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We periodically modulate a turbulent wind-tunnel flow with an active grid. We find a resonant

enhancement of the mean turbulent dissipation rate at a modulation frequency which equals the large-

eddy turnover rate. Thus, we find the best frequency to inject energy into a turbulent flow. The resonant

response is characterized by the emergence of vortical structures in the flow and depends on the spatial

mode of the stirring grid.
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Many turbulent flows are subject to periodic modulation.
Examples include the flow in an internal combustion en-
gine, the pulsatile blood flow through arteries, and geo-
physical flows driven by periodic tides. When the
modulation is slow, the turbulence will adjust adiabati-
cally; but when the modulation period comes close to an
internal time scale of the flow, the turbulence may resonate
with the modulation. Such a time scale may be the large-
eddy turnover time, or [1] the time needed for the injected
energy to cascade down to scales where viscosity reigns.
The possibility of a resonance is intriguing, as one may
object that turbulence does not have a single dominant time
scale, but a continuum of strongly fluctuating times.

Evidence for such a resonant response of turbulence
came from simple turbulence models and from direct
numerical simulations [1–5]. The turbulence response in
these studies, which have inspired the present Letter, was
quantified by a shoulder at modulation frequency fm, fm ¼
fr in the response curve, after which the response decays as
f�1
m . The resonance frequency fr was close to the large-

eddy turnover rate. In all these studies, the response was
quantified through a conditional average at the driving
frequency. This is similar to, but not the same as, the
spectral energy of a quantity at the driving frequency,
which would have demanded prohibitively long-
integration times.

Experimental evidence for a response maximum of tur-
bulence was found in the turbulent flow between two
counterrotating disks whose rotation rate was varied har-
monically [6]. This closed flow allowed a direct measure-
ment of the global energy input rate �, but information
about the flow field is quite limited. In these experiment,
the behavior of the frequency-selective response was iden-
tified as a resonance effect, but the influence on the global
energy injection rate was a mere 2.5%.

In this Letter we present the results of an experiment in
which turbulence in a wind tunnel is modulated with an
active grid which allows us to modulate the flow in space
and time. We will, in particular, be interested in the mean
rate of energy dissipation �. This contrasts the response of
the flow at the driving frequency, to which numerical
studies were limited [1–5]. The dependence of � on the

stirring frequency is important for the practical question
what the preferred frequency is with which to stir turbu-
lence in order to optimize the energy input.
Active grids, such as the one used in our experiment,

were pioneered by Makita [7] and consist of a grid of rods
with attached vanes that can be rotated by servo motors.
The properties of actively stirred turbulence were further
investigated by Mydlarski and Warhaft [8] and Poorte and
Biesheuvel [9]. Active grids offer the exciting possibility to
tailor turbulence properties by a judicious choice of the
space-time stirring protocol [10].
Our grid has mesh size 0.1 m and consists of 17 axes

whose instantaneous angles �iðtÞ; i ¼ 1; . . . ; 17 are set to
�iðtÞ ¼ �fmi

tþ ’i, fmi
¼ �fm, where fm is the modula-

tion frequency and where the phases ’i, i ¼ 1; . . . ; 17 and
the sign of fmi

determine the spatial pattern of the time-

periodic grid. The control of the angles is such that all �iðtÞ
are prescribed precisely and remain perfectly synchronous
over the used integration times (many hours). In turbulence
stirred by static grids, the grid transparency is a key pa-
rameter, for example, the classic work by Comte-Bellot
and Corrsin concluded that the anisotropy of the velocity
fluctuations was smallest for grid transparency S ¼ 0:66
[11]. Therefore we will characterize the grid state by the
time-dependent grid transparency SðtÞ which follows from
the angles �iðtÞ.
The active grid is placed in the 8 m long experimental

