
Entanglement Spectra of Quantum Heisenberg Ladders

Didier Poilblanc
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Bipartite entanglement measures are surprisingly useful tools to investigate quantum phases of corre-

lated electrons. Here, I analyze the entanglement spectrum of gapped two-leg quantum Heisenberg

ladders on a periodic ribbon partitioned into two identical periodic chains. The entanglement spectrum

closely reflects the low-energy gapless spectrum of each individual edge. This extends the conjecture

initially drawn for fractional quantum Hall systems to the field of quantum magnetism, stating a direct

correspondence between the low-energy entanglement spectrum of a partitioned system and the true

spectrum of the virtual edges. A mapping of the reduced density matrix to a thermodynamic density

matrix is also proposed via the introduction of an effective temperature.
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Introduction.—The recent application of quantum infor-
mation concepts to several domains of condensed matter
[1] has proven to be extremely successful, giving new types
of physical insights on exotic quantum phases. Upon par-
titioning a many-body quantum system into two parts A
and B, quantum entanglement can be characterized by the
properties of the ground state reduced density matrix of
either one of the two parts, �A or �B. For example, entan-
glement entropies such as the von Neumann entropy
�Trf�A ln�Ag or the family of Rényi entropies offer an
extraordinary tool to identify a one-dimensional conformal
invariant system [2] and provide, e.g., a direct (numerical)
calculation of its central charge [3].

Furthermore, the entanglement spectrum (ES) defined
by the eigenvalues of a fictitious Hamiltonian H , where
�A is written as expð�H Þ, has been shown to provide
much more complete information on the system. In one
dimension, underlying conformal field theory (CFT) leads
to universal scalings of the ES (Ref. [4]), and topological
properties of the ground state (GS) can be reflected by spe-
cific degeneracies [5]. By choosing a partition correspond-
ing to a very nonlocal real-space cut, the ES has also been
used to define nonlocal order in gapless spin chains [6].

Many-particle quantum entanglement is also a powerful
tool to characterize topological features of a two-
dimensional GS (Ref. [7]) as, e.g., in dimer liquids on a
cylinder geometry [8]. Also, bipartite ES have been shown
to provide valuable information on the edge states of frac-
tional quantum Hall states on spherical [9] and torus ge-
ometries [10] upon partition into two (identical)
subsystems. Interestingly, the ES of the incompressible
GS of a generic Landau-level-projected Coulomb
Hamiltonian arranges into a low-energy CFT spectrum
separated by an ‘‘entanglement gap’’ from the high-energy
levels, a fingerprint of topological order [9,11].

Such advanced insightful analysis of the ES has not,
however, been fully exploited in low-dimensional quantum
magnets. In particular, the conjecture by Haldane of a
precise correspondence between the entanglement spec-

trum and the true spectrum in reduced space, e.g., the
spectrum of the subsystem A, is of very high interest and
so far supported only by limited calculations on quantum
Hall systems. [9,10] Low-dimensional quantum magnets
offer a completely different class of many-body systems
where new aspects of this correspondence can be inves-
tigated, giving further insights on this fascinating scenario.
Model and system.—I consider here a two-leg ladder

made of two quantum Heisenberg spin-1=2 chains cou-
pled via a ‘‘rung’’ exchange coupling Jrung, as shown in

Fig. 1(a). Such a quantum magnetic ladder [12] offers an
attractive although still simple system with three nontrivial
phases, as shown in the phase diagram in Fig. 1(b), depend-
ing on the signs of the leg (i.e., within the chains) and rung
Heisenberg exchange couplings, parametrized as Jleg ¼
cos� and Jrung ¼ sin�, respectively. I shall not consider

here the case when both couplings are ferromagnetic lead-
ing to a trivial fully polarized ferromagnet (lower-left
quadrant). The physics of the other two phases (occupying
the three remaining quadrants) can be easily understood by
starting from the strong rung coupling limit, i.e., when
jJrungj � Jleg. When Jleg ¼ 0, spin singlets or triplets

