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The Lieb-Robinson bound shows the existence of a maximum speed of signal propagation in discrete

quantum mechanical systems with local interactions. This generalizes the concept of relativistic causality

beyond field theory, and provides a powerful tool in theoretical condensed matter physics and quantum

information science. Here, we extend the scope of this seminal result by considering general Markovian

quantum evolution, where we prove that an equivalent bound holds. In addition, we use the generalized

bound to demonstrate that correlations in the stationary state of a Markov process decay on a length scale

set by the Lieb-Robinson velocity and the system’s relaxation time.
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In relativistic quantum field theory, the actions of an
observer can only influence his or her future light cone.
This can be seen as a consequence of the fact that inter-
actions are covariant and local; i.e., they couple the field at
a given point only to the field at points located infinitesi-
mally close to it. The situation is, at first glance, quite
different for discrete quantum mechanical systems with
local interactions, such as spin lattices with nearest neigh-
bor couplings. There, it is in principle possible to send
information between any two connected regions in an
arbitrarily short time, despite the fact that interactions are
local. However, a result first derived by Lieb and Robinson
[1], and improved in Refs. [2–5], demonstrates the exis-
tence of an effective light cone such that the amount of
information signaled beyond it decays exponentially.

This result, known as the Lieb-Robinson bound, is de-
rived under the assumption of unitary evolution, i.e., when
the dynamics is governed by Schrödinger’s equation. A
more general form of quantum evolution is given by
Markovian dynamical semigroup equations, which are
the natural generalizations of stochastic processes to the
quantum setting. These are needed, for instance, to de-
scribe systems with dissipation or decoherence, and in-
clude unitary evolution and classical stochastic evolution
as special cases.

In this Letter, we extend the Lieb-Robinson bound to
general local Markovian dynamics. Moreover, we demon-
strate that the correlations displayed in the stationary state
of a Markov process decay exponentially beyond a length
scale set by the Lieb-Robinson velocity and the system’s
relaxation time. This also generalizes the results of
Hastings [3] established in the setting of classical
Markovian dynamics, but is weaker than his Hamiltonian
version because, in our setting, the relaxation time is not
dictated only by the gap of the semigroup generator.

There are several motivations to study the existence of
an effective light cone under general quantum dynamics.
First, experimental systems are always subject to some
amount of dissipation and decoherence, so understanding

the origin of causality under these conditions is important.
Second, the Lieb-Robinson bound has proven to be a
powerful tool to characterize the structure of ground states
of gapped Hamiltonians. For instance, Hastings and col-
laborators have used this bound to rigorously prove the
stability of topological order [6], the existence of projected
entangled pair state representation of ground states [7], and
the exponential decay of correlations [3] and to generalize
the Lieb-Schultz-Mattis theorem to higher dimensions [2].
One might naturally expect similar characterizations of
thermal states to emerge from the current work; in fact,
we provide a first step by proving clustering of correlations
for the fixed points of gapped Markov processes.
Third, the Lieb-Robinson bound for unitary processes is

an important tool in quantum complexity theory (see, e.g.,
[8]). It was recently demonstrated that dissipation is a
universal resource for quantum computation [9]; our re-
sults complement this finding in a natural way. One major
open question in this field, related to the quantum proba-
bilistically checkable proofs conjecture, is to identify the
complexity of finding the ground state energy density of a
local Hamiltonian within constant accuracy. A problem
that is at least as hard can be formulated in terms of thermal
states, so our result could shed new light on this open
question.
Lastly, the existence of a fundamental minimal length

scale, the Planck length, suggests that physics might be
fundamentally discrete; many approaches to quantum
gravity have this discreteness built in (e.g., [10] and refer-
ences therein). The black-hole evaporation problem also
suggests that quantum mechanics could be fundamentally
nonunitary, with unitary dynamics emerging as a low
energy approximation [11]. Our result provides a mecha-
nism for emergent causality in such fundamentally discrete
and nonunitary theories.
Lieb-Robinson bound.—We consider the setting where

particles are located over a set of vertices�. The particle at
location x 2 � has Hilbert spaceH x, so the entire Hilbert
space is

N
x2�H x. For any subset of vertices X � �, we
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write HX ¼ N
x2XHx. We make no distinction between

operatorsOX 2 BðHXÞ on X and their natural embedding
in BðH Þ. A metric dðx; yÞ is defined between particles’
locations. A good example to keep in mind is spins located
at the vertices of a regular D-dimensional lattice, where
dðx; yÞ is the usual graph distance. The Hamiltonian is
given by a sum of terms

P
X��HX where HX ¼ 0 for all

X of diameter greater than some constant d�. Recall that
the diameter of a subset of vertices is given by the largest
distance between any pair of vertices inside it. Thus, H is
‘‘local’’ or ‘‘short-ranged’’ in the usual sense.

