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A new class of self-consistent planar current sheets and cylindrical current filaments with a functional

freedom for the resultant spatial profiles is found analytically for collisionless plasma. Invariants of

particle motion are employed to obtain exact stationary solutions of Vlasov-Maxwell equations for

arbitrary energy distribution of particles. This method automatically takes into account complicated

particle motion in a self-consistent magnetic field, can be equally well applied to relativistic and

nonrelativistic plasma, and yields a much wider class of solutions as compared to models of the

Harris-Bennett type and their known generalizations. We discuss typical analytical solutions and general

properties of magnetostatic neutral structures: spatial scales, magnitudes of current and magnetic field,

degree of anisotropy of particle distributions, and possible equipartition of magnetic and particle energies.
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The structure and properties of self-sustained current
configurations and the corresponding magnetostatic fields
with scales less than the mean free path of particles are of
great interest in the physics of collisionless plasma [1–4].
The self-consistent current sheets and filaments are respon-
sible for various regular and turbulent large-scale pro-
cesses. Examples include the dynamics of current sheets
in the Earth magnetosphere and solar corona, the formation
of collisionless shocks, cosmic-ray acceleration, the evo-
lution of accretion disk-jet systems in astrophysics and
laser plasma jets in laboratory physics, and so on.
Explanation of many phenomena observed in collisionless
plasma, including synchrotron radiation, requires long-
living magnetic fields with energy density of the order of
particle energy density. Such fields are thought to be
supported by quasistationary self-consistent current
configurations.

In most cases the problem is complicated due to non-
thermal anisotropic particle distribution functions (PDFs),
that prevent the use of known solutions, such as planar
Harris and cylindrically symmetrical Bennett ones, based
on shifted Maxwellian distributions [5,6]. Until recently,
tangled particle trajectories in self-consistent magnetic
field did not allow us to find exact analytical solutions,
especially for non-Maxwellian PDFs. For a review of
theoretical achievements and subtle points of the problem,
see [4,7–12] and references therein.

In this Letter, we employ the method of invariants of
particle motion and find analytically a broad variety of
magnetostatic 1D and cylindrically symmetrical current
configurations with functional freedom for a choice of
particle energy distribution. The idea it to use a quite
general class of PDFs, which allows us to represent the
magnetostatic self-consistency equation as an explicit non-
linear equation for vector potential and to describe all types

of its solutions. This approach is as powerful as that of
Bernstein, Greene, and Kruskal [13,14], related to a scalar
potential and applied to nonlinear plasma oscillations.
Previous attempts to apply invariants of particle motion
to the magnetostatic problem in collisionless plasma have
not led to representative analytical results and cannot
clarify the general structure of self-consistent configura-
tions, because they were limited by the particular choice of
particle distributions without any functional freedom [4,7–
11].
We start with the basic nonlinear magnetostatic problem

and the method of invariants of particle motion in multi-
component collisionless plasma, then qualitatively analyze
possible classes of neutral current configurations, give
examples of typical exact analytical solutions, and describe
their physical properties.
Nonlinear magnetostatic problem and invariants of par-

ticle motion.—We consider stationary plasma configura-
tions in the case of perfect charge neutrality. The magnetic
field is assumed to lie in the x-y plane; we describe it by
vector potential A ¼ Azz0 ¼ Aðx; yÞz0. Translation invari-
ance along the z axis implies that for each particle the
z component of generalized momentum is strictly con-
served, together with the total momentum, p, which de-
fines the kinetic energy. We do not use an approximate
invariant of the magnetic moment. So, we can consider the
PDF as a function of two integrals of motion:

Fjðr;pÞ ¼ F̂jðp; pz þ ejAðx; yÞ=cÞ: (1)

It satisfies the collisionless Vlasov equation [1,3,12]

p@Fj=@rþ ejc
�1½p� B�@Fj=@p ¼ 0 (2)

for arbitrary F̂j and arbitrary B ¼ r�A. Then, Maxwell

equations are reduced to one nontrivial equation
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�xyA ¼ � 4�

c

X
j

ej
Z

F̂jðp; pz þ ejA=cÞ pz

mj�j

d3p; (3)

where �xy ¼ @2=@x2 þ @2=@y2, ej, mj, and �j ¼
ð1þ p2=m2

jc
2Þ1=2 are the charge, mass, and Lorentz factor

of the particles of species j. The sum in the right side of (3),
that is the current density jz, is a function of A, which can
conveniently be represented via a ‘‘potential’’:

�xyA ¼ �dU=dA: (4)

The latter is an equation of the Grad-Shafranov type [15],
widely used in MHD. The shape of the potential UðAÞ is
related to the structure of PDFs F̂j. Gauge transformation

A ! Aþ const would lead to a trivial parallel shift in
UðAÞ, so we will assume some fixed gauge. We will not
discuss in detail the required condition of charge neutrality
(especially important if the sheet scale is less than the
Debye screening length) and a possible way to satisfy it.
The simplest general way is to consider current structures
where particles of, say, positive charge, are still or have
inverted momentum distribution as compared to that of
particles of negative charge.

