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The long-term lateral migration of a two-dimensional elastic capsule in a microchannel is studied numeri-
cally in this paper. The numerical method combines a finite volume technique for solving the fluid problem
with a front tracking technique for capturing and tracking the capsule membrane. The capsule is modeled as a
liquid medium enclosed by a thin membrane which has linear elastic properties. The capsule, whose initial
shape is circle and which starts from a near-center position or a near-wall position, experiences tilting and
membrane tank-treading, and migrates laterally when moving along the surrounding flow. The lateral migration
demonstrates the existence of lift effect of surrounding flow on moving capsule. Before capsule approaches to
the microchannel centerline closely, lower membrane dilation modulus and lower viscosity ratio tend to result
in faster lateral migration. The initial position also influences the performance behavior of capsule, despite the
lateral migration of capsule is a quasisteady process. Small difference in capsule behavior when capsule is not
near to the microchannel centerline might lead to significant difference in capsule behavior when capsule
approaches closely to the centerline. When capsules are near to microchannel wall, the effect of the wall on
capsule behavior might dominate, leading to relatively faster lateral migration. When capsules are not far from
microchannel centerline, the effect of the nonlinearity of Poiseuille flow might dominate, resulting in relatively
slower lateral movement. When capsules are located closely to the centerline, they behave differently, where
the reason still remains poorly understood and it will be one of our future studies. The comparison between the
capsule behavior from the present simulation and that by the migration law proposed by Coupier et al. �Phys.
Fluids 20, 111702 �2008�� shows that the behavioral agreement for near-wall capsule is better than that for
near-center capsule, and the best agreement occurs to the near-wall capsule with intermediate membrane
dilation modulus and highest viscosity ratio.
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I. INTRODUCTION

The behavior of red blood cells flowing in blood vessels
or small tubes has been studied experimentally �1�, theoreti-
cally �2�, or numerically �3� because it is important in physi-
ology. Vesicles have also been investigated �4� because of
their extensive use in cosmetic, pharmaceutical or agricul-
tural industries, and they can be used as model systems for
studying the properties of red blood cells. Red blood cell and
vesicle are examples of capsules that consist of a liquid in-
ternal medium enclosed by a thin deformable membrane. Re-
garding the physical property of the membrane, a capsule
may serve as a model for a number of particles. Both red
blood cell and vesicle are capsules with an inextensible lipid
bilayer membrane, but the red blood cell membrane has an
in-plane shear elasticity by virtue of its cytoskeleton. When
capsules move in microchannel flow, they undergo hydrody-
namic stress and experience deformation. The mechanical
behaviors of single red blood cells through microcapillaries
are relevant to the rheological properties of blood in micro-
circulation and even to the overall hydrodynamics of large-
scale blood flow �5�. Hence, it is of great importance to de-
velop a suitable physical model to analyze the behavior of
capsules in microchannel flow, and understanding the dy-
namics of individual capsule under different conditions is the
first step in studying the rheological properties of capsule
suspension.

Some numerical methods have been proposed for study-
ing the behavior of capsule in micro flow. When analyzing
problem of tightly fitting particles, where a thin film of liquid
exists between the particle and the capillary wall, a lubrica-
tion method can be used to model the flow in the narrow
gaps �2,6,7�. Boundary integral method for Stokes flow is
another popular method for analyzing the behavior of cap-
sule in flow �3,8,9�. Some techniques have been proposed to
track the position and motion of arbitrarily shaped interfaces,
including capsule membrane, and they can be classified into
volume tracking �10,11� and front tracking methods �12,13�.
Higher computational accuracy in capsule motion simulation
can be achieved by using the front tracking methods, in
which the interface itself is represented by a set of additional
points �12�, while the fluid problem is solved on a stationary
grid.

The lateral behavior of capsule in micro flow is an impor-
tant research area attracting great attention, which can be
classified into two groups. One is concerned to the influence
of shear flow on the behavior of capsule near to or even
adhesive to a wall. Lorz et al. �4� experimentally studied the
deformation and unbinding of weakly adhering giant vesicle
subject to hydrodynamic shear force, and the lift force was
found to be large enough to lift the vesicle off the wall.
Abkarian et al. �14� investigated the motion of binding flac-
cid vesicle in a linear shear flow by light microscopy,
through which a progressive tilt and a transition of unbinding
of vesicle were evidenced upon increasing the shear rate,
disclosing the existence of a viscous lift force. Sukumaran*Corresponding author; lihua@ntu.edu.sg
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and Seifert �15� employed a boundary element method for
analyzing the dynamics of three-dimensional fluid vesicle in
steady shear flow at low Reynolds numbers in the vicinity of
a wall. The viscous lift force estimated numerically by Su-
kumaran and Seifert �15� agreed well with the experimental
results by Lorz et al. �4�. Based on a theoretical study, Cantat
and Misbah �16� showed that a vesicle in shear flow experi-
enced a lift force, which was of purely viscous nature and
originated from upstream-downstream asymmetry. Seifert
�17� theoretically investigated the motion of bound vesicle in
shear flow by combining a lubrication analysis of the bound
part with a scaling approach to the global motion, and found
that a minor inclination of the bound part led to significant
lift of vesicle due to the additive effects of lateral and tank-
treading motions.

The other group is concerned to the lateral movement of
capsule in microchannel flow. Olla �18� theoretically ana-
lyzed the behavior of a spheroid vesicle in a plane shear flow
bounded from one side by a wall, and found that the tank-
treading motion produced a transverse vesicle drift away
from the wall. Callens et al. �19� studied the dynamics of a
vesicle suspension in a shear flow between two parallel walls
under microgravity conditions, and concluded that the
vesicle was pushed away from the walls due to the presence
of the parallel walls. The motion of deformable capsule with
small inertia in a plane Poiseuille flow was studied by Doddi
and Bagchi �20� based on three-dimensional numerical simu-
lation, from which the lateral migration of capsule toward
the channel centerline was observed. Kaoui et al. �21� used a
boundary integral model to investigate the lateral migration
of a suspended vesicle in an unbounded two-dimensional
Poiseuille flow in the low Reynolds number limit, and found
that the interplay between the nonlinear characteristic of the
Poiseuille flow and the vesicle deformation caused the cross-
streamline migration of vesicle toward the flow center.
Coupier et al. �22� experimentally and numerically investi-
gated the cross-streamline noninertial migration of a vesicle
in a bounded Poiseuille flow, in which the effect of the walls
coupled with the curvature of the velocity profile induced a
vesicle movement toward the channel center. Danker et al.
�23� theoretically studied the effect of the ratio of the inner
over the outer fluid viscosities on vesicle behavior, and pre-
dicted the coexistence of two types of shapes at centerline. In
order to understand why red blood cells �RBCs� move with
an asymmetric or slipperlike shape in small blood vessels,
Kaoui et al. �24� discovered that the adoption of a slipper
shape provides higher flow efficiency for RBCs.