FIG. 1 (color online). (a) Ribbon made of two coupled peri-
odic Heisenberg chains (two-leg ladder). The partition into two
identical A and B subsystems is made by cutting the rungs along
the dashed line. (b) Phase diagram of the two-leg ladder mapped
onto a circle assuming Jleg ¼ cos� and Jrung ¼ sin�.
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form on the rungs depending on whether the rung coupling
is antiferromagnetic (AFM) or ferromagnetic (FM). For an
AFM rung coupling Jrung > 0, upon turning on a leg cou-

pling of either sign, the product of rung singlets smoothly
evolves into a (gapped) ‘‘rung singlet’’ phase. For a FM
rung coupling Jrung < 0 and a small AFM leg coupling

Jleg > 0, the ladder system can be mapped onto an effective

gapped spin-1 chain [13] yielding an effective ‘‘Haldane
phase’’ [14,15]. Remarkably, such gapped phases remain
stable all the way to the weakly coupled chain regime. The
rung coupling is therefore a ‘‘relevant’’ perturbation. For
example, while the spectrum of the decoupled AFM chains
system is the tensor product of two gapless CFT invariant
spectra [16] of central charge c ¼ 1, any finite Jrung opens a

gap. Note also that the two rung singlet phases for AFM
and FM leg couplings labeled as (I) and (II) in Fig. 1(b) are
smoothly connected to each other. Extension to frustrated
interchain couplings is also considered [17].

The finite size two-leg ladder of Fig. 1(a) is topologi-
cally equivalent to a ribbon which can be partitioned into
two halves A and B preserving periodic boundary condi-
tions. This offers a simple convenient setup to investigate
the entanglement between the two chain subsystems as a
function of their coupling Jrung. I report below the entan-

glement entropies as well as entanglement spectra in the
two considered gapped phases, computed numerically on
2� 10, 2� 12, and 2� 14 clusters. It is shown that the ES
reflects the underlying CFT scaling behavior of the isolated
chains. This is remarkable, in particular, in the strong rung
coupling limit where the two subsystems are strongly
entangled producing a short spin correlation length. Note
that I am considering here a different setup than the one
used by Kallin et al. [18] to calculate entanglement en-
tropies on N-leg Heisenberg ladders.

Results.—Characterizing the entanglement between A
and B requires the knowledge of the reduced density
matrix �A of the A subsystem. After computing the GS
by Lanczos exact diagonalization on finite 2� L periodic
clusters, an explicit use of translation symmetry enables
one to express �A in a block-diagonal form, where each
block corresponds to an irreducible representation labeled
by one of the (allowed) total momentum K ¼ 2� p

L , p ¼
�L=2þ 1; . . . ; L=2. These blocks can then be diagonal-
ized (separately) to compute the von Neumann (VN) en-
tropy SVN ¼ �Trf�A ln�Ag or the family of Rényi
entropies [19] Sn ¼ 1

1�n lnTrfð�AÞng, n � 2. Note that

SVN can be considered as limn!1Sn � S1. Results for
SVN and S2 in the Haldane and rung singlet phases (for
Jleg > 0) are reported in Fig. 2. The single-copy entangle-

ment [20] obtained by taking the limit n ! 1 and given by
S1 ¼ � ln�0, where �0 is the largest eigenvalue of �A, is
also shown for comparison [21]. An inspection of the finite
size scaling of the data reveals that the leading term of all
entanglement entropies is proportional to the size L (cor-
responding to the length of the edge between A and B) as
expected from the area law. The data are therefore normal-

ized by L ln2, which is the maximum entanglement en-
tropy obtained for the product of independent rung singlets
(� ¼ �=2). The finite size corrections (details in supple-
mentary material [17]) are found to be very small. As also
expected, all Sn vanish in the limit of decoupled chains,
where the GS becomes a simple product state.
Interestingly, the behaviors of SVN and S2 are fairly similar,
showing the same linear (quadratic) behavior with Jleg �
�� in the strong rung coupling limit � ! ��=2 (� !
�=2). In contrast to SVN and S2, S1 behaves linearly
when � ! �=2, a behavior also seen in the quantum
fluctuation of the total spin SA of the A subsystem [22].
I now move to the ES, which contains more information,