To motivate the statement of the Lieb-Robinson bound,
imagine that one observer, Alice, has access to some
particles A � � and wants to signal to a second observer,
Bob, who has access to B � �. The system is initially in
the state � 2 BðH Þ. To send the signal ‘‘0,’’ Alice does
nothing, while if she wants to signal ‘‘1,’’ she applies a
transformation to the particles in her possession, mapping
the state � to �0 ¼ �þ i�½OA; �� where OA 2 BðH AÞ.
To read the signal after some time t, Bob must perform
a measurement on region B that discriminates between
the state �ðtÞ and �0ðtÞ, where time evolution is governed
by Schrödinger’s equation _�ðtÞ ¼ �i½H;�ðtÞ�. If he makes
a measurement described by the operator OB 2 BðH BÞ,
the probability that he distinguishes the two sig-
nals is jTrfOB½�ðtÞ � �0ðtÞ�gj ¼ �jTrf�½OBðtÞ; OA�gj �
�k½OBðtÞ; OA�k, where time evolution in the Heisenberg
picture is governed by _OðtÞ ¼ i½H;OðtÞ�.

The Lieb-Robinson bound shows that

k½OBðtÞ; OA�k � cVkOAkkOBk exp
�
�dAB � vt

�

�
; (1)

where dAB is the distance between the regions A and B,
V ¼ minfjAj; jBjg is the volume of the smallest of the two
regions, and c, v, and � > 0 are constants that depend only
on the microscopic details of the model: the interaction
strength maxX��kHXk, the radius of interactions d�, and
the maximal degree of the vertices. Thus, signals can only
propagate at a finite velocity v, defining an effective light
cone. Outside this cone, the probability of detecting a
signal falls off exponentially.

Markov dynamical semigroup equations.—We now gen-
eralize the setting by considering a broader class of evo-
lution equations. Lindblad has shown [12] that the most
general differential equation for _� that (1) is linear, (2) is
local in time (Markovian), (3) preserves positivity, and
(4) preserves the trace must have the form

_� ¼ �i½H;�� þX
a

La�L
y
a � 1

2
ðLy

aLa�þ �Ly
aLaÞ; (2)

where H is a Hamiltonian and La are any operators. In
general, the Hamiltonian and the operators La can be time-
dependent; our result holds in that case as well but we
consider time-independent generators for simplicity. In the
Heisenberg picture, this equation gives

_O ¼ i½H;O� þX
a

Ly
aOLa � 1

2
ðLy

aLaOþOLy
aLaÞ (3)

¼: L½O�: (4)

It is convenient to adopt a superoperator notation, view-
ing BðH Þ as a vector space. For O 2 BðH Þ, we use the
notation jOii and denote the Hilbert-Schmidt inner product
hhOjO0ii ¼ TrfOyO0g. Then, we can express Eq. (3) as

j _Oii ¼ LjOii, and the formal solution is jOðtÞii ¼
eLtjOð0Þii. We will often switch between the two
notations.
Like in the original setting, we are interested in the case

where the time-evolution generator is given by the sum of
local pieces, L ¼ P

X��LX with LX ¼ 0 for all X of
diameter greater than some constant d�. Each term LX 2
BðBðH XÞÞ in that sum has the Lindblad form Eq. (3) with
HX, LX;a 2 BðH XÞ. We make the assumption [13]

throughout that kLXk � 1, which is equivalent to fixing
the time units.
Lieb-Robinson bound for Markov processes.—We now

come to the main result, which is a bound on ½OBðtÞ; OA�
where the dynamics of OB is governed by a local Markov
process as described above. Our proof is inspired by that of
[4,5]. The main complication comes from the fact that
quantum dynamical semigroup equations do not obey

Leibniz rule @
@t ðOAOBÞ � @OA

@t OB þOA
@OB

@t , and that back-

ward time evolution is norm-increasing. Our main contri-
bution is to derive a recursion relation for the Lieb-
Robinson commutator [c.f. Eq. (11)] under general
Markovian evolution. It has been shown many times
[4,5] that the solution to this recursion yields Eq. (1).
We are interested in the quantity fðtÞ ¼ ½OBðtÞ; OA� that

we can express as fðtÞ ¼ CAeLtjOBii, where CA is the
superoperator defined by the action CAjQii :¼ j½Q;OA�ii.
We can write a differential equation for fðtÞ

_fðtÞ ¼ CALeLtjOBii (5)

¼ L �ACAe
LtjOBii þ CAL\AeLtjOBii (6)