The lateral migration of two-dimensional �2D� capsule in
microchannel with Poiseuille flow is studied numerically in
the present work, where three factors are taken into consid-
eration, namely the initial capsule position, the membrane
elastic dilation modulus, and the viscosity ratio which is de-
fined as the ratio of viscosity of fluid inside the capsule
membrane to that of fluid outside the membrane. This paper
is organized as follows. Details of the governing equations,
the nondimensionalization of equations, the treatment of dis-
continuities in fluid properties across the capsule membrane,
the derivation of interaction between capsule membrane and
fluid, and the simulation conditions are described in Sec. II.
The numerical results corresponding to different initial cap-

sule positions, membrane dilation moduli, and viscosity ra-
tios are presented and discussed with comparison with other
available data in Sec. III. Finally, conclusions drawn from
this study are summarized in Sec. IV.

II. MODEL AND METHOD

A. Model and governing equations

The lateral migration of 2D capsule in microchannel flow
is studied numerically in this paper. The schematic illustra-
tion of a 2D microchannel with a moving capsule is shown in
Fig. 1, in which h is the height of the microchannel and �x ,y�
are the coordinates. The microchannel is composed of two
walls at the upper and lower boundaries. The x axis coincides
with the horizontal line at half height of the microchannel
which is termed the centerline. The surrounding fluid, which
is outside the capsule membrane, flows from left to right
along positive x direction. Its unperturbed velocity field is
defined using the 2D Poiseuille profile, which is symmetric
with respect to the centerline. The x and y components of the
2D Poiseuille velocity profile are expressed as

ux = 1.5Um�1 − y2/�0.5h�2�, uy = 0, �1�

where Um is the mean velocity, equal to two thirds the ve-
locity at the centerline. A 2D capsule is represented by a
closed curve in Fig. 1, with t being the unit tangent vector
pointing in the anticlockwise direction of increasing arc
length l, and n the unit normal vector.

The fluids inside and outside capsule membrane are
treated as incompressible, and thus the mass conservation
equation is written in the following form:

� · u = 0. �2�

In the presence of capsule, the material properties, density
and viscosity, of the fluid phases inside and outside capsule
membrane are unnecessarily the same. Here, one set of gov-
erning equations, Navier-Stokes equations, is solved in the
whole computational domain by treating different phases as
one fluid with variable material properties. The Navier-
Stokes equations are given as

���u�
�t

+ � · �uu = − �p + � · ����u + �Tu�� + F , �3�

where � and � are the density and viscosity of fluid, respec-
tively, p the pressure in fluid, u the fluid velocity vector, t the
time, and F the body force acted on fluid by capsule mem-
brane. The detailed derivation of the body force, F, will be
discussed in Sec. II C.

x
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FIG. 1. Schematic illustration of a 2D microchannel with a mov-
ing capsule.
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The following nondimensional variables are introduced:

x� =
x

x0
, u� =

u

Um
, �� =

�

�l
, �� =

�

�l
, t� =

t

x0/Um
,

p� =
p

�lUm
2 , �4�

where x0 is the maximum diameter of the initial shape of
capsule, �l and �l the density and viscosity of the surround-
ing fluid, and x0, Um, �l, �l, x0 /Um, and �lUm

2 are the char-
acteristic variables for nondimensionalization. The nondi-
mensionalized Navier-Stokes equations are obtained as

���u�
�t

+ � · �uu = − �p +
1

Re
� · ����u + �Tu�� + F ,

�5�

in which the superscript � is omitted for convenience. The
nondimensional Reynolds number is defined as follows:

Re = �lUmx0/�l. �6�

The numerical method used in the present paper combines
a finite volume technique for solving the fluid problem with
the front tracking technique proposed by Unverdi and Tryg-
gvason �13� for capturing and tracking the capsule mem-
brane. A regular Eulerian grid is used to discretize the 2D
computational domain of the microchannel. The capsule
membrane is discretized and represented by a group of La-
grangian nodes, and the straight segments connecting succes-
sive Lagrangian nodes are the membrane elements. This
method has been adopted to study the initial motion of cap-
sule just after release in microchannel flow �25�. A similar
method was used to simulate the procedure of bubble rising
�26�, and the results demonstrated that the algorithm was
robust in flow regimes with large ranges of Reynolds num-
ber, and density and viscosity ratios.

B. Treatment of the discontinuities across membrane

The properties, density and viscosity, of the fluids inside
and outside capsule membrane may be different in the pres-
ence of capsule, and the abrupt jumps in property values
exist across the membrane. The variations in properties in
computational domain are considered in simulation, and their
values are calculated according to the membrane position.
We use b to stand for either fluid density or viscosity. To treat
the discontinuities, the field distributions b�x , t� of material
properties over the whole computational domain at time t are
reconstructed as follows:

b�x,t� = b2 + �b1 − b2� · I�x,t� , �7�

where b1 and b2 are property values in the first �inside the
membrane� and the second �outside the membrane� fluid
phases, and I�x , t� �13� is called the indicator function, which
has values of unity and zero in the first and second fluid
phases, respectively. The indicator function can be written in
form of an integral over the capsule domain ��t� with inter-
face ��t�, where in fact is the position of the capsule mem-
brane

I�x,t� = �
��t�

��x − x��dx�, �8�

where ��x-x−� is the Dirac-delta function that has a value of
infinite when x�=x and zero elsewhere. The value of the
integral �Eq. �8�� is unity when x is contained in ��t� and
zero otherwise. Taking the gradient of the indicator function
and transforming the area integral into an integral over the
interface yields

�I = �
��t�

n��x − x��ds . �9�

Let G�x , t� be the gradient of the indicator function. Taking
the divergence of Eq. �9� leads to

�2I = � · �
��t�

n��x − x��ds = � · G . �10�

By solving the above Poisson equation, in which the right-
hand side is a function of known membrane shape and posi-
tion at time t, the indicator function I�x , t� can be recon-
structed. The distributions of fluid properties can then be
calculated by Eq. �7�.

