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Using ‘‘first principles’’ molecular dynamics simulations Kelvin Helmholtz instability has been

observed for the first time at the particle level in two-dimensional strongly coupled Yukawa liquids. At

a given coupling strength � a subsonic shear profile is superposed on an equilibrated Yukawa liquid and

instability is observed. Linear growth rates computed directly from MD simulations are seen to increase

with strong coupling. Vortex-roll formation in the nonlinear regime is reported.
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A wide variety of physical systems such as complex
plasmas, charged colloidal suspensions, and astrophysical
white dwarf interiors exist in a state of strong coupling
wherein the average potential energy per particle domi-
nates the average kinetic energy [1,2]. It was discovered
some years ago that complex plasmas can exist in ‘‘liquid’’
and ‘‘crystalline phases’’ [3–5]. Following this, various
authors [6,7] have explored phase transition phenomena
using molecular dynamics (MD) simulations. Complex
plasmas can behave as essentially single phase systems
when the interactions between dust grains dominate over
interactions with the background medium [8]. Thus they
offer a perfect test bed for numerous flow related studies
[9,10]. Some of earliest flow studies were done by
D’Angelo [11] who investigated the effect of static charged
grains on the stability of magnetized plasma flow. Recently
Birk [12] andWiechen [13] used the conventional two fluid
model and investigated the stabilizing effect of dust mass
and charge on Kelvin Helmholtz (KH) dust modes. As is
well known, for strongly coupled liquids, kinetic theories,
let alone their conventional hydrodynamic derivatives suf-
fer from convergence and closure problems [14,15]. To
overcome these issues, memory dependent viscoelastic
models [16] have been proposed which attempts to de-
scribe strongly coupled Yukawa liquids. However, the
validity of these models across a wide range of screening
parameter and coupling strength is still an open problem
[17,18]. Hence in order to correctly describe these systems
it becomes imperative to invoke ‘‘first principles’’ MD
simulations which amounts to numerically solving the
N-body problem ‘‘exactly.’’ In the past, MD simulations
on short ranged Lennard-Jones systems have been carried
out to obtain crucial insights into the onset, growth, non-
linear saturation, and transition to turbulence in Rayleigh-
Taylor [19] and Rayleigh-Bennard [20] instabilities.

In this Letter we present one such study of KH instability
in a two-dimensional (2D) strongly coupled Yukawa liquid
for a step shear profile. For this purpose we use a Yukawa
potential given by �ðrÞ ¼ ½Q2=ð4��0rÞ� expð�r=�DÞ.
Such Yukawa liquids can be fully characterized by two
dimensionless parameters: (i) the coupling parameter

� ¼ Q2=ð4��0akBTÞ, where Q is the charge of the parti-
cles, a is the Wigner-Seitz radius, and (ii) the screen-
ing parameter � ¼ a=�D. �D is the Debye radius of the
background plasma. We use normalized units throughout
this Letter. The length, time, and energy are normalized to

a, !�1
pd and Q2=ð4��0aÞ, respectively, where !pd¼

½Q2n=ð2�0maÞ�1=2, n and m are the areal number density
and mass of particles, respectively. For a given step shear
profile and coupling parameter ranging from � ¼ 1 (weak
coupling) to � ¼ 100 (strong coupling), we obtain linear
growth rates directly from MD simulations and observe
nonlinear saturation and vortex-roll formation. It should be
noted that for an undriven (flowless) Yukawa system crys-
tallization occurs around � � 140 at � ¼ 0:5 [21].
MD simulations.—We have performed large scale MD

simulations on a 2D system of 2:5� 105 particles interact-
ing via Yukawa potential. Periodic boundary conditions are
employed along x̂ and ŷ. The number density of system n is
0.61, which gives us a square region of size L ¼ 640. The
value of screening parameter � in all our simulations is 0.5.
The initial state is prepared by first connecting the system

FIG. 1 (color). PCF vs r. Higher values of � show stronger
coupling.

PRL 104, 215003 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
28 MAY 2010

0031-9007=10=104(21)=215003(4) 215003-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.215003


to a Gaussian thermostat [22] and letting it evolve canoni-
cally for 250!�1

pd . After this we remove the thermostat and

let the system evolve for another 250!�1
pd microcanonically

at the end of which it attains a thermal equilibrium corre-
sponding to the desired �. A leapfrog integrator with a time
step �t ¼ 0:01 is used such that the fluctuation in total
energy without the thermostat is <10�3% over an interval
of 1000!�1

pd .

