game.

for the placeholders speci�ed in the idiom de�nitions.
References to actor placements on the right or left sides
will be automatically mirrored later, during the idiom
solving process.

The dccl Compiler

The dccl compiler uses information about the move-
ment of the actors to expand the fragments in each
candidate idiom into an array of frame speci�cations,
which can be played directly. Since a frame is fully
constrained by the combination of its camera's 3D po-
sition, orientation, and �eld of view, the compiler need
only generate an array of these values for each fragment
in each shot in each candidate idiom.

In its simplest form, an idiom consists of a single shot
that is composed of a single fragment, so we cover that
case �rst. If the fragment has type pov, then compi-
lation is trivial, so we assume that the fragment has
type static, tracking, go-by, or panning. We decompose
the compiler's job into four tasks:

1. Determine the appropriate primary moment(s).

2. Determine the set of possible frame speci�cations
for each primary moment.

3. Calculate the temporal duration (length of the
frame array) of the fragment given an initial frame
speci�cation.

4. Generate the interpolated speci�cation of frame n
from that of frame n� 1.

Once these tasks have been completed, the compiler
simply has to generate a frame array for each primary
moment and frame speci�cation. In the current ver-
sion of cps there are typically only two frame arrays
corresponding to placing the camera on one side of the
line of interest or the other. The task of choosing the

appropriate side is left up to the heuristic evaluator.5

The primary moment of a fragment de�nes the point
in time at which the camera placement should conform
to the placement speci�ed for the fragment, and varies
with the type of fragment. The go-by, tracking, and
panning fragments specify the primary moment as ei-
ther the �rst or last tick of the fragment. The static
fragments, on the other hand, do not specify a primary
moment, so in the current version of cps we solve the
placement for the �rst, last, and midpoint ticks of the
fragment's time interval; the heuristic evaluator will
later determine which solution looks best and prune
the rest.

The fragment's placement (e.g., internal, external,
parallel, or apex), as speci�ed in the idiom, combined
with the location of the actors (from the animation
trace) constrains the camera's initial position to lie on
one of two vectors, according to the side of the line
being used (Figure 1). The actual location on this
vector is determined by the desired distance between
the camera and the primary subject. This distance,
in turn, is speci�ed by the fragment's range (extreme,
closeup, medium, full, or long) and the lens focal length.
The compiler attempts to generate a set of appropriate
placements using a normal lens (e.g., a 60-degree �eld
of view). The vector algebra behind these calculations
is explained in (Blinn 1988).

The temporal duration of static, tracking, and pov frag-
ments is speci�ed explicitly as part of the dccl spec-
i�cation. However, the duration of go-by and panning
fragments must be computed from the movement-
endpoint speci�cation in conjunction with the actor's
velocity.

The function used to update the camera position and
orientation from one frame to the next depends on
the type of fragment involved and the change in the
actors' positions. Static and go-by fragments do not
change camera position or orientation. The camera
in tracking fragments maintains its orientation, but
changes its position based on the actor's velocity vec-
tor. The camera in panning fragments maintains its
position, but changes its orientation with angular ve-
locity constrained by actor velocity and the distance
at the closest approach to the camera (as determined
by the primary moment).

Note that unlike the sequence planner, the dccl com-
piler is completely domain-independent in that the
compiler depends only on geometry and not on the
plot or subject of the animation. Furthermore, the
dccl speci�cations in the idiom database are applica-
ble across various animations; for example, the idioms
in our database should apply to any animation with
two-character interactions.

5Typically, the camera is restricted to one side of the
line of interest. However, opportunities to \switch sides"
sometimes present themselves, such as when an actor turns
to walk in a neutral direction.

The Heuristic Evaluator

Since the �lm tree is an and/or graph, it represents
many possible �lms.6 The heuristic evaluator chooses
the candidate idiom that renders a scene best, assign-
ing each idiom a real-valued score by �rst scoring and
pruning the frame arrays of its fragments. Note that
it is not possible to estimate the quality of a fragment
or idiom before it is compiled, because visual quality is
determined by the complex, geometric interactions be-
tween the fragment type and the motions of the actors.
A given idiom might work extremely well when the ac-
tors stand in one position relative to one another, yet
work poorly given a di�erent con�guration.

The scoring mechanism is primarily focused towards
evaluating inter-fragment criteria, namely:

� maintaining smooth transitions between camera
placements;

� eliminating fragments which cause the camera to
cross the line.

In addition, the scoring mechanism deals with certain
intra-fragment behaviors that sometimes arise from the
compilation phase of the cps such as:

� penalizing very short or very long fragments;

� eliminating fragments in which the camera pans
backwards.

After the evaluator has selected the best idiom for each
scene to be included in the �lm, the camera planning
process is complete. cps concatenates the frame ar-
rays for all idiom nodes remaining in the �lm tree and
outputs the corresponding sequence of frames to the
player for rendering.