section of a recirculating wind tunnel. Turbulent velocity
fluctuations are monitored at a distanceD ¼ 4:62 m down-
stream from the grid using an array of hot-wire anemom-
eters. In the coordinate system where the x axis points in
the direction of the mean flow and where the y axis is
parallel to the long side of the wind-tunnel cross section
(Fig. 1), the turbulent velocity field is represented by the
measured x component of the velocity uðyi; tÞ at 10 differ-
ent y positions, yi, i ¼ 1; . . . ; 10.
Each of the locally manufactured hot wires had a sensi-

tive length of 200 �m, which is comparable to the smallest
length scale of the flow (the measured Kolmogorov scale is
� ¼ 190 �m). They were operated at constant tempera-
ture using computer controlled anemometers that were also
developed locally. Each experiment was preceded by a
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calibration procedure in which the voltage to air velocity
conversion for each wire was measured using a calibrated
nozzle. The resulting 10 calibration tables were updated
regularly during the run to allow for a (small) temperature
increase of the air in the wind tunnel. The signals of the
sensors were sampled exactly simultaneously at 20 kHz,
after being low-pass filtered at 10 kHz. At each modulation
frequency, time series were acquired that typically con-
tained 2� 106 integral scales. Simultaneous with the wind
velocity data, the angles of the grid were registered so that
the correlation between the grid and the turbulence could
be computed. The typical mean velocity in our experiments
isU ¼ 9 ms�1, the fluctuating velocity u ¼ 1 ms�1, while
a typical Reynolds number Re� ¼ 500 resulted in fairly
sized inertial range.

Our active grid can be used to impose a large variety of
patterns, but they are subject to the constraint that a single
axis drives an entire column of vanes. In Fig. 1 we show the
snapshots of a time-periodic grid spatial mode that pro-
duced the results described in this Letter. The phase-
sensitive average of the turbulent velocity shown in
Fig. 1(c) demonstrates that at very low modulation fre-
quencies, the wind follows approximately adiabatically,
while at large fm the turbulence can no longer follow the
modulation.

We quantify the response of the turbulent flow in several
ways. Most straightforwardly, we measure the time-
averaged energy dissipation rate � as a function of the
modulation frequency fm. As the small-scale dissipation
rate equals the energy input per unit of mass and time,
measuring its modulation frequency dependence can an-
swer the question whether there is an optimum frequency
to stir the flow. Next, we will study time-dependent quan-
tities at the modulation frequency. For studying the corre-
lation between the fluctuations of � and the state of the
grid, we are interested in the time dependence of �ðtÞ on the
time scale of the modulation, which is 2 orders of magni-
tude slower than the turbulence time scales that contribute
most to �. Assuming isotropy, the (pseudo-) energy dis-
sipation rate �ðtÞ was inferred from a single derivative,
�ðtÞ ¼ 15�hð@u=@xÞ2iy, with � the kinematic viscosity of

air and where a spatial average was done over the extent in
y of the probe array. Taylor’s frozen turbulence hypothesis
was used to infer the spatial separation x from time delays
through x ¼ Ut, with U the mean velocity. Alternatively,
the mean energy dissipation rate h�it follows from the

measured energy spectrum, EðkÞ ¼ cK�
2=3��5=3, with the

Kolmogorov constant cK ¼ 0:53 [12].
More detailed information about the response of turbu-

lence can be obtained from the normalized correlation of
the grid state SðtÞ and the turbulent velocity uðtÞ, Cð	Þ ¼
hSðtþ 	ÞuðtÞi, normalized such that Cð	 ¼ 0Þ ¼ 1, and
Cð	 ! 1Þ ¼ 0. In numerical simulations, the modulation
and turbulent response spatially coincide. However, this is
not so in the experiments where a mean wind advects the
modulation. In our case this leads to a trivial convective
time delay 	c ¼ D=U. From the zero crossings 	0 of the
correlation function, the relative phase between the peri-
odic stirring and the turbulence can then be determined as