Unverdi and Tryggvason �13� proposed a front tracking
method, in which capsule membrane is considered to have a
finite thickness instead of zero thickness. The artificial thick-
ness of the membrane depends on the size of the Eulerian
grid and is maintained constant during computation. This is
realized by using a distribution function D�x� to approximate
the Dirac-delta function. This distribution function deter-
mines the fraction of quantity distributed to nearby grid
points across the artificial thickness of the membrane. In the
present work, the following distribution function �27� is used
for the 2D grid system

D�x − x f� = D1�x − xf�D2�y − yf� , �11�

where the distribution function D1�x� is given as follows:

D1�x� = � 1

4hx
�1 + cos

�x

2hx
� for 	x	 � 2hx

0 elsewhere

 , �12�

where hx is the grid size in x direction. The function D2�y� is
similar to Eq. �12� with y and the grid size in y direction hy
instead of x and hx. The use of D�x� leads to the following
discretized form of the gradient function G�x , t�,

G�x,t� = �
f

D�x − x f�n f	sf , �13�

where n f is the unit normal vector of the membrane element
whose length is 	sf and center is x f. Thus, the sharp jump of
the indicator function across the capsule membrane is spread
out over the nearby grid points, leading to smooth and con-
tinuous change of fluid properties from one side of the cap-
sule membrane to the other side. Hence, this method does
not have numerical diffusion across the membrane.

During simulation, the membrane position is advected ex-
plicitly using the velocity interpolated from fluid velocities
on nearby Eulerian grid points. By using the distribution
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function �11� in stead of the � function to calculate the mem-
brane velocity during interpolation, numerical diffusion can
be avoided and the capsule membrane can be captured.

C. Interaction between capsule membrane and fluid

The body force F in Eq. �3�, which reflects the interaction
between capsule membrane and surrounding fluid, can be
deduced by the equilibrium of membrane. The vectorial ten-
sion exerted on a 2D membrane is given by

T = 
t + qn , �14�

where 
 is the in-plane tension, and q the transverse tension.
The membrane load, which is the discontinuity in surface
traction across the membrane, can be obtained through a
force balance over an infinitesimal section of the membrane
�28�, and is given by

	f = 	fnn + 	f tt = −
dT

dl
= −

d

dl
�
t + qn� . �15�

Using the derivative relations, dt /dl=−�n and dn /dl=�t,
where � is the curvature of capsule membrane, and the ex-
pression of transverse shear tension in terms of bending mo-
ment q=dm /dl, one has the following normal and tangential
membrane loads:

	fn = �
 −
d2m

dl2 , 	f t = −
d


dl
− �

dm

dl
. �16�

In the present study, capsule is modeled as a liquid medium
enclosed by a thin membrane which has linear elastic prop-
erties. Let EM and EB be the area elastic dilation modulus
and the bending stiffness of membrane, respectively, the in-
plane tension is expressed as 
=EM �, where � is the tensile
strain of membrane, and the bending moment is m=EB 	�
=EB ��−�0� where �0 is the resting curvature of membrane.
The equilibrium equations can thus be expressed as

	fn = EM�� − EB
d2�

dl2 , 	f t = − EM
d�

dl
− EB�

d�

dl
. �17�

The concentrated force acted on membrane by fluid and
defined on membrane nodes, Fnode, can be calculated by in-
tegrating the membrane load characterized by Eq. �17�. The
concentrated force acted on fluid by membrane and defined
on membrane nodes is

F fluid = − Fnode. �18�

The body force F in Eq. �3� which is acted on fluid and
defined on fluid grid points can be calculated based on the
knowledge of F fluid. By using the distribution function �11�,
the concentrated force defined on membrane nodes, F fluid, is
smoothed and distributed to nearby fluid grid points through

F�x,t� = �
f

D�x − x f�F fluid. �19�

According to the nondimensionalization approach used in
the present paper, area dilation modulus and bending stiff-
ness, which describe the mechanical properties of membrane,
are nondimensionalized as

Em = EM/��lUm
2 x0�, Eb = EB/��lUm

2 x0
3� . �20�

D. Simulation conditions

The lateral migration of 2D capsule in microchannel flow
is studied numerically in the present study, where three fac-
tors are considered, i.e., the initial capsule position, the
membrane elastic dilation modulus, and the viscosity ratio,
rv, which is defined as the ratio of viscosity of fluid inside
capsule membrane to that of fluid outside the membrane.
Pozrikidis �3� numerically studied the dependence of the be-
havior of red blood cell on a nondimensional variable, G
=�Um /Es, where � is the viscosity of surrounding liquid, Um

the mean velocity of axisymmetric Poiseuille flow, and Es

the membrane shear modulus, and the results were inter-
preted as affected by the mean velocity. If � and Um are kept
constant, the effects of membrane mechanical properties and
viscosity ratio on capsule behavior can be elucidated.
Throughout the present paper, unless otherwise mentioned,
length is expressed in unit of x0, time in unit of x0 /Um,
velocity in unit of Um, and membrane dilation modulus in
unit of �lUm

2 x0.
The nondimensional y coordinate of computational do-

main ranges from −1.2 to 1.2, i.e., the height of microchan-
nel is 2.4. Generally, long computational domain is chosen if
long-term capsule behavior is required. However, the simu-
lation on large computational domain is quite time consum-
ing. In order to solve this problem, short computational do-
main is chosen in this paper and a modification on the
domain is adopted during simulation for obtaining long-term
capsule behavior. The nondimensional x coordinate of the
initial computational domain ranges from 0 to 6, i.e., the
length of computational domain is 6. The size of 12048 is
chosen for the Eulerian grid, i.e., one unit length is meshed
with 20 grids. It is known that the effect of the left or right
end of the computational domain on capsule behavior can be
ignored if the nondimensional distance between the capsule
center and either of the two ends is not less than 2.0 �25�. In
the present work, only a single capsule is considered in each
of the simulations. At the start of simulation, a capsule with
zero speed is released in the flow just like that the capsule
appears all at once in the unperturbed background flow, and
the nondimensional distance between the capsule center and
the left end of the computational domain is chosen to be 2.5
in the present study. The capsule moves rightward with sur-
rounding flow after release. The position of capsule is
checked once every 103 time steps during simulation. If the
capsule center is located less than 2.5 to the right end, the
computational domain will be moved in positive x direction
over a distance, such that the capsule center is near to but not
less than 2.5 to the left end of the new computational do-
main. During the modification, the length of the computa-
tional domain is kept constant, and the computed values,
such as density and velocity, are transferred accordingly. Let
us consider a transfer length of lt. In order to realize this
transfer, the value of a mechanical variable f is required to be
modified through the following approach:
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� fnew�x,y� = fold�x + lt,y� , 0 � x � Lx − lt

fnew�x,y� = fold�Lx,y� , Lx − lt � x � Lx
 , �21�

where fold�x ,y� and fnew�x ,y� are values of f at position
�x ,y� in the old and new computational domains, respec-
tively, and Lx is the length of computational domain in x
direction. After the computational domain is modified in this
way, computation is carried out continuously. This kind of
boundary condition is different from the periodic one. For
both boundary conditions, the velocities of flow particles on
the left boundary are the same as those of corresponding
particles on the right boundary. In the present simulation, the
y components of velocities of these particles always remain
to be zero, while in the periodic boundary condition, it is
unnecessary for the y components of velocities to be zero.