Note that while the evaluator's rules are heuristic, they
are also domain-independent within the domain of �lm
and animation: each rule encodes broadly-applicable
knowledge about which types of shots look good on
�lm, and which do not.

Sample Application

We are particularly interested in interactive uses of au-
tomatic cinematograpy. Therefore, we decided to build
a simple interactive game that would use cps to �lm
actions commanded by a human player. The basic plot
of the game is very simple. The main character, Bob,
must walk around a virtual world (in our case, SGI's
Performer Town) looking for the Holy Grail. The game
is made more interesting by the introduction of Fido,
an evil dog that seeks to steal the Grail. From time
to time, the game generates animations of Fido's ac-
tivities and instructs cps to edit these animations into
the action. Eventually, Bob and Fido interact: if Fido
gets the grail, Bob has to chase Fido in order to get
it back. The user commands Bob through a pop-up
menu. These commands fall into four basic categories:

6Indeed, if there are n scenes and each scene has k can-
didate idioms as children, then the �lm tree represents nk

possible idiom combinations.

telling Bob to look in a particular direction, to move to
a particular point on the screen, to pick up an object,
or to chase another actor.

22222222222222
22222222222222
22222222222222
22222222222222
22222222222222
22222222222222

Camera Planning
System

Game
Engine

User Commands Movies

Player

Simulator

Control

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@@
@@@@
@@@@
@@@@
@@@@

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@@
@@@@
@@@@
@@@@
@@@@
@@@@

@@@@@
@@@@@
@@@@@
@@@@@

Figure 9: Overall context of cps

The implementation of the game and its various anima-
tion/simulation modules was done in C++ using the
IRIS Performer toolkit running on SGI workstations,
and based partially on the pery application provided
by SGI (a Performer-based walkthrough application).
The game operates as a �nite-state machine that pro-
duces animation traces as the user issues commands
to the game engine, with the cps acting as a separate
library whose sole inputs are the animation trace and
the database of idioms (Figure 9). The game itself (not
counting cps or the code present in the existing per-
y application) required approximately 10,000 lines of
C++ code. The cps system is also written in C++
(despite the Lisp-like appearance of dccl) and imple-
mented with about 19,000 lines of code.

The sample game interaction presented at the end of
our video is intended to demonstrate a number of the
activities possible in the game, as well as the various
dccl idioms. For presentation purposes, the planning
time required by cps was edited out of the video; Ta-
ble 2 gives performance data taken from a similar run-
through of the game on an SGI Onyx.

Related Work

The subject of using principles from cinematography
to control camera positions and scene structure has re-
ceived relatively little attention in the computer graph-
ics or AI communities. We survey most of the related
work here.

He, Cohen, and Salesin (1996) have developed a sys-
tem for controlling camera placement in real-time us-
ing some of the ideas behind dccl. Their work focuses
on �lming dialogues between multiple animated char-
acters, and uses a �nite state machine to select and

generate camera positions.

A number of systems have been described for auto-
matically placing the camera in an advantageous posi-
tion when performing a given interactive task (Gleicher
& Witkin 1992; Mackinlay, Card, & Robertson 1990;
Phillips, Badler, & Granieri 1992). However, these sys-
tems neither attempt to create sequences of scenes, nor
do they apply rules of cinematography in developing
their speci�cations.

In work that is closer to our own, Karp and Feiner
(Karp & Feiner 1990; 1993) describe an animation
planning system for generating automatic presenta-
tions. Their emphasis is on the planning engine itself,
whereas the work described in this paper is more con-
cerned with the problem of de�ning a high-level declar-
ative language for encoding cinematic expertise. Thus,
the two approaches complement each other.

Strassman (Strassman 1994) reports on Divaldo, an
ambitious experiment to create a prototype system for
\desktop theatre." Unlike our focus on camera place-
ment, Strassman attempts to create semi-autonomous
actors who respond to natural language commands.
cps is also complementary to Divaldo.

Drucker et al. (Drucker, Galyean, & Zeltzer 1992;
Drucker & Zeltzer 1994; 1995) are concerned with the
problem of setting up the optimal camera position for
individual shots, subject to constraints. Speci�c cam-
era parameters are automatically tuned for a given shot
based on a general-purpose continuous optimization
paradigm. In our work, a set of possible cameras is
fully speci�ed by the shot descriptions in dccl and the
geometry of the scene. The �nal selection from among
this set of di�erent shots is made according to how well
each shot covers the scene. Our approach avoids the
need for generic optimization searches, and it is guar-
anteed to result in a common shot form. The cost is a
greatly reduced set of possible camera speci�cations.

Several useful texts derive low-level camera parame-
ters, given the geometry of the scene (Foley et al. 1990;
Hearn & Baker 1994; Blinn 1988).

Conclusion

We close by summarizing the contributions of this pa-
per and describing the directions we intend to pursue
in future work. The main contributions of this paper
include:

� Surveying established principles from �lmmaking
that can be used in a variety of computer graphics
applications.