Basic features of strong coupling.—In Fig. 1 we show
the pair correlation function (PCF) gðrÞ obtained by MD
simulations, which contains strong coupling information of
the system. At higher values of coupling parameter, am-
plitude of the peaks increase clearly indicating stronger
coupling. The hydrodynamical limit of the problem corre-
sponds to � ! 1, i.e., no peaks at all in gðrÞ.

Kelvin Helmholtz instability.—A shear flow U is then
superposed on particle velocities along x̂ which has the
following form:

U ¼
�þU0½1þ�cosðkxxÞ�; jyj � L=4;
�U0½1þ�cosðkxxÞ�; jyj< L=4;

(1)

where x, y are the components of the position vector of any
particle, L is the size of the system centered at the origin
(0; 0), and U0 is the magnitude of the shear velocity. In our
normalized units U0 ¼ 1, amplitude of perturbation � is
0.1 and kx ¼ 2�mn=L, where mn is the mode number of
perturbation. The sound speed computed for our system for
the entire range of � varies between 1.5 to 1.6. Hence the
flow speedU0 is subsonic and our shear flow studies can be
thought of as ‘‘incompressible’’ in nature. To understand
the growth characteristic of a particular mode mn we study
the time evolution of the perturbed kinetic energy along ŷ
normalized to its initial value:

j�E2
kinj ¼

RRðvyðtÞ2 �vyð0Þ2ÞdxdyRR
vyð0Þ2dxdy

: (2)

Figure 2 shows the growth of this perturbed kinetic energy
formn ¼ 4 for an initial state � ¼ 25 on a log-linear scale.
It is clear from Fig. 2 that the logarithm of the perturbed
kinetic energy grows linearly in time leading to nonlinear
saturation at late times. The dashed line shows a linear fit to
this linear growth regime. In Fig. 3, we show the time
evolution of x̂ independent flow velocity defined by

�vxðyÞ ¼ ½1=L�RL=2
�L=2 vxdx. At t ¼ 20, �vxðyÞ has close to

a double step profile. We then see a subsequent flattening
of the step shear profile with time.
Comparison with hydrodynamics.—Analytic solution

for the viscous growth rate in KH instability for a step

FIG. 2 (color online). Time evolution of perturbed kinetic
energy along ŷ [Eq. (2)] on a log-linear scale for mn ¼ 4 and
� ¼ 25. The dashed line shows a fit to the initial linear growth
regime.

FIG. 3 (color). Time evolution of x̂ independent velocity shear
profile. System size L ¼ 640.

FIG. 4 (color). Growth rate spectra of KH instability cal-
culated from MD. Each point on a given curve is obtained
from the slope of the straight line fit to linear growth of perturbed
kinetic energy. For comparison, the growth rates calculated from
hydrodynamics (HD) [see Eq. (3)] at RE ¼ 1 is shown as the
dashed line. Viscous stabilization is clearly seen at higher modes
for all �.
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shear profile is well known in hydrodynamics [23]. In our
notation it reads as

� ¼ kxU0

3

� ffiffiffi
3

p � 2
kx
RE

� 2

��
kx
RE

�
2 þ 2

ffiffiffi
3

p kx
RE

�
1=2

�
; (3)

where kx is the dimensionless wave number and U0 is the
dimensionless shear velocity. The Reynolds number RE is
defined as RE ¼ U0dn=�, where d is the shearing length
scale and � is the shear viscosity. Using equilibrium MD
simulations [24] we calculate � for our system and find it
to vary between 0.7 at � ¼ 1 to 0.9 at � ¼ 100 with a
minimum (� � 0:2) close to � � 30. Our results for � are
qualitatively similar to earlier works [25] (although with a
different density n). Since the shearing length scale d is of
the order of the interparticle distance, i.e., 1 and n ¼ 0:61,
the conventional Reynolds number for our problem is
RE � 1. In Fig. 4 growth rates � (normalized to !pd)

calculated directly from MD are plotted as a function of
mn for various values of initial �. For comparison the
hydrodynamic growth rates calculated from Eq. (3) at
RE ¼ 1 is shown as the dashed line. As can be expected,
we observe viscous stabilization at higher modes for all �.
From Fig. 4 it is clearly seen that growth rates at higher
modes are much higher than those predicted by Eq. (3). We
believe this is due to the presence of strong correla-
tion effects which manifest themselves in not only viscos-
ity, but also long range order (oscillations in PCF as seen in
Fig. 1) and hence deviations from viscous hydrodynamics