The initial capsule shape is circle, and this initial shape is
also used as the resting shape. The capsule membrane is
represented and discretized by 200 Lagrangian nodes. Two
kinds of initial capsule center positions are considered. The
first is located at �2.5, −0.1�, i.e., 0.1 unit length lower than
the centerline, and the corresponding simulation case is
termed the near-center case. The second kind of simulation
case is termed the near-wall case, in which the capsule center
starts from �2.5, −0.5�, i.e., 0.5 unit length lower than the
centerline and only 0.2 unit length between the capsule low-
est point and the bottom boundary. For each initial capsule
position, three nondimensional membrane dilation moduli,
500, 2500, and 10000, are used as input in simulations.
When nondimensional membrane dilation modulus is 500 or
10000, only one viscosity ratio, 1.0, is taken into consider-
ation, while when nondimensional membrane dilation modu-
lus is 2500, three viscosity ratios, 0.2, 1.0, and 5.0, are con-
sidered to elucidate the effect of viscosity ratio on capsule
motion. Totally this paper carries out ten simulations, num-
bered in Table I with corresponding membrane dilation
moduli and viscosity ratios.

Simulations are conducted at Reynolds number of 0.01,
and at density ratio of the internal fluid to the external fluid
of 1.098 �29�. In the present case studies, the influence of
gravity is not considered despite there is a density difference.
The ratio of the reduced bending stiffness to the reduced

dilation modulus, Eb /Em=110−5. In this paper, the size of
computational domain, the initial capsule shape, and the rest-
ing capsule shape have been specified. For given �l, x0, and
Um, the effect of membrane elastic property and viscosity
ratio on capsule behavior can be analyzed. If �l, x0, and EM
are specified, and Re �Eq. �6�� is constant, the effect of mean
velocity or viscosity of surrounding liquid on capsule behav-
ior can be elucidated, similar to the study in �3�.

III. RESULTS AND DISCUSSION

A. Results

1. Near-center capsule

Evolutions of the center position in y direction, and the
center velocities in y and x directions, vy and vx, of near-
center capsule are shown in Figs. 2�a�–2�c�, respectively.
One important feature of the off-center capsule flowing in
microchannel with walls is the lateral migration of capsule
away from the walls. The lateral migration shown in Fig.
2�a� indicates the existence of lift effect of surrounding flow
on moving capsule. Capsule velocity, vy, increases rapidly in
the period from the beginning to nondimensional time of
1–2, during which vx decreases rapidly. This period is actu-
ally an adjustment procedure and is termed the initial adjust-
ment period. After the initial adjustment period, vy becomes
stable for a certain period as shown in Fig. 2�b�, i.e., capsule
moves toward the centerline approximately linearly with
time as shown in Fig. 2�a�. Capsule deformation can be char-
acterized by morphological properties, which are determined
based on the calculations of the zero-, first-, and second-
order moments of capsule shape, as proposed by Dunn and
Brown �30�. Three dimensionless morphological measures,
namely, extension, dispersion and orientation, are calculated
by considering the information of whole capsule shape �25�.
Extension, mext, measures how much a 2D shape differs from
a circle, and it equals to zero when the shape is circular and
increases without limit as the shape becomes less compact.
Dispersion, mdis, quantifies the difference between a 2D
shape and its equimomental ellipse. Dispersion is zero if the
shape is an ellipse, and it increases with the irregularity of
the shape. Orientation, mor, is the angle formed by the semi-
major axis of the equimomental ellipse with respect to posi-
tive x direction. Variations of extension, dispersion, and ori-
entation of near-center capsule are shown in Fig. 2�d�–2�f�,
respectively. In the initial adjustment period, capsule is sub-
ject to large dynamic force, and deforms quickly, as observed
from the curves of extension and dispersion in Fig. 2�d� and
2�e�, respectively.

In many circumstances, capsule membrane undergoes
tank-treading motion. To clearly show the membrane motion,
a representative point is specified on capsule membrane. The
initial position of the representative point of the initially cir-
cular capsule considered in this paper is at the right end of
diameter parallel to the centerline, i.e., �3.0, −0.1� in near-
center case and �3.0, −0.5� in near-wall case. A parameter,
att, is defined as the angle formed by the line, starting from
capsule centroid and ending at representative point, with re-
spect to x direction. The schematic illustration of a capsule

TABLE I. Values of nondimensional membrane dilation moduli
�Em� and viscosity ratios �rv� for all the cases.

Case No. Case type Em rv

NC01 Near-center 500 1.0

NC02 2500 0.2

NC03 2500 1.0

NC04 2500 5.0

NC05 10000 1.0

NW06 Near-wall 500 1.0

NW07 2500 0.2

NW08 2500 1.0

NW09 2500 5.0

NW10 10000 1.0
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with its representative point and angle att is shown in Fig. 3.
Figure 4 shows the evolution of position and shape of the
capsule in near-center case of NC03, termed the NC03 cap-
sule, with nondimensional membrane elastic dilation modu-
lus of 2500 and viscosity ratio of 1.0. Nondimensional time
is shown by the number on top of corresponding capsule
snapshot represented by a closed curve, on which a dot is
used to show the position of representative point. It is seen
from Fig. 4 that the front/downstream end of capsule bulges

while the rear/upstream end becomes less convex, showing
more or less similar parachute shape predicted for capsule
�8� and red blood cell �3�. The deformation is undergone by
capsule due to the hydrodynamic stresses imposed by sur-
rounding Poiseuille flow on capsule membrane. Through the
movement of the representative point, Fig. 4 qualitatively
shows the membrane tank-treading motion of near-center
capsule, which is not marked because the capsule is near to
the centerline, i.e., the shear gradient to which the capsule is
subject is not high. The movement of the representative point
of the NC03 capsule illustrated in Fig. 4 shows that the
membrane undergoes clockwise tank-treading motion, and
the motion slows down with time since the change in posi-
tion of the representative point with respect to the capsule
cannot be observed when the capsule center is near to the
centerline. Temporal evolutions of att for the near-center cap-
sule are shown in Fig. 5�a�. Distributions of membrane tank-
treading velocity of the NC03 capsule at nondimensional
times of 0.5, 2, 5, 10, and 25, and the NC05 capsule at
nondimensional times of 0.5, 2, 5, 17, and 25 are illustrated
in Figs. 5�b� and 5�c�, respectively.