 ¼ 2�fmð	0 � 	cÞ.
A typical trace of �ðtÞwith the grid driven at f ¼ 4 Hz is

shown in Fig. 2, together with the periodic grid transpar-
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FIG. 1. (a) Snapshots of one period of a time-periodic grid
mode. This spatial mode is realized by a particular choice of the
initial grid phases ’. The grid fills the 0:7� 1:0 m2 cross section
of the wind tunnel. (b) One period of the transparency SðtÞ of the
grid, the dots correspond to the snapshots in (a). (c) Full line:
phase-averaged response at modulation frequency fm ¼ 1 Hz,
dashed line at fm ¼ 10 Hz. At the largest frequency the turbu-
lence can no longer follow the modulation.
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FIG. 2. (a) Trace of �ðtÞ with the grid driven at fm ¼ 4 Hz.
The dissipation rate �ðtÞ is low-pass filtered at 5� 102 Hz
(83�). (b) Grid transparency SðtÞ.
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ency. Although the periodic modulation can hardly be
traced in �ðtÞ, S and � are strongly correlated with Cð	Þ
having amplitude �0:3.

The frequency dependence of the mean dissipation rate
� is shown in Fig. 3(a). It shows a strongly resonant
response of the averaged dissipation rate which corre-
sponds to a 50% enhancement of the injected energy at
the reduced frequency fmTL ¼ 1:5, irrespective of the
turbulent intensity. In these experiments the large-eddy
turnover time TL ¼ L=u, where u is the turbulent velocity,
varies by a factor 5. The resonant response is accompanied
by a phase shift 
 � �=2 between the turbulent velocity
and the grid state S. The integral scale L was determined
from the spectrum EðfÞ as L ¼ UEaðf ¼ 0Þ=2u2. We find
that L ¼ 0:21� 0:02 m, independent of the modulation
frequency. The integral scale is approximately twice the
mesh size of the active grid.

The observation of this resonance with its companion
phase shift was anticipated by numerical simulations [4],
but the resonant enhancement that is measured here is
much stronger; it is also observed in an averaged quantity,
and not just in the response at the modulation frequency.

Let us now consider a measurement of the response in a
manner that resembles that used in numerical simulations
[1–5] and other experiments [6]. In Fig. 4 we show mea-
sured energy spectra Eðf; yiÞ at the location yi of the
velocity probes. All spectra display a well-developed iner-
tial range behavior that is the same for all yi. They are
marred by spikes at the modulation frequency and its
harmonics whose height decreases for increasing driving
frequency fm, but in a way that depends on y.

The frequency-selective response Rðfm; yiÞ is defined as
the ratio of the energy in these spikes and the total turbulent
energy u2 [see Fig. 4(c)]. The frequency dependence of the
spatial average Ra of Rðfm; yÞ, RaðfmÞ ¼ hRðfm; yÞiy, and

the spatial dependence of Rðfm; yÞ are shown in Figs. 3(b)
and 4(b), respectively. The response RaðfmÞ, both at the
driving frequency and its first harmonic, rapidly decreases
for frequencies beyond the large-eddy turnover frequency
T�1
L . Both numerical simulations [1–5] and other experi-

ments [6] find an amplitude response that decays with
frequency as 1=fm, for our definition this impliesRaðfmÞ �
f�2
m ; our results roughly follow this trend.
It must be realized that its time- and space depen-

dent transparency does not uniquely determine the motion
of an active grid. In fact, the sequence of patterns shown in
Fig. 1(a) can be realized with different rotation senses of
the axes. With the restraint that neighboring axes run in
opposite directions, there are 4 different ways to make
Fig. 1(a). Of these 4 possible modes, there is only one
that produces the resonances of Fig. 3. The other modes
have resonances that are much less pronounced, and occur
at lower frequencies.
The spatial dependence of the response Rðfm; yÞ in