[Eq. (3)] can be expected. We also see that the maximum
growth rates tend to saturate as � increases towards the
solid regime. It will be interesting to study KH instability
close to and across the liquid-solid regime (� � 140) but is
beyond the scope of present work. It is interesting to note
that at the weakest coupling studied, i.e., � ¼ 1, MD
growth rates are very small (�10�3). This happens because
the ratio U0=vth � 0:71< 1. It should be noted that while

U0 is ‘‘streaming’’ in nature, the thermal velocity vth ¼ffiffiffiffiffiffiffiffiffi
2=�

p
is ‘‘random.’’ For growth rates to become significant

U0=vth should be>1. It is clearly seen from Fig. 4 that the
strong coupling effects increase the instability growth
rates. (It should be noted that a single run of time interval
1000!�1

pd takes about 28 h on a 32 CPU parallel Linux

cluster making it computationally expensive and Fig. 4
shows the linear growth rates computed from 70 such
runs.) The development of KH instability leads to the
formation of vortices which eventually leads to turbulent
mixing of Yukawa liquid. Figure 5. shows the instanta-
neous snapshots of the particle coordinates to illustrate the
formation of vortices. The particles are colored according
to the initial shear velocity imposed on them [Eq. (1)]. A
particle at time t ¼ 0 (when the shear is imposed) is
colored blue if jyj � L=4, else colored green. A given
mode mn ¼ 4 is excited for four values of � ¼ 1, 5, 25,
75 and instantaneous snapshots at three different times are
taken for each �. One can easily notice that for higher
values of �, the KH rolls at any given time are clearer and

FIG. 5 (color). Blue colored fluid moves in the þx̂ and green colored moves in �x̂. The snapshots are shown for the full system
(� L=2, �L=2) at times t ¼ 140, 180, 220 for four different values of � namely � ¼ 1, 5, 25, 75 when a given mode (mn ¼ 4) is
excited. Horizontal and vertical rows show snapshots at constant t and �, respectively. At higher �’s, the mode structures are more
prominent. It is interesting to note that at the highest temperature � ¼ 1, mode structures are weak and look diffusive due to high
thermal agitation.
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more pronounced. It is interesting to note that for 1< �<
10 (U0=vth � 0:7� 2:3) the collective effects are seen
even at the particle level. In Fig. 6 we show the inverse
cascading of the mode mn ¼ 6 in a Yukawa liquid at � ¼
50. At t ¼ 140 the mode mn ¼ 6 (six rolls) appears which
collapses at t ¼ 300 before reemerging as mn ¼ 3 at t ¼
460. The snapshot at t ¼ 300 shows the transition of mn

from 6 ! 3. By t ¼ 620, one can see that the well-defined
mode structures are lost and the transition to turbulence is
qualitatively seen. Using typical experimental parameters
[10] m � 4� 10�13 kg, Q � 12 000e where e is elec-
tronic charge and a ¼ 0:4 mm we get !pd � 50 s�1. A

typical growth rate in our study � ¼ 0:02!pd corresponds

to approximately 1 s�1 in physical units and hence should
be observable in laboratory experiments.

Summary.—We have observed Kelvin Helmholtz insta-
bility in strongly coupled Yukawa liquids at the particle
level for the first time. A double step velocity shear profile
is used to study this instability. The linear growth rates (�)
are directly computed from MD simulations and vortex-
roll formation in the nonlinear regime is reported. The
most interesting feature we notice here is the increase of
instability growth rate with strong coupling. We also ob-
serve inverse cascading of the modes in time. Several open
questions can be addressed in the context of the present
work such as study of random perturbation (multiplemn’s),

comparison to viscoelastic hydrodynamics [16], shock
propagation (supersonic U0), detailed study of transition
to turbulence, instability across liquid-solid regime (� �
140), and study of flows with resonantly unstable modes
[26], to name a few.
The work was carried out using the parallel code multi-

potential molecular dynamics (MPMD) [7] developed by the
authors at Institute for Plasma Research-Gandhinagar and
run on Quad core Intel Linux cluster.
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FIG. 6 (color). Inverse cascading of mode mn ¼ 6 starting
from an initial state of � ¼ 50. At t ¼ 140, mn ¼ 6 appears
eventually becoming mn ¼ 3 at t ¼ 460. Snapshot at t ¼ 300
shows an intermediate state when the initial mode mn ¼ 6 has
already collapsed. Finally at t ¼ 620, the definite features of
mode structures are lost and the turbulent behavior of the liquid
is qualitatively seen.
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