From each of the curves in Fig. 2�a�, the time, at which
the capsule centroid coincides with the microchannel center-
line, can be obtained through interpolation, and is repre-
sented by a symbol on the curve. Corresponding values of vy,
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vx, morphological measures, and att at the same time are
marked by symbols on corresponding curves in Figs.
2�b�–2�f� and 5�a�.

2. Near-wall capsule

Evolutions of the center position in y direction, the center
velocities in y and x directions, vy and vx, and three morpho-
logical measures of near-wall capsule are shown in Figs.
6�a�–6�f�. Figure 7 shows the evolution of position and shape
of capsule in the near-wall case NW08 with nondimensional
membrane elastic dilation modulus of 2500 and viscosity
ratio of 1.0. Nondimensional time is given out on top of
corresponding capsule snapshot, on which a dot is used to
show the position of representative point. The capsule shape
changes with time, and becomes nearly symmetric about the
microchannel centerline after the capsule center moves near
to the centerline at nondimensional time of about 38. It is
seen from Fig. 7 that, when the center of the NW08 capsule
is near to the centerline, its shape shows similar characteris-
tic to that of the corresponding near-center NC03 capsule
shown in Fig. 4, namely the front/downstream end of the
capsule bulges and the rear/upstream end becomes less con-
vex. Membrane tank-treading motion of near-wall capsule
can be clearly observed from the motion of representative
point shown in Fig. 7. The tank-treading motion fades out as
capsule moves toward the centerline because of the decrease
of shear rate the capsule undergoes. For the NW08 capsule
shown in Fig. 7, the representative point turns about half
circle from nondimensional time of 0 to about 10, while the
tank-treading motion is much slower from time 38 to 50
when the capsule is located near to the centerline. This pro-
cedure is represented by the temporal evolution of att of the
NW08 capsule as shown in Fig. 8, where the temporal evo-
lutions of att of all near-wall capsules are demonstrated.
From each of the curves in Fig. 6�a�, the time, at which the
capsule centroid coincides with the microchannel centerline,
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can be obtained through interpolation, and is represented by
a symbol on the curve. Corresponding values of vy, vx, mor-
phological measures, and att at the same time are marked by
symbols on corresponding curves in Figs. 6�b�–6�f� and 8.

B. Discussion

1. Effect of the membrane elastic dilation modulus

The effect of the membrane elastic dilation modulus on
behavior of near-center capsule is studied by comparing the
results of the NC01, NC03, and NC05 capsules. The behav-
ior of capsule, on one hand, is determined by its mechanical
property. The ratio of the reduced membrane bending stiff-
ness to the reduced membrane dilation modulus is fixed in
our simulations. Lower membrane dilation modulus together
with lower membrane bending stiffness renders capsule with
less resistance to flow force, and leads to larger capsule de-
formation. On the other hand, the behavior of capsule also
depends on environmental conditions, such as the presence
of a wall, the nonlinearity of the shear flow, and the nonlin-
ear characteristic of surrounding fluid. A capsule does not
exhibit a lateral migration with respect to the flow direction
in an unbounded linear shear flow in the limit of low Rey-
nolds number. In the presence of a wall, however, a capsule
in linear shear flow is found to migrate away from the wall

because of the translational asymmetry perpendicular to the
flow direction �16�. Nonlinear characteristic of Poiseuille
flow together with capsule deformation causes a cross-
streamline migration of capsule toward the centerline even if
the Poiseuille flow is unbounded �21�. The nonlinear contri-
bution of term � ·�uu in the Navier-Stokes equations leads
to lateral migration of even rigid sphere �31�.

The lateral migration behavior of near-center capsule con-
sists of two parts, before it moves across the microchannel
centerline, as illustrated in Fig. 2�a�. In the first part, namely,
just after the initial adjustment period, velocity in y direction
vy does not change much, as shown in Fig. 2�b�, and capsule
moves almost linearly with time in y direction, as shown in
Fig. 2�a�. In the second part, when approaching to the cen-
terline closely, different capsules behave differently. In the
near-center case, the initial position of capsule is not near to
the wall, the effect of wall on capsule behavior is not signifi-
cant. The lateral migration of capsule results mainly from the
combination of the nonlinear characteristics of Poiseuille
flow and capsule deformation in the first part. The softer the
capsule becomes, the larger deformation is observed, and the
more significant interaction with surrounding flow, leading to
faster lateral migration. In simulation, capsule is released at
the beginning, when the surrounding fluid flow is unper-
turbed Poiseuille flow, and the capsule has perfect circular
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shape. The capsule and the surrounding flow need to adapt to
match each other. Among the NC01, NC03, and NC05 cap-
sules, the NC01 capsule possesses the lowest membrane
elastic dilation modulus, and the NC05 capsule the highest
one, so the NC01 capsule undergoes the largest deformation
with the highest extension and dispersion, while the NC05
capsule has the lowest extension and dispersion in the initial
adjustment period, as shown in Figs. 2�d� and 2�e�. As ex-
pected, the NC01 capsule achieves the fastest lateral migra-
tion, while the NC05 capsule the slowest one, from the be-
ginning to nondimensional time of about 5, as shown in Fig.
2�a�. The capsule with faster lateral migration is less distant
from the centerline, and experiences higher background flow
velocity, i.e., having higher vx, thus, the NC01 capsule
moves along x direction with highest vx, and the NC05 cap-
sule with lowest vx, as observed from Fig. 2�c�. A capsule
moving in a shear flow deforms and aligns itself with the

flow. The capsule in the present study starts from the lower
half of the microchannel and the background fluid flows
from left to right, such that the capsule orientation tends to
be positive before the capsule reaches the centerline. As il-
lustrated in Fig. 2�f�, orientations of all the near-center cap-
sules are positive and almost the same at the beginning, and
remain approximately constant for a period. A capsule mov-
ing in a shear flow not only aligns itself with the flow, but
experiences membrane tank-treading motion to suit the back-
ground flow as well. According to the computational condi-
tions in the present study, capsule needs to undergo clock-
wise membrane tank-treading motion at the beginning. As
seen from Fig. 5�a�, att of all the near-center capsules de-
creases, indicating the existence of clockwise tank-treading
motion of membrane. Among the three capsules discussed in
the present paragraph, the NC05 capsule undergoes the slow-
est membrane tank-treading motion, while the other two cap-
sules have almost the same membrane motion.