An analytical expression of potential UðAÞ can be ob-
tained, for example, for a combination of polynomial and
exponential functions of pz þ ejA=c for each p (d � 0),

F̂ j ¼
Xd
i¼0

F̂jiðpÞ
�
pz þ ejA=c

mjc

�
i
exp

�
�j
pz þ ejA=c

mjc

�
; (5)

where the functions F̂jiðpÞ can be arbitrary, provided that

F̂j remains non-negative for every p and jpzj< p, and �j
are constants. Straightforward integration yields

�xyA ¼ �8�2
X
j

ejmjce
�jaj

Xd
k¼0

akj
Xd
i¼k

ð��jÞk�i�2n!

k!ði� kÞ!

�
Z

F̂ji½�ði� kþ 2; bjÞ

� �ði� kþ 2;�bjÞ�pdp�j

; (6)

where aj ¼ ejA=ðmjc
2Þ, bj ¼ �jp=ðmjcÞ; � is the incom-

plete gamma function. The right side of (6) as a function of
A is a sum of polynomials multiplied by exponential
functions (cf. [4,7,8]). The same is true for the potential
UðAÞ, which can be obtained by integration of the right-
hand side of (6). In the purely polynomial case, �j ¼ 0, we

have

U ¼ X
j

Xd
i¼0

Z 8�2F̂jiðpÞp½gjiðpÞ � gjið�pÞ�dp
mj�jðiþ 1Þðiþ 2Þðiþ 3Þ þ const;

(7)

where gjiðpÞ ¼ ðejA=c� pÞiþ2½ðiþ 2Þpþ ejA=c�. Po-

tential (7) is a polynomial in A of order d.

Explicit integration of the right-hand side of (3) can be
carried out for negative or even noninteger i in the decom-
position (5), giving rise to other profiles UðAÞ and, hence,
different classes of current sheets and filaments, which will
be described in a separate paper. In these cases the argu-
ment pz þ ejA=c of the PDF (5) must be positive, implying

a lower bound on the domain of the value of vector
potential where UðAÞ is defined: jAj> jAjmin ¼
pmaxc=jejj. This bound is determined by the maximal

momentum of particles in the self-consistent structure.
Qualitative description of solutions.—In the 1D case

(@A=@y � 0) Eq. (4) is equivalent to an equation of clas-
sical nonlinear oscillator (with the x coordinate playing the
role of time). If �j ¼ 0 and positive powers i are used

(including noninteger), the movement of this oscillator
must be finite, otherwise the particle density would go to
infinity together with A. This leaves three possibilities.
(i) Periodic dependence AðxÞ, i.e., periodic (but not

necessarily harmonic) magnetic field BðxÞ, which is di-
rected along y axis and has zero mean value.
(ii) Monotonic dependence AðxÞ, where both values

Aðx ! �1Þ and Aðx ! þ1Þ correspond to maxima of
potential UðAÞ of the same height. The magnetic field in
this case does not change its direction; it is localized
between two oppositely directed current sheets and van-
ishes at x ! �1, so the net current is zero and the integral
of magnetic energy density over coordinate x is finite.
(iii) Symmetric dependence AðxÞ ¼ Að2x0 � xÞ, where

the value Aðx ! �1Þ ¼ Aðx ! þ1Þ corresponds to a
local maximum of UðAÞ, and x0 is the turning point with
UðAðx0ÞÞ ¼ UðAðx ! �1ÞÞ. The magnetic field is anti-
symmetric and changes its direction exactly once, at x ¼
x0, corresponding to a symmetric current sheet centered
around that point. In such a sheet the central part is
surrounded by at least two countersheets, so there is no
net current and magnetic field B ! 0 at x ! �1, as in the
case (ii) (exponentially, except for special cases).
If we allow negative powers i (integer or not) in (5) or

retain the exponential factors, �j � 0, the solution AðxÞ can
be unbounded and current sheets with nonzero total current
and finite magnetic field at infinity can be described. A
current sheet of this class is symmetric, and its magnetic
field reverses exactly once, at the plane of symmetry. In
this case, the current density jz can have the same sign
throughout the sheet and the particle densities of all species
can vanish at infinity. In particular, sheets with zero mag-
netic field at x ! �1 could correspond to potential pro-
files UðAÞ of case (iii) with a finite local maximum at
A ! þ1 or A ! �1.
We have found analogous classes of cylindrically sym-