defined as the spectrum f��g of the Hermitian operatorH
given by the relation �A ¼ expð�H Þ. The �� can then be
obtained from the weights �� of �A as �� ¼ � ln��.
Typical ES (measured from the GS energy �0) plotted as
a function of momentum K, for the three sizes, are shown
in Fig. 3, both in the rung singlet [(a) and (b)] and the
Haldane [(c) and (d)] phases. Note that the total spin SA ¼
S is also a good quantum number which can be assigned to
each level. It is remarkable that the low-energy excitations
are spin-triplet that accurately resemble the des Cloiseaux-
Pearson spectrum [23] of the quantum Heisenberg chain
(up to a multiplicative factor); in particular, two gapless
modes at K ¼ 0 and K ¼ � [24] are clearly visible. The
lowest singlet excitations close to K ¼ 0 and K ¼ � also
form towers of states as predicted for the Heisenberg chain
[25]. This suggests strongly that the ES bears the same low-
energy CFT structure. In that case, we expect, in particular,
the GS energy �0 to scale as
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FIG. 2 (color online). Various Sn entanglement entropies (n ¼
1 von Neumann SVN entropy; n ¼ 2 and n ¼ 1 Rényi entropies)
computed on 2� L ladders of length up to L ¼ 14, normalized
by L ln2 and plotted versus the angle �. Note that �0 ¼ S1 �
Sinf . Only the two right quadrants of Fig. 1(b) are considered. For
comparison, the fluctuation of SA (normalized by 3L=4) is also
plotted (stars). The corresponding ES are shown in Fig. 3 for the
values of � marked by arrows. Inset: Effective inverse tempera-
ture �� (see text).
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�0=L ¼ e0 þ d1=L
2 þOð1=L3Þ: (1)

Such a behavior is indeed found for strong AFM rung
couplings where L � lmag. Furthermore, the fit provides

a number in good agreement with the CFT prediction d1 ¼
�cv=6, where v is the velocity of the triplet mode of the
ES and the central charge c is set to 1. For example, for
� ¼ �=3, the fit gives d1 ’ 1:31, which compares well to
�cv=6 ’ 1:24 estimated from the data of Fig. 3(a). Note
that for smaller rung couplings at which L� lmag this

scaling law is no longer satisfied [17].
I finish the investigation of entanglement spectra by

considering the rung singlet (II) phase realized for a ferro-
magnetic leg coupling (Jleg < 0) and an AFM rung cou-

pling Jrung > 0 [upper left quadrant of the phase diagram in

Fig. 1(b)] and smoothly connected to the limit of de-

coupled rung singlets (� ¼ �=2, Jleg ¼ 0). The results

of the ES of 2� 10 and 2� 14 ladders are shown in
Figs. 4(a) and 4(b) for strong and weak rung couplings,
respectively. At low energies, the ES are shown to coincide
(up to an overall factor) with the spectrum of the ferro-
magnetic quantum Heisenberg chain, consisting of
m-magnon bound states (or solitons) [26] given by
EmðKÞ ¼ 2Jeffsin

2ðK=2Þ=m, where Jeff is an effective
chain coupling. On a finite cluster, such multimagnon
excitations are subject to the kinematic constraint K �
2�m=L, where L is the ladder length. Therefore, the
lower-bound energy ‘‘envelope’’ behaves as EminðKÞ �
4�
L Jeffsin

2ðK=2Þ=K up to small finite size corrections, as

shown in Fig. 4 [note EminðKÞ ! 0 for all K in the thermo-
dynamic limit].
All these results on quantum ladders support the con-

jecture of a deep correspondence between the ES and the
true spectrum of the (virtual) edges.
Effective temperature.—Finally, I suggest that the den-

sity matrix �A can be rewritten as a thermodynamic density
matrix by simply introducing an effective, model-parame-
ter-dependent, temperature scale T� (focusing on the Jleg >