Figure 2�d� shows that, after the initial adjustment period,
capsule undergoes decrease in extension, which might be due
to two effects, namely, the membrane elastic properties
which make the capsule restore its initial shape, and the de-
crease of shear gradient to which the capsule is subject to
when capsule approaches the centerline. It is seen from Fig.
2�d� that the extension of capsule with lower membrane elas-
tic dilation modulus decreases more rapidly. After reaching
local minimum, capsule extension increases again. Figure
2�d� shows that extension is quite low at time when capsule
center coincides with the centerline, meaning that capsule
experiences less deformation on the centerline. Capsule dis-
persion does not change much after the initial adjustment
period, as shown in Fig. 2�e�. With the decrease of capsule
deformation and the decrease of distance between capsule
center and microchannel centerline, the effect of Poiseuille
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flow on capsule behavior might go down. The shear rate to
which the capsule is subject to also decreases, leading to the
decrease of tank-treading motion of capsule membrane, i.e.,
the slowing down in the change of att, as shown in Fig. 5�a�.
When capsule approaches closely to the centerline, decrease
in vy occurs to all the near-center capsules except the NC05
capsule which experiences increase in vy, as shown in Fig.
2�b�. After nondimensional time of about 7, position of the
NC05 capsule in y direction starts to become higher than
those of the other two capsules, because of its faster lateral
movement. Therefore, velocity vx of the NC05 capsule is the
highest as seen from Fig. 2�c�. When the near-center capsules
first move across the centerline, their orientations decease,
meaning that they turn in the clockwise direction. The orien-
tation of the NC05 capsule decreases at nondimensional time
of about 8, and that of the NC01 and NC03 capsules de-
creases at nondimensional time of 14–15. The NC05 capsule
migrates continuously after moving across the centerline. Af-
ter reaching the minimum value, att of the NC05 capsule
increases, meaning that the membrane motion changes from
clockwise to anticlockwise direction, since the capsule has
already moved into the upper half of the microchannel. After
nondimensional time of about 20, vx of the NC05 capsule is
the lowest among the NC01, NC03, and NC05 capsules be-
cause it is located the most distant from the centerline. The
NC05 capsule moves downward with negative vy after reach-
ing the maximum y coordinate. The difference of behaviors
between the NC01 and NC03 capsules is not remarkable, as
seen from Figs. 2�a� and 5�a�.

The effect of the membrane elastic dilation modulus on
behavior of near-wall capsule is studied by comparing the
results of the NW06, NW08, and NW10 capsules. The lateral
migration behavior of the near-wall capsule consists of three
parts, before it moves across the microchannel centerline. In
the first part, namely, just after the initial adjustment period,
the capsule moves toward the centerline with relatively
higher velocity, as shown in Fig. 6�b�. The subsequent two
parts for the near-wall capsule are somewhat similar to the
two parts for the near-center capsule. In the near-wall case,
capsule center is nearer to microchannel wall at the begin-
ning than that in the near-center case, the lateral migration of
capsule is caused mainly by the interaction between micro-
channel wall and capsule deformation. The nonlinearity of
Poiseuille flow also has effect on behavior of the near-wall
capsule, but this effect does not dominate. Capsule with
lower membrane dilation modulus undergoes higher defor-
mation, and achieves faster lateral migration. The NW06
capsule has the lowest membrane elastic dilation modulus,
and the NW10 capsule the highest one, and they experience
the largest and the smallest deformation in the initial adjust-
ment period, respectively, as illustrated in Figs. 6�d� and
6�e�. The maximum extension of near-wall capsule is larger
than that of the corresponding near-center capsule, since the
near-wall capsule is subject to higher shear gradient. In the
initial adjustment period, the maximum dispersion of near-
wall capsule is less than that of the corresponding near-
center capsule, which might be because that the near-wall
capsule is more prolonged under higher shear gradient, lead-
ing to less difference of its shape from its equimomental
ellipse. The NW06 capsule and the NW10 capsule achieves

the fastest and the slowest lateral migrations, respectively, as
observed from Fig. 6�a�. In the first part, from nondimen-
sional time of 2 to 8, capsule moves upward quickly as il-
lustrated in Fig. 6�a�, and vy decreases apparently as shown
in Fig. 6�b�. Chaffey et al. �32� studied the lateral movement
of a droplet in a wall-bounded linear shear flow, and pre-
dicted that the lateral velocity decreases inversely with the
square of the distance from the wall. The lateral velocity of
the capsule in the present study should decrease more rapidly
than that in the cases studied by Chaffey et al. �32�, since the
shear rate decreases linearly with the increase of the distance
between the capsule center and the wall of microchannel
with Poiseuille flow. The capsule with faster lateral migra-
tion has less distance from the centerline, and experiences
higher background flow velocity, and thus has higher vx. As
observed from Fig. 6�c�, the NW06 capsule and the NW10
capsule have the highest and lowest vx, respectively. Varia-
tions of the orientations of the near-wall capsules are differ-
ent from those of the near-center capsules. The orientation
drops in the initial adjustment period, and then increases
slowly afterward. In the first part, att of all the near-wall
capsules decreases, indicating the existence of clockwise
tank-treading motion of capsule membrane, and the mem-
brane dilation modulus has insignificant effect on capsule’s
att, as seen in Fig. 8.

In the second part, namely after the nondimensional time
of 8–12, the lateral velocity of capsule becomes relatively
low, and decreases slowly, such that the lateral movement of
capsule slows down, as observed in Fig. 6�a�. With the in-
crease of the distance between the capsule and the wall, and
the decrease of the distance between the capsule and the
centerline, the effect of the wall on capsule behavior de-
creases, and the effect of the nonlinearity of Poiseuille flow
on capsule behavior becomes more important. In this part,
the membrane dilation modulus affects the behavior of near-
wall capsule in almost the same way as it affects the near-
center capsule in the first part. In both the first and second
parts, the extension of near-wall capsule decreases, due to
the membrane elastic properties which make the capsule re-
store the initial shape, and because of the decrease of the
shear gradient when the capsule approaches the centerline.
With the decrease of capsule deformation and the decrease of
the distance between the capsule center and microchannel
centerline, the effects of both the wall and the nonlinearity of
Poiseuille flow goes down. In the third part, the lateral ve-
locities, vy, of all the near-wall capsules except the NW10
capsule decrease when they approach and move across the
centerline. The NW10 capsule, which has the highest mem-
brane dilation modulus, experiences abrupt increase in vy
when its center is located about 0.07 unit length lower than
the centerline, as shown in Fig. 6�b�, and moves across the
centerline with high vy. This characteristic is quite similar to
that of the corresponding near-center NC05 capsule, which
has the same mechanical properties as the NW10 capsule.
Figure 6�d� demonstrates that the extension of near-wall cap-
sule is quite low when its center coincides with the center-
line, meaning that the capsule experiences less deformation
on the centerline. After the initial adjustment period, the cap-
sule dispersion first undergoes a short period of decrease, and
then increases again in spite of the decrease in capsule ex-
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tension, as shown in Fig. 6�e�. Generally, the capsule disper-
sion is at a relatively high level when capsule center is on the
centerline, because the difference in convexity between the
front/downstream end and the rear/upstream end, shown in
Fig. 7, results in apparent difference of capsule shape from
its equimomental ellipse.