metric solutions (neutral current filaments) with self-
consistent anisotropic PDFs and azimuthal magnetic field
both dependent on cylindrical coordinate �.
It should be noted that in localized solutions, where

current density vanishes as x (or �) goes to infinity, PDFs
do not, in general, become isotropic there. If at infinity the
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value of A approaches a constant, then the degree of PDF
anisotropy for each j also approaches a constant. If the
value of A goes to infinity, then the anisotropy can either
vanish [if only negative powers in (5) are present and �j ¼
0] or stay constant [if �j � 0, i.e., the exponential factors in

(5) are retained]. Changing the isotropic plasma compo-
nent (i ¼ 0, �j ¼ 0) in (5) does not affect the properties of

the described magnetostatic structures.
Typical solutions.—Let us show some self-consistent

current structures which are described universally within
a whole class of PDFs with arbitrary energy profiles.

We begin with planar structures, where the spatial de-

pendence is on coordinate x only. Let d ¼ 4, �j ¼ 0, F̂j1 �
0, F̂j3 � 0; then the Grad-Shafranov potential

U ¼ U0ðA2=A2
0 � A4=A4

0Þ (8)

is defined by two positive parameters A2
0 and U0:

A2
0 ¼ S

�
�5

X
j

Z F̂j4ðpÞ
m5

jc
8
e4jp

4 dp

�j

��1
;

U0 ¼ 16�2

15c
A2
0S;

(9)

S ¼ X
j

Z ½5F̂j2ðpÞm2
jc

2 þ 6F̂j4ðpÞp2�
m5

jc
5

e2jp
4 dp

�j

: (10)

In this case 1D-localized solution of Eq. (4) is

AðxÞ ¼ ðA0=
ffiffiffi
2

p Þ tanh½ð ffiffiffiffiffiffi
U0

p
=A0Þx�: (11)

It is a pair of oppositely directed current sheets with
magnetic field localized between them [see Fig. 1(a)].
The field exponentially vanishes away from the sheets,
while particle density approaches constant. So, far away
from the structure the plasma is uniform and unmagne-
tized, although anisotropy does not vanish, leaving a room
for anisotropy-driven Weibel instability. The stability for
perturbations with k?z, E k z can be checked based on a
condition similar to one obtained in [12], which gives the
inequality A2

0 > 0, already assumed. The corresponding

condition for orthogonal perturbations with k k z, E?z is

X
j

Z ½5F̂j2ðpÞ þ 8F̂j4ðpÞp2�
mjc

e2jp
4 dp

�j

< 0: (12)

Taking the Grad-Shafranov potential (8) with U0 < 0,
we come to another 1D-localized solution of Eq. (4)

A ¼ ðA0=
ffiffiffi
2

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2½ð ffiffiffiffiffiffiffiffiffiffiffi�U0

p
=A0Þx�

q
; (13)

which describes a current sheet surrounded by two sheets
of oppositely directed current, so the net current is zero
[see Fig. 1(b)]. It can be shown that perturbations with
k k z, E?z are Weibel stable far away from the sheet if

X
j

Z ½5F̂j2ðpÞ þ 2F̂j4ðpÞp2�
mjc

e2jp
4 dp

�j

> 0; (14)

and the orthogonal perturbations with k?z, E k z do not
exhibit instability, since their stability condition coincides
with the inequality A2

0 > 0. The above mentioned stability

conditions for both solutions (11) and (13) can be satisfied

for a specific range of functions F̂j2 and F̂j4. As for the

comprehensive stability analysis of these and other self-
consistent structures, it could hardly be done analytically,
and is beyond the scope of this Letter.
Keeping in (5) only the exponential factor, i.e., for d ¼

0, �j � 0, we come to generalized Harris current structures

with arbitrary energy distribution functions

F̂ jðp; pz þ ejA=cÞ ¼ F̂j0ðpÞ exp½ðcpz=ej þ AÞ=A0j�:
(15)

Here A0j ¼ mjc
2=ej�j; below they all are assumed equal,

A0j ¼ A0 > 0. Anisotropy of this distribution is the same

throughout the structure, unlike the cases with d � 0, and
the Grad-Shafranov equation takes the form

�xyA ¼ �� expðA=A0Þ; (16)

� ¼ X
j

8�2e3jA
2
0

mjc
3

Z ��
cp

ejA0

� 1

�
exp

�
cp

ejA0

�

þ
�
cp

ejA0

þ 1

�
exp

�
� cp

ejA0

��
p

�j

F̂jðpÞdp: (17)

