
HAL Id: hal-00452723
https://hal.science/hal-00452723v1

Submitted on 2 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a Parallel between Structural and Topological
Properties

Omar Gaci

To cite this version:
Omar Gaci. Building a Parallel between Structural and Topological Properties. Springer. Advances in
Computational Biology, Springer, pp.100-107, 2010, Advances in Experimental Medicine and Biology.
�hal-00452723�

https://hal.science/hal-00452723v1
https://hal.archives-ouvertes.fr


Building a Parallel Between Structural and
Topological Properties

Omar GACI and Stefan BALEV

Le Havre University
LITIS EA 4108, BP 540, 76058 Le Havre - France
omar.gaci@univ-lehavre.fr

Summary. In this chapter, we study the amino acid interaction networks. This
is a graph whose vertices are the protein’s amino acids and whose edges are the
interactions between them. Using a graph theory approach, we identify a number
of properties of these networks. Some of them are common to all proteins, while
others depend on the structure arrangement. We rely on this last group of properties
to illustrate the correlation between structural and topological properties. Then, we
propose a topological space where proteins from a same family tend to be grouped.

1 Introduction

In their natural environment, proteins adopt a native compact three-dimensional
form. This process is called folding and is not fully understood. The process is a
result of interactions between the protein’s amino acids which form chemical bonds.

In this study, we treat proteins as networks of interacting amino acid pairs [2]. In
particular, we consider the subgraph induced by the set of amino acids participating
in the secondary structure also called Secondary Structure Elements (SSE). We call
this graph SSE interaction network (SSE-IN). We carry out a study to describe the
structural families of proteins when they are represented as interaction networks.
We show how the properties of these networks are related to the structure of the
corresponding protein. Thus, we propose a topological space where proteins from the
same family tend to be grouped. By this way, we draw a parallel between structural
and topological properties.

2 A Topological Study

The purpose of our work is to offer a graph theory interpretation of the hierarchical
protein classifications. Indeed, when a protein belongs to a hierarchical level accord-
ing to its structural properties then one can say also that the protein SSE-IN belongs
to the same level. Thus, the topological properties of a SSE-IN are a consequence
of the protein structural family. It implies that a SSE-IN is described by specific
topological properties relative to the protein structural classification.
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The first step before studying the proteins SSE-IN is to select them according
to their SSE arrangements. Then, a protein belongs to a CATH [4] topology level
or a SCOP [3] fold level if all its domains are the same. We have worked with the
CATH v3.1.0 and SCOP 1.73 classifications. We have computed topological measures
for three families of each hierarchical classification, namely SCOP and CATH (see
Tab. 1).

We have chosen these three families by classification, in particular because of
their huge protein number. Thus, each family provides a broad sample guarantying
more general results and avoiding fluctuations. Moreover, these six families contain
proteins of very different sizes, varying from several dozens to several thousand
amino acids in SSE. Among these proteins we limit the redundancy, the families
contain at the maximum 20% of homologous proteins.

Table 1. Families studied, mainly due to their protein number.

Name Type Class Proteins

Rossmann fold CATH α β 2576
TIM Barrel CATH α β 1051
Lysozyme CATH Mainly α 871

Globin-like SCOP All α 733
TIM β/α-barrel SCOP α/β 896
Lysozyme-like SCOP α + β 819

Table 2. Average of metric values for each family [1]. The column l regroups the
average mean distances of SSE-IN. The column D represents the average diameter,
δ is the average density and z the average mean degree for each studied family.

Name l D δ z

Rossmann fold 7.26 18.84 0.033 7.20
TIM Barrel 7.79 19.83 0.030 7.17
Lysozyme 4.99 12.81 0.038 6.82

Globin-like 6.64 15.65 0.034 7.69
TIM β/α-barrel 7.86 20.09 0.029 7.15
Lysozyme-like 5.03 12.85 0.042 6.81

2.1 Diameter and mean distance

Table 2 (column D) shows the average diameter for each one of the studied families.
We observe very close diameters between TIM Barrel and TIM beta/alpha-barrel
and also between Lysozyme and Lysozyme-like families. This is explained by the
fact that each pair of families contains almost the same proteins, in other worlds,
Lysozyme topology in CATH is the equivalent of Lysozyme-like fold level in SCOP.
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The diameter being an upper bound of distances in interaction networks, we
expect that the mean distance l will be lower than D. Table 2 (column l) confirms
this. Again, we observe very close values between the equivalent SCOP and CATH
families for the reasons discussed above. But we can also see that different families
have values which allow discrimination between them based on this parameter. It
is interesting to note that the ratio D/l is about 2.5 for all the families. The last
property is a characterization of all proteins’ SSE-IN.

2.2 Density and mean degree

The density measures the ratio between the number of available edges and the num-
ber of all possible edges. Results presented in Table 2 (column δ) show that the two
families TIM Barrel and TIM beta/alpha-barrel have the minimum density. It has
a consequence on their SSE-IN topology. When the density is low, the network is
less connected and consequently, the diameter and the average distance are higher.
Comparing these results to Table 2 (columns l, D and δ) one can see the inversely
proportional relation between density in one hand, and diameter and average dis-
tance on the other.

The mean degree is presented in Table 2 (column z). The observed values are
close enough from one family to another. That is why the mean degree is not dis-
criminating property, but rather a property characterizing all proteins’ SSE-IN.