¼ L �AfðtÞ þ CAL\AeLtjOBii (7)

where we have broken the Lindblad superoperator in two
parts, L\A ¼ P

X:X\A�0LX and L �A ¼ L�L\A, and we
used the fact that ½CA;L �A� ¼ 0.
It can easily be verified by differentiating that the solu-

tion to this differential equation is

fðtÞ ¼ eL �Atfð0Þ þ
Z t

0
eL �Aðt�sÞCAL\AeLsjOBiids: (8)

Because eL �At is norm-contracting for t � 0, it follows that

kfðtÞk � kfð0Þk þ kCAk
Z t

0
kL\AeLsjOBiikds: (9)

We can now recurse. Define the quantity
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MOðX; tÞ ¼ sup
T2LX

kT eLtjOiik
kT k ; (10)

where LX is the set of superoperatorsT of the form Eq. (3)
with La and H 2 BðH XÞ. With this definition, it follows
that for any X \ Y ¼ 0, (1) elements of LX and LY com-
mute, and (2) elements of LX annihilate BðH YÞ.

Repeating the steps leading to Eq. (9), we have

MOB
ðX; tÞ � MOB

ðX; 0Þ þ X
Y:Y\X�0

Z t

0
MOB

ðY; sÞds: (11)

Solving this recursion relation is a combinatorial problem
and yields Eq. (1) [4,5]. Note that, using the techniques of
[14], it should be possible to generalize this bound to the
case that the Lindblad superoperator is the sum of local
unbounded terms with bounded commutators.

Convergence rate.—Before we examine the correlations
generated by quantum Markov processes, a few words
about their asymptotic properties are in order. The
Lindblad superoperator can be written in its Jordan nor-
mal form L ¼ SJS�1 where J ¼ L

j�0J djð�jÞ is the

Jordan matrix, �j are the (complex) eigenvalues of L that

we sort according to their real partRð�0Þ � Rð�1Þ � . . . �
Rð�kÞ. Trace preservation implies that Rð�0Þ ¼ 0. If
the Markov process has a unique stationary state � such

that hh�jeLt ¼ hh�j, then the first Jordan block is one-
dimensional, d0 ¼ 1, and the gap � ¼ �Rð�1Þ is
strictly positive [15,16]. Asymptotically, the system con-

verges to this unique stationary state limt!1eLt ¼
Sdiagð1; 0; . . . ; 0ÞS�1 ¼ jIiihh�j. The gap � governs the
rate of convergence to equilibrium:

eLt � jIiihh�j ¼ S
M
j>0

e�jtMdjS
�1; (12)

whereMd is the d� dmatrix with 1’s on the diagonal and
1
k! on its kth upper diagonal. Because kMdk � e, we con-

clude that keLt � jIiihh�jk � kSk2e��tþ1 (note that we
can always choose S such that kSk ¼ kS�1k, which we
assume henceforth). Thus, the inverse gap of L sets the
relaxation rate, but the prefactor kSk2 can scale with the
system size in the case that S is ill-conditioned. Finding
conditions that make the conditioning number of S con-
stant for local L is an interesting question that we leave
open.

Clustering of correlations.—We now demonstrate that,
when the system has a relaxation time � that is independent
of the system size, the fixed state � exhibits clustering of
correlations in the sense that hOAOBi � hOAihOBi for
operators supported on regions dAB 	 v� apart. This
will occur for instance whenL is gapped and kSk constant.

Starting in any initial state �, the system reaches the
stationary state � in time t � ��1, so

Tr f½�� �ðtÞ�OAOBg � kOAkkOBkkSk2e��t: (13)

In particular, we can choose � to be a product state, i.e, one
without any correlations at all. To gain some intuition, we
shift to the Heisenberg picture, where we know that both
OAðtÞ and OBðtÞ grow in space at a speed v. Hence,
provided that regions A and B are separated by dAB *
v��1, the operatorsOAðtÞ andOBðtÞ will still be supported
on disjoint regions by the time the system equilibrates, so
Trf�OAðtÞOBðtÞg � Trf�OAðtÞgTrf�OBðtÞg for any product
state �.
The problem with this intuitive argument is that, due to

the failure of Leibniz’s rule, the operator ðOAOBÞðtÞ—
solution to the differential equation @

@t XðtÞ ¼ L½X� with
Xð0Þ ¼ OAOB—is not equal to OAðtÞOBðtÞ. The crucial
observation however is that Leibniz’s rule holds for any
operators OAðtÞ and OBðtÞ contained on regions separated
by at least the interaction range d�. In that case, we have
L½OAðtÞOBðtÞ� ¼ L½OAðtÞ�OBðtÞ þOAðtÞL½OBðtÞ�. Our
generalized Lieb-Robinson bound shows that OAðtÞ and
OBðtÞ remain inside their respective light cones, save for an
exponentially decaying tail, so the approximation
ðOAOBÞðtÞ � OAðtÞOBðtÞ is valid for short times.
Rigorously, consider the regionR that is the union of two

membranes of thickness 2d�, the first surrounding region A
at a distance dAB=2 from A, and the second surrounding
region B in a similar manner (see Fig. 1). We write the
Lindblad superoperator as the sum of two terms, the part
supported on R,LR ¼ P