The results in this subsection show that, before capsule
approaches to the microchannel centerline closely, lower
membrane dilation modulus tends to result in faster lateral
migration of capsule.

2. Effect of the viscosity ratio

The effect of the viscosity ratio on the behavior of near-
center capsule is studied by comparing the results of the
NC02, NC03, and NC04 capsules. In the first part of the
near-center case, the interaction between the nonlinearity of
Poiseuille flow and the capsule deformation leads to the lat-
eral migration of capsule. Capsule with lower viscosity ratio
deforms faster under the same outside load, and seems to be
softer. The interaction between larger deformation of capsule
and background Poiseuille flow leads to faster lateral migra-
tion. Therefore, the capsule with higher viscosity ratio might
behave somewhat similar to that with higher membrane di-
lation modulus. When the process is slow enough, capsules
with the same membrane dilation modulus and different vis-
cosity ratios may behave similarly, while capsules with dif-
ferent membrane dilation moduli behave differently, no mat-
ter how slow the process is. The faster the process is, the
more significant the effect of the viscosity ratio on the be-
havior of capsule. Among the NC02, NC03, and NC04 cap-
sules, the NC02 capsule, which has the lowest rv, undergoes
the fastest deformation, and the NC04 capsule, which has the
highest rv, undergoes the slowest deformation, as seen from
Fig. 2�d�. As expected, the NC02 capsule and the NC04 cap-
sule experience the fastest and the slowest lateral migration,
respectively, as illustrated in Fig. 2�a�. Because the NC02
capsule is the closest to the centerline among the three cap-
sules, it is subjected to the highest background flow velocity,
and has the highest moving velocity vx, and the NC04 cap-
sule has the lowest vx, as illustrated in Fig. 2�c�. After the
initial adjustment period, the extension of capsule goes
down, and Fig. 2�d� shows that the extension of capsule with
lower viscosity ratio decreases faster. The dispersion of near-
center capsule doesn’t change much after the initial adjust-
ment period, and Fig. 2�e� also shows that the viscosity ratio
has insignificant effect on the dispersion of the near-center
capsule. The orientations of the three capsules are almost the
same at the beginning, and remain approximately constant
for a period. When the capsules approach to the microchan-
nel centerline, they begin to revolve about their center. The
orientations of the NC02 and NC03 capsules decrease at
nondimensional time of about 9 and 15, respectively, while
that of the NC04 capsule increases at nondimensional time of
about 17. Capsule with lower rv migrates faster laterally, and
moves closer to the centerline. As such, it undergoes lower
shear rate, namely, it has slower membrane tank-treading
motion, as shown in Fig. 5�a�.

The effect of the viscosity ratio on behavior of the near-
wall capsule is studied by comparing the results of the

NW07, NW08, and NW09 capsules. As discussed above,
capsule with lower viscosity ratio moves faster in y direction,
which can be observed from Fig. 6�a�. It is known from Figs.
6�a�–6�d� that the viscosity ratio influences the behavior of
the near-wall capsule in the same way as it does for the
near-center capsule.

The results in this subsection indicate that, before capsule
approaches to the microchannel centerline closely, lower vis-
cosity ratio tends to bring about faster lateral migration of
capsule, showing similar effect as the membrane dilation
modulus.

3. Effect of the initial position of capsule

It is observed from the results of the present study that
different capsules behave differently when they approach to
the centerline closely. For example, the NC03 capsule
reaches the upper half of microchannel at nondimensional
time of about 16.8, and moves downward and reaches the
lower half of microchannel at nondimensional time of about
24.6. Because vy of the NC03 capsule is very low between
the two times when its center coincides with the centerline,
the capsule is quite near to the centerline in this period, look-
ing like that it stays on the centerline. The procedure of the
lateral migration of the NW06 capsule is similar to that of
the NC03 capsule, the difference being that the period during
which the NW06 capsule is near to the centerline is shorter
than that of the NC03 capsule. Velocity vy of the NC04 cap-
sule is quite low after its center reaches the centerline, it
looks like that the NC04 capsule stays on the centerline after
nondimensional time of 17.8. Velocity vy of the NW08 cap-
sule is very low after it reaches the centerline at about non-
dimensional time of 37.9 and before it moves upward away
from the centerline at time of 48. It looks like that the NW08
capsule stays on the centerline for a period after reaching it,
and then moves upward into the upper half of the microchan-
nel. Other capsules move across the centerline one or two
times without staying on the centerline. The lateral migration
behavior of capsule observed in the present paper is different
from the results by Kaoui et al. �21� and Coupier et al. �22�,
where they found that the lateral migration velocity of
vesicle becomes zero when vesicle reaches the centerline.
The nonlinear term � ·�uu in the Navier-Stokes equations
was not considered in their studies, which might be the main
reason for the difference in results.

The orientation results in Figs. 2�f� and 6�f� demonstrate
that, when the capsule center coincides with the centerline,
the capsule orientation is not equal to zero or � /2, i.e., the
capsule shape is not exactly symmetric about the centerline.
The NC04 capsule turns anticlockwise when approaching
closely to the centerline, and even when staying near to the
centerline after reaching it, as shown in Fig. 2�f�. After
reaching the centerline, the shape of the NC04 capsule is the
least different from a circle as observed from Fig. 2�d�,
namely, the lengths of the semimajor and semiminor axes of
its equimomental ellipse are almost the same, rendering the
capsule easier to rotate. When the NC04 capsules stay near
to the centerline, its att decreases slowly, i.e., it undergoes
clockwise membrane tank-treading motion, as observed from
Fig. 5�a�. Similar rotation and membrane tank-treading mo-
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tion are also observed for the NC03, NW06, and NW08 cap-
sules when they stay near to the centerline, from Figs. 2�f�,
6�f�, 5�a�, and 8. Kaoui et al. �24� discovered a slipper shape
for vesicle when the reduced volume was lower than certain
value, and found no slipper shape when the reduced volume
was close to 1. The reduced volume in the present study is 1,
and the results mentioned above show some similarity to the
characteristics of the slipper shape, despite the distance be-
tween the capsule center and the centerline, and the tank-
treading velocity are quite small.