It has the following planar solution of the Harris type:

A ¼ �2A0 ln cosh�x; By ¼ 2A0� tanh�x;

Nj=Njmax ¼ cosh�2�x; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2A0

q
;

(18)

see Fig. 1(c). To obtain the classical (Maxwellian) Harris
sheet from (15)–(18), one needs only to consider the non-

relativistic case and set F̂j0ðpÞ / expð�p2=constÞ [4,5].
Equation (16) has very simple cylindrical solution as

well (generalized Bennett pinch) (cf. [6])

a x

x

x
b

c

FIG. 1. Profiles of magnetic field By (thick solid line), current
density jz ¼ �ðc=4�ÞdBy=dx (dashed line), and vector potential

A (thin solid line) for solutions (11), (13), and (18).
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A¼�2A0 ln½1þð��=2Þ2�; B¼ A0�
2�

1þð��=2Þ2 ;

Nj=Njmax¼½1þð��=2Þ2��2; �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2A0

q
:

(19)

Here the current is mostly localized within a cylinder of
radius 2��1; magnetic field reaches its peak of Bmax ¼
�A0 at this radius, and B � 4A0=� at � � 2��1. Particle
density far away from the filament decreases as Nj / ��4,

unlike the exponential decrease in the planar case (18).
For d ¼ 2, �j ¼ 0 the Grad-Shafranov equation be-

comes linear (we assume for simplicity that F̂j1 � 0, and

also F̂j0 � 0, as the latter does not affect the solution):

�xyAþk2A¼0; k2¼X
j

32�2e2j

3m3
jc

4

Z
p4F̂j2ðpÞdp�j

: (20)

Its solutions include two-dimensional structures described
by sums of spatially harmonic components

A ¼ X
l

Al cosðkx cos�l þ ky sin�l þ ’lÞ; (21)

where Al, �l, and ’l are arbitrary constants. A necessary
condition for Weibel stability is that gyrofrequency of an
essential fraction of the particles is greater than or of the
order of the plasma frequency in every region with scale
greater than k�1; i.e., the magnetic field is quite strong.
Indeed, analysis shows that even for one harmonic compo-
nent in the solution (21) the ratio, "B, of average magnetic
field and average particle energy densities can be up to 1=3
(or, up to 2=3 in the nonrelativistic case, when particle rest
energy is not taken into account).

In particular, in the cylindrically symmetrical solution
with radial dependence described by the Bessel function,

A ¼ AmaxJ0ðk�Þ; (22)

the above mentioned condition is satisfied only up to a
certain radius �f, since the magnetic field oscillations

decrease as ��1=2 and "B 	 1 for � � �f. Formally, the

latter region cannot be separated from the solution (22)
[without taking into account higher order terms i > 2 in
(7)]. However, only the region � & �f, where the particles

are magnetized, is of interest as a specific structural ele-
ment in collisionless self-magnetized plasma.

One of the simplest examples of such a structural ele-
ment may be constructed in the case d ¼ 3 (and �j ¼ 0),

when the Grad-Shafranov potential has the form

U ¼ U0ðA3=A3
0 � A2=A2

0Þ; (23)

where A0 and U0 are calculated according to (7). Then,
Eq. (4) gives self-consistent exponentially localized struc-
tures, qualitatively similar in 1D and cylindrically sym-
metrical cases. The latter is too complex for analytic
presentation, so we present here only the planar solution:

A ¼ A0cosh
�2½ðU0=2A

2
0Þ1=2x�: (24)

As in the case of (13), the total current in this sheet (and
in corresponding filament) is zero, the spatial scale can be
either less than or greater than the typical gyroradius of
particles, the degree of anisotropy is less than or of the
order of 2, and the particle energy within the current-
carrying region is greater than or of the order of the
magnetic field energy.
Conclusions.—We analytically find a new broad class of

neutral current configurations in collisionless multicompo-
nent plasma, relativistic or not. It allows for a functional
freedom to choose PDFs and spatial profiles of correspond-
ing magnetic field, greatly overcovering the majority of
known results (see, e.g., [4–11]). We describe their general
properties and obtain a number of new planar, and cylin-
drical magnetostatic structures (localized and delocalized),
which are self-consistent with inhomogeneous anisotropic
particle distributions with essentially arbitrary energy pro-
files. Such solutions are valuable for analysis of physical
properties of current sheets and filaments, including their
synchrotron radiation, the current localization and value,
the degree of anisotropy of particle distribution, and pos-
sible equipartition of particle and magnetic energy den-
sities. In particular, the results may be applied to the
problem of long-living magnetic field in collisionless
plasma for various dynamical structures, e.g., shocks,
winds, jets, and accretion disks.
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