X�RLX, and the restL\ �R ¼ L�
LR. Define Lð�Þ ¼ L\ �R þ �LR, such that Lð1Þ ¼ L
and Lð0Þ is the Lindblad superoperator obtained by turn-
ing off all terms supported on R. It is clear that the
evolution generated by Lð0Þ cannot correlate regions A
and B because any operators on those regions remain
confined inside the regions enclosed by the membrane.
Thus, for any initial state � in which the two regions
enclosed by the membranes are not correlated—such

as a product state—we have hh�jeLð0ÞtjOAOBii ¼
hh�jeLð0ÞtjOAiihh�jeLð0ÞtjOBii for allOA 2 BðH AÞ,OB 2
BðH BÞ, and all t.
Using the integral representation

eLt ¼ eLð0Þt þ
Z 1

0

Z t

0
eLð�Þðt��ÞLRe

Lð�Þ�d�d�; (14)

FIG. 1 (color online). The region R is the union of two
membranes surrounding regions A and B, respectively. If we
turn offL on R, the regions A and B are dynamically decoupled.
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we can express the time-t correlation hh�jeLtjOAOBii as
the sum of two terms. The first hh�jeLð0ÞtjOAOBii displays
no correlations as explained above. The second can be
bounded using the generalized Lieb-Robinson bound:��������

Z 1

0

Z t

0
hh�jeLð�Þðt��ÞLRe

Lð�Þ�jOAOBiid�d�
�������� (15)

�
Z t

0

Z 1

0
kLRe

Lð�Þ�jOAOBiikd�d� (16)

�
Z t

0
cVkLRkkOAkkOBk exp

�
�dAB � 2v�

2�

�
d� (17)

� cVkLRkkOAkkOBk �v exp

�
�dAB � 2vt

2�

�
; (18)

where V ¼ minfjAj þ jBj; jRjg and the other constants are
as in Eq. (1). For a D-dimensional regular lattice, kLRk �
cdD�1

AB , where c is a constant that depends on the micro-
scopic details of the model. In general, we will find
kLRk ¼ polyðdABÞ. Combining this bound with Eq. (13)
yields the desired result

hOAOBi � hOAihOBi (19)

¼ kOAkkOBkOðkSk2e��t þ cVkLRke�ðdAB�2vt=2�ÞÞ
(20)

� kOAkkOBkO
�� kSk2

VkLRk
�
�=	

e�ðdAB=2	Þ
�

(21)

with 	 ¼ v��1 þ �.
We note that some fairly loose bounds have been used

in this derivation and a tighter bound may be achievable.
In particular, we ignored the fact that some initial states
� reach equilibrium much more rapidly than others. We
could optimize this choice to improve the bound Eq. (13),
subject to the constraint that the two regions enclosed by
the membranes be initially uncorrelated. A natural guess
would be to choose the tensor product of the marginals of
� over the three regions delimited by the membrane. This
choice could perhaps compensate for an ill-conditioned S.
We note however that there appears to exist some local
gapped Markov model with long-range correlations [17].
Thus, the dependence of the correlations on kSk may be
unavoidable.

Conclusion.—The principle of relativistic causality is a
pillar of modern physics. The Lieb-Robinson bound shows
that the principle extends beyond relativistic quantum field
theory, to the setting of discrete quantum systems with a
Hamiltonian that is the sum of local pieces. Here, we have
generalized the Lieb-Robinson bound by considering a

broader family of dynamical systems, namely, local
Markovian quantum evolution, that include unitary quan-
tum evolution and classical stochastic evolution as special
cases. The proof of the Lieb-Robinson bound under these
conditions differs from the original one due to the break-
down of Leibniz’s rule and of the group properties of the
time-evolution operator.
We have used our generalized bound to demonstrate that

the correlations displayed in the fixed point of a Markov
process decay exponentially on a length scale set by the
system’s equilibration time and the Lieb-Robinson veloc-
ity. While the latter depends only on the microscopic de-
tails of the model, the former can in general scale with the
system size even when the generator of the Markov process
is gapped. Describing conditions under which the equili-
bration time is set by the gap of the generator remains an
interesting open question.
The idea of generalizing the Lieb-Robinson bound came

during discussions with Alioscia Hamma. I thank him and
Matt Hastings for useful conversations. This work is par-
tially funded by NSERC and FQRNT.
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