� Describing a high-level language, dccl, for specify-
ing camera shots in terms of the desired positions
and movements of actors across the screen. We have
argued that dccl represents cinematic knowledge
at the same abstraction level as expert directors and
producers by encoding sixteen idioms from a �lm
textbook (Arijon 1976) (e.g., Figure 2).

Command Num. Frames Scenes Generated CPU Time (s)

Pick Up Grail 733 9 47.63
Pick Up Net 451 4 44.74
Catch Dog 603 4 32.74
Walk (long range) 701 4 11.52
Walk (med range) 208 4 6.74
Look Right 87 3 5.6
Walk (short range) 158 4 5.12

Table 2: Typical cps Performance

� Presenting a domain-independent compiler that
solves dccl constraints and dynamically controls
the camera.

� Describing a domain-independent heuristic evalua-
tor that ranks the quality of a shot speci�cation us-
ing detailed geometric information and knowledge of
desirable focal lengths, shot durations, etc.

� Describing a fully-implemented �lm camera plan-
ning system (cps) that uses the dccl compiler
and heuristic evaluator to synthesize short animated
scenes from 3D data produced by an independent,
interactive application.

� Incorporating cps into a prototype game, and
demonstrating sample interactions in the game (see
videotape).

Acknowledgements

This research was funded in part by O�ce of Naval
Research grants N00014-94-1-0060 and N00014-95-1-
0728, National Science Foundation grants IRI-9303461
and CCR-9553199, ARPA/Rome Labs grant F30602-
95-1-0024, an Alfred P. Sloan Research Fellowship
(BR-3495), and industrial gifts from Interval, Mi-
crosoft, Rockwell, and Xerox.

References

Arijon, D. 1976. Grammar of the Film Language. New
York: Communication Arts Books, Hastings House,
Publishers.

Blinn, J. 1988. Where am I? What am I looking at?
IEEE Computer Graphics and Applications 76{81.

Christianson, D. B., Anderson, S. E., He, L., Weld,
D. S., Salesin, D. H., and Cohen, M. F. 1996. Declar-
ative camera control for automatic cinematography.
TR UW-CSE-96-02-01, University of Washington De-
partment of Computer Science and Engineering.

Drucker, S. M., and Zeltzer, D. 1994. Intelligent cam-
era control in a virtual environment. In Proceedings
of Graphics Interface '94, 190{199. Ban�, Alberta,
Canada: Canadian Information Processing Society.

Drucker, S. M., and Zeltzer, D. 1995. Camdroid:
A system for intelligent camera control. In Proceed-
ings of the SIGGRAPH Symposium on Interactive 3D
Graphics '95.

Drucker, S. M., Galyean, T. A., and Zeltzer, D. 1992.
CINEMA: A system for procedural camera move-
ments. In Zeltzer, D., ed., Computer Graphics (1992
Symposium on Interactive 3D Graphics), volume 25,
67{70.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes,
J. F. 1990. Computer Graphics, Principles and Prac-
tice. Reading, Massachusetts: Addison-Wesley Pub-
lishing Company, second edition.

Gleicher, M., and Witkin, A. 1992. Through-the-lens
camera control. In Catmull, E. E., ed., Computer
Graphics (SIGGRAPH '92 Proceedings), volume 26,
331{340.

He, L., Cohen, M. F., and Salesin, D. H. 1996. Vir-
tual cinematography: A paradigm for automatic real-
time camera control and directing. To appear at SIG-
GRAPH '96.

Hearn, D., and Baker, M. P. 1994. Computer Graph-
ics. Englewood Cli�s, New Jersey: Prentice Hall, sec-
ond edition.

Karp, P., and Feiner, S. 1990. Issues in the automated
generation of animated presentations. In Proceedings
of Graphics Interface '90, 39{48.

Karp, P., and Feiner, S. 1993. Automated presenta-
tion planning of animation using task decomposition
with heuristic reasoning. In Proceedings of Graphics
Interface '93, 118{127. Toronto, Ontario, Canada:
Canadian Information Processing Society.

Lukas, C. 1985. Directing for Film and Television.
Garden City, N.Y.: Anchor Press/Doubleday.

Mackinlay, J. D., Card, S. K., and Robertson, G. G.
1990. Rapid controlled movement through a virtual
3D workspace. In Baskett, F., ed., Computer Graph-
ics (SIGGRAPH '90 Proceedings), volume 24, 171{
176.

Mascelli, J. V. 1965. The Five C's of Cinematography.
Hollywood: Cine/Gra�c Publications.

Phillips, C. B., Badler, N. I., and Granieri, J. 1992.
Automatic viewing control for 3D direct manipula-
tion. In Zeltzer, D., ed., Computer Graphics (1992
Symposium on Interactive 3D Graphics), volume 25,
71{74.

Strassman, S. 1994. Semi-autonomous animated ac-
tors. In Proceedings of the AAAI-94, 128{134.