0 case). Indeed, comparison of Figs. 3(a) and 3(b), on one
hand, and of Figs. 3(c) and 3(d), on the other hand, reveals
almost identical spectra after rescaling. This implies that
�A can be written as

�A ¼ 1

z�
expð���ĥÞ; (2)

where ĥ is a parameter-free (extensive) Hamiltonian, z� ¼
��1
0 , and �� ¼ T�1

� . Since, as shown in Fig. 3, the spec-

trum of ĥ has the same c ¼ 1 low-energy CFT structure as
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FIG. 3 (color online). Entanglement excitation spectra versus
total momenta K in the chain direction for four different values
of � (shown by arrows in Fig. 2) corresponding to the rung
singlet (I) phase (a),(b) and the Haldane phase (c),(d). All low-
energy excitations computed on 2� 10, 2� 12, and 2� 14
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-π/2 0 π/2 π
momentum K

0.5

1

1.5 L=10
L=14
S=0
S=1
S=2
S=3
S=4
S=5
S=6

-π/2 0 π/2 π
momentum K

2

4

ξ α−ξ
0

(f) θ=5π/6(e) θ=2π/3

rung singlet (II)
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the Heisenberg chain Hamiltonian, ĥ can be ‘‘normalized’’
by, e.g., fixing the velocity v of the triplet branch to be
vHeis ¼ �=2, the Heisenberg chain value. The effective
inverse temperature �� is simply adjusted to the actual
slope of the gapless (K ¼ 0) mode of the corresponding ES
and is reported in the inset in Fig. 2 as a function of �.
Apart from logarithmic corrections, the thermal (magnetic)
length is l1D � T�1

� (Ref. [27]), which, heuristically, can be

associated (up to a prefactor of order 1) to the ladder
correlation length lmag. Therefore, the behavior of �� in

the inset in Fig. 2 simply reflects the behavior of lmag with

�. In particular, in the strong AFM rung coupling regime
Jrung � Jleg, �� is linear in �� �=2, in agreement with

the numerical estimation of lmag, lmag / Jleg. More gener-

ally, within our normalization of ĥ, �� � lmag=2. Also, it is

interesting here to use the exact equivalence between the
entanglement VN entropy and the thermodynamic entropy
of the (effective) finite-T subsystem. In the regime of
weakly coupled chains, using the expression of the ther-
modynamic entropy of the Heisenberg AFM chain when
T� � 1, one predicts SVN=L� �T�=ð3vHeisÞ (assuming
again c ¼ 1), which agrees (within less than 15% differ-
ence) with the calculated VN entropy, giving further sup-

port that ĥ belongs to the same universality class as the
AFM Heisenberg chain (for Jleg > 0).

Concluding remarks.—In this Letter, I showed that the
ES of the (ground state) reduced density matrix of a two-
leg quantum ladder possesses remarkable universal fea-
tures one can associate to its two single Heisenberg chain
subsystems. This strongly supports a broader applicability
(beyond quantum Hall systems) of the conjecture by
Haldane establishing a deep correspondence between the
ground state ES of a many-body system made of two
entangled constituents with the true spectra of the virtual
edges. For example, although for AFM leg coupling the
two ground states of the quantum ladder at � > 0 and � < 0
belong to distinct topological sectors of the singlet spin
Hilbert space [15] characterized by different ‘‘string or-
ders,’’ it is remarkable that a similar c ¼ 1CFT low-energy
ES is found and that Eq. (2) applies to both cases.
Similarly, although the two rung singlet phases (I) and
(II) are smoothly connected, they exhibit completely dif-
ferent low-energy ES in straight connection to the different
nature of their edges. Last, I notice that the results of this
Letter also apply to the case of frustrated ladders [17].

I am indebted to S. Capponi, N. Laflorencie, G.
Misguich, M. Haque, and P. Pujol for interesting sugges-
tions and/or comments. I thank IDRIS (Orsay, France) for
allocation of CPU time on the NEC-SX8 supercomputer.
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