2.3 Degree distribution

We compute the cumulative degree distribution for all proteins SSE-IN of studied
families. A sample of our results is presented on Figure 1. We can remark that the
curves follow a power law distribution which can be approximated by the following
power-law function:

p(k) = 141.29 k−α, where α = 2.99± 0.6
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Fig. 1. Cumulative degree distribution for 1RXC from Rossman fold, left, and 1HV4
from TIM beta/alpha-barrel, right.

We observe the same results for all studied proteins. To explain this behavior,
we have to rely on two facts. First, the mean degree of all proteins SSE-IN evolves
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weakly (see Table 2, column z). Second, the degree distribution, see Figure 2, fol-
lows a Poisson distribution whose peak is reached for a degree near z. These two
facts imply that for degree lower than the peak the cumulative degree distribution
decreases slowly and after the peak its decrease is fast compared to an exponential
one. Consequently, all proteins SSE-IN studied have a similar cumulative degree
distribution which can be approximated by a unique power-law function.
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Fig. 2. Degree distribution for 1RXC from Rossman fold, left, and 1HV4 from TIM
beta/alpha-barrel, right.

3 A Topological Space

In the previous section, we give different means to describe a protein structural fam-
ily characterizing their SSE-IN. Some of properties, like diameter and density, allow
discriminating two distinct families, while others, like mean degree and degree distri-
bution, are general properties of all SSE-IN. Thus, proteins having similar structural
properties and biological functions will also have similar SSE-IN properties. In this
way our model allows us to draw a parallel between biology and graph theory.

Here, we exploit this hypothesis proposing a topological space where a protein is
described by its SSE-IN topology. Then, we want to project the structural families
into this topological space to put in evidence that the proteins from a same family
have SSE-INs which are grouped in this topological space. Consequently, we have
to determine the dimensions of this topological space, that is, we want to identify
which are the topological criterions able to discriminate the SSE-IN according to
their families.

To build our topological space, we rely on the study done in the previous section
and we apply it on another dataset, see Table 3. This new dataset is composed only
of structural families from the All Alpha class in SCOP v1.73 classification.

First, we know that the mean distances and also the density are the discrimi-
nant metrics between the SSE-IN from different structural families. We plot a 3D
topological space, see Fig 3, where the x axe represents the SSE-IN size, denoted N ,
the y axe represents the densities, denoted G, and the z axe represents the means
distances, denoted L. The plots confirm that the study done in the previous sec-
tion is reliable since the dimensions we use provide a topological space where the
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Table 3. SCOP Fold families from All alpha class used to build our topological
space.

SCOP ID Family Name Protein Number

46457 Globin-like 817
46688 DNA/RNA-binding 3-helical bundle 370
47472 EF Hand-like 313
48507 Nuclear receptor ligand-binding domain 223
48112 Heme-dependent peroxidases 207
48618 Phospholipase A2, PLA2 186
47112 Histone-fold 156
46625 Cytochrome c 148
48263 Cytochrome P450 146

proteins SSE-IN from the same structural family are grouped. Consequently, the
parallel between structural and topological properties can be illustrated through
the topological space we propose.

Second, we remark that among the protein SSE-IN belonging to a same struc-
tural family, there are some of them which have a size very close. Then, the proteins
are grouped around a particular value n to form clusters. Thus, we can also describe
the structural families’ topological space describing the cluster properties that they
form.

To characterize the clusters observed in the topological space, we have to define
them. A cluster, denoted cn=i, defined in the neighbourhood of a specific SSE-IN
size equals to i satisfy:

pcluster ∈ i± radius ≥ r × pfamily

where pcluster designates the number of proteins in the cluster and pfamily is
the total number of proteins considered in the structural family. The parameter r is
a threshold and we use the value of 25%. With this definition, we except that some
clusters overlap each others. In this case, we merge them and consider the cluster
center equals to i and the cluster radius is the average length between the minimum
and the maximum SSE-IN size involved in the cluster.

Table 4 shows how the clusters appear in our topological space. We remark that
each family has a specific cluster distribution meaning that the topological space we
built is reliable to regroup the SSE-IN according to their structural families. The
radius is in the most case around 50 meaning that the clusters regroup proteins
whose size is comparable. The cluster sizes show how the proteins from a family are
grouped around a particular neighbourhood.

This cluster description is actually a consequence of the family composition.
Indeed, the families regroup proteins having a size enough close notably because
their secondary structures are similar.

4 Conclusion

In this chapter, we consider a protein as an interaction network of amino acids of
a protein (SSE-IN) and study some of the properties of these networks. It appears
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Fig. 3. A 3D topological space. The x axe represents the SSE-IN size, y the density
and z the average distances. The proteins from a same family tend to be grouped.

Table 4. Cluster description for each family. The cluster size is expressed as the
percentage of the total protein number in families.

SCOP ID Cluster center Cluster radius Cluster size

46457 125 45 33.5
485 45 39.4

46688 60 60 67.1
47472 90 70 78.6
48507 195 45 51.6
48112 190 50 77.3
48618 75 45 67.2
47112 595 45 76.9
46625 60 60 76.4
48263 275 45 50.7
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that specific properties, like diameter and density, allow discriminating two distinct
families, whereas others are common to all SSE-IN. Thus, proteins whose structural
properties are similar will also have similar SSE-IN properties. In this way our model
allows us to draw a parallel between biology and graph theory.

To illustrate the parallel between structural and topological properties, we pro-
pose a topological space whose dimensions are metrics enough discriminant between
SSE-INs from different structural families. Then, the topological space let appears
some clusters where the proteins from a same family are grouped. The description
of these clusters contributes to distinguish by a new means the structural families
relying on topological criterion. Through our topological space, we propose a means
to describe a structural family by topological measures.
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