Coupier et al. �22� experimentally and numerically inves-
tigated the cross-streamline noninertial migration of a vesicle
in a bounded Poiseuille flow, and proposed a migration law
where the lateral migration velocity is defined as a function
of the vesicle center position and local shear rate of the un-
perturbed flow. The system studied by Coupier et al. �22� is
different from that in the present study. Here the comparison
between the two systems is conducted just as an attempt.
Based on the nondimensionalization approach used in the
present paper, the migration law can be expressed as

vy
� =

− �y�

0.96  2��y� − y0
��� , �22�

where vy
� is the nondimensional capsule velocity in y direc-

tion, and y� is the nondimensional capsule center position in

y direction starting from y0
�. Coupier et al. �22� studied the

influence of reduced volume v=V / �4��S /4��3/2 /3� on the
vesicle behavior, where V and S are the volume and surface
area of vesicle, and found �=1.210−2�0.210−2 and �
=1�0.1 in the range of 0.970�v�0.975. Here, v=1 be-
cause of the initially circular shape of the 2D capsule, and
�=1.210−2 and �=1 are chosen. The migration law �Eq.
�22�� is thus rewritten as

vy
� =

− y�

160�y� − y0
��

. �23�

The center position and center velocity in y direction of cap-
sule for each case can be obtained by simulation. The tem-
poral variation in vy obtained from simulation is represented
by dashed line with dots in Fig. 9. By substituting into Eq.
�23� the capsule center position in y direction from simula-
tion, the temporal evolution in vy determined by the migra-
tion law �Eq. �23�� is represented by solid line in Fig. 9 for
comparison. The vertical dotted line in each case in Fig. 9
indicates the time at which the capsule centroid coincides
with the centerline. In each plot, the results from the begin-
ning to the first vertically dotted line are used for compari-
son, and the results from the first vertically dotted line to the
end of the procedure are of no use. It is seen that the rapid
increase of vy in the initial adjustment period is not covered
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by the migration law �Eq. �23��. The comparison between the
capsule behavior from the present simulation and that by the
migration law �Eq. �23�� shows that the behavioral agree-
ment for the near-wall capsule is better than that for the
near-center capsule. Among all the near-wall capsules, the
best agreement occurs to the NW09 capsule with the inter-
mediate membrane dilation modulus and the highest viscos-
ity ratio. In spite of this good agreement, the migration law
�Eq. �23�� by Coupier et al. �22� cannot exactly catch the
behavior of the NW09 capsule, even adjusting the values of
parameters � and �. According to the migration law �Eq.
�23��, vy becomes zero when capsule centroid reaches the
centerline. By the present simulation, however, the migration
velocity of the NW09 capsule is not zero when the capsule
centroid coincides with the centerline, as observed from the
vy curve shown in Fig. 6�b�.

Apart from the membrane dilation modulus and the vis-
cosity ratio, the initial position also influences the perfor-
mance behavior of capsule. For example, the NC03 and
NW08 capsules have the same mechanical properties. The
difference in their lateral movements, shown in Figs. 2�a�
and 6�a�, clearly demonstrates the effect of initial capsule
position on the capsule behavior. The NC03 capsule moves
upward first, stays near to the centerline for a period, and
then moves downward back to the lower half of microchan-
nel, however, the NW08 capsule moves upward into the up-
per half of microchannel after staying near to the centerline
for a period. Doddi and Bagchi �20� found that the motion of
the capsule was quasisteady. They conducted two kinds of
simulations. The first is the free capsule simulation, where
the capsule is released near the bottom wall and the simula-
tion stops until the capsule reaches closely to the centerline.
The second is the quasisteady simulation, where an unde-
formed spherical capsule is released at different lateral loca-
tions along the trajectory of the free capsule, and the simu-
lations stop just after the initial adjustment period is passed.
Excellent agreement between the free capsule and the quasi-
steady capsule results were observed in terms of the migra-
tion velocity, slip velocity, deformation, and angular orienta-
tion. If the process is absolutely steady, the initial position of
the capsule does not affect the capsule behavior. However,
the quasisteady process does not necessarily mean the abso-
lutely steady process. For capsules with different initial po-
sitions, small difference in capsule behavior shows up when
capsules are not near to the microchannel centerline because
the lateral migration process is quasisteady, but significant
difference in capsule behavior can be observed when cap-
sules approach closely to the centerline and after the capsules
move across the centerline.

IV. CONCLUSION

The long-term lateral migration of 2D capsule in micro-
channel flow in cases with different initial capsule positions,
membrane dilation moduli, and viscosity ratios is studied by
simulation in the present paper. The numerical method used

in this paper combines a finite volume technique for solving
the fluid problem on fixed Eulerian grid with a front tracking
technique for capturing and tracking the capsule membrane
discretized by Lagrangian nodes.

The near-center and near-wall capsules studied in the
present paper experience tilting and membrane tank treading,
and migrate laterally while moving along the surrounding
flow. The lateral migration of capsule demonstrates the exis-
tence of lift effect of the surrounding flow. The effects of
initial capsule position, membrane elastic dilation modulus,
and viscosity ratio on capsule behavior can be observed
clearly from the results in this paper. Before capsule ap-
proaches to the microchannel centerline closely, lower mem-
brane dilation modulus and lower viscosity ratio tend to re-
sult in faster lateral migration. The initial position also
influences the performance behavior of capsule. The differ-
ence in initial position brings about small difference in cap-
sule behavior when capsule is not near to the microchannel
centerline since the lateral migration of capsule is a quasi-
steady process, but might lead to significant difference in
capsule behavior when capsule approaches closely to the
centerline.

The lateral migration process of near-center capsule con-
sists of two parts. After the initial adjustment period and
before capsule approaches closely to the microchannel cen-
terline, velocity in y direction, vy, does not change much for
a period, during which the capsule moves almost linearly
with time in y direction, as shown in Figs. 2�b� and 2�a�. This
is the first part. In the second part, different capsules behave
differently according to their mechanical properties, after
they approach to the centerline closely. The lateral migration
process of near-wall capsule consists of three parts. In the
first part, namely just after the initial adjustment period, the
capsule moves toward the centerline with relatively higher
velocity, as shown in Figs. 6�a� and 6�b�. The subsequent two
parts for the near-wall capsule are somewhat similar to the
two parts for the near-center capsule.

The lateral migration of capsule may be caused by various
environmental conditions, for example, the presence of a
wall, the nonlinearity of the shear flow such as the Poiseuille
flow, and the nonlinear characteristic of the fluid. When the
capsule is near to microchannel wall, the effect of the wall
might dominate, leading to relatively faster lateral migration
of capsule. When the capsule is not far away from the cen-
terline, the effect of the nonlinearity of Poiseuille flow might
dominate, resulting in relatively slower lateral movement of
capsule. When capsule is located closely to the centerline,
capsules behave differently, where the reason still remains
poorly understood and it will be one of our future studies.
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