Fig. 4 and the influence of the spatial structure of the
stirring grid suggest that the resonant enhancement of the
turbulence energy input proceeds through structures of
the velocity field. A map of the velocity field measured
in the x-y plane centered in thewind tunnel was made using
particle-image velocimetry (PIV). The (u, v) components
of the velocity field were obtained by measuring the dis-
placement of small particles between two subsequent im-
ages of the flow in a thin laser sheet. Both the flashes of the
laser and the acquisition of the images were synchronized
with the periodic motion of the grid.
The phase-averaged velocity fields are shown in Fig. 5 at

frequencies fm ¼ 1, 6 and 10 Hz. At the used mean veloc-
ity U ¼ 9 ms�1, the resonance would be at fm ¼ 6 Hz
(fmTL ¼ 1:5Þ. Indeed, at this frequency a marked vortical
structure is observed in Fig. 5(b), which spans approxi-
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FIG. 4. (a) Energy spectra Eðf; yiÞ at the probe positions yi,
i ¼ 1; . . . ; 10. The grid modulation frequency is fm ¼ 5 Hz, y ¼
0 refers to the center of the wind-tunnel cross section. (b) Spatial
dependence of the response Rðfm; yÞ at modulation frequencies
that straddle the resonance, open circles: fm ¼ 6:5 Hz, closed
dots: fm ¼ 4:5 Hz. (c) The response is defined as the ratio of the
energy in the peaks A at fm, and 2fm, divided by the total energy
Aþ B.
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FIG. 3. (a) Mean dissipation rate �, (b) Frequency-selective
response Ra as a function of the dimensionless modulation
frequency fmTL, with TL the large-eddy turnover time. The
dots, circles and squares correspond to mean velocities U ¼ 9,
6, and 4 ms�1, respectively. The � corresponding to U ¼ 6, and
4 ms�1 has been scaled such that the maximum coincides with
that at U ¼ 9 ms�1. At large dimensionless frequencies, the
dissipation rate approaches that of the open grid. Inset in (a):
relative phase 
 between the grid state SðtÞ and the turbulent
velocity uðtÞ. The mean velocity is U ¼ 9 ms�1. At resonance,
fm � 6 Hz (fmTL � 1:5Þ, the phase jumps by � �=2.
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mately the integral length scale. Although the space-time
resolution of particle-image velocimetry cannot rival that
of hot-wire probes, a crude estimate of � based on the
entire span of the velocity field shown in Fig. 5, agrees with
the results shown in Fig. 3(a).

In our experiment, the strong resonant enhancement of �
leaves the small-scale turbulent intermittency unaffected.
The probability density function (PDF) of velocity incre-
ments uðyþ dyÞ � uðyÞ, measured over a spatial separa-
tion dy, only depends on the phase of the oscillation at
large separations dy and small modulation frequencies fm,
while the cycle-averaged PDF at dy=� ¼ 4, does not
depend on fm. This is in contrast with [13], where a slowly
precessing vortex between two corotating disks was found
to influence the shape of the PDF at small scales, and thus
the turbulent cascade.

In conclusion, we have found a resonant enhancement of
turbulent dissipation in a time-periodically modulated
wind-tunnel flow. The details of the turbulence response
depend on the spatial structure of the stirrer. Modulation of
turbulence acts at low frequencies and large scales; the
small-scale structure responds only indirectly through
the energy dissipation rate. The filtering action of turbu-
lence, which is not well understood, prevents large
modulation frequencies from invading the inertial range.
This may explain the success of large-eddy compu-
tations for predicting these phenomena numerically [4].
Finding the optimal way to stir turbulence is of enor-
mous practical importance. The stirring frequency
should match the large-eddy turnover rate, but the ques-
tion remains how to design the optimal spatial stirring
pattern.
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FIG. 5 (color online). Phase-averaged velocity fields at 3 modulation frequencies, fm ¼ 1, 6, and 10 Hz for frames (a), (b) and (c),
respectively. The velocity components are indicated by arrows, the squared mean vorticity field h!zi2 ¼ h@v=@x� @u=@yi2 is
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measurement [14], and assuming isotropy, the dissipation rate can be estimated by � ¼ 15=4�h!2
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