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We generate bipartite states of light which exhibit an absence of multiphoton coincidence events

between two modes amid a constant background flux. These ‘‘correlated photon holes’’ are produced by

mixing a coherent state and relatively weak spontaneous parametric down-conversion by using a balanced

beam splitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the

relative phase and amplitude of the inputs. We measure states of up to five photons and verify their

nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical

correlations without requiring intense quantum resources.
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Introduction.—The generation of multiphoton entangled
states has motivated a large body of experimental work in
quantum optics [1–3]. The workhorse in such experiments
has been spontaneous parametric down-conversion
(SPDC), which allows generation of entangled photon
pairs [4]. In recent years there has been an ongoing effort
to create nonclassical states with more and more photons,
the highest value being a six-photon graph state [5] using
three SPDC pairs. Scaling up the number of photons in
such schemes, however, is challenging since they rely on
multiple emissions of SPDC pairs. This could be accom-
plished by using state-of-the-art, high intensity sources to
pump the SPDC [6].

Recently, the inverse of SPDC, namely, the process in
which a photon pair is missing amid a constant background
flux, has been demonstrated experimentally [7]. This state
has been dubbed an ‘‘entangled photon hole’’ and, just like
regular entangled photons, it can be used to violate Bell’s
inequality [8]. Here we generalize this concept to more
than two photons by creating two-mode states in which the
probability for arbitrary photon numbers N1 and N2 to
arrive simultaneously in the respective modes is zero,
where choosing N1 ¼ N2 ¼ 1 corresponds to the case of
entangled photon holes [7,8]. We refer to the generated
states as ‘‘correlated photon holes’’ (CPHs). As in the two-
photon case [7], our scheme involves the mixing of SPDC
and coherent light. Interestingly, the larger N1 and N2, the
higher the relative weight of the coherent light, implying
that our scheme may be implemented at high photon
numbers with very modest SPDC fluxes.

Theoretical scheme.—To date, a handful of photon-
counting experiments have utilized interference of coher-
ent light and SPDC in a configuration sensitive to the
relative phase. The SPDC in these was produced in either
a single pass geometry [7,9–11] or an optical parametric
oscillator [12]. With the exception of our recent demon-
stration of ‘‘high-NOON’’ states [9], these experiments
focused on two-photon correlations. Here we generate
another class of high-photon-number states which emerges
naturally in this type of interference.

Consider a 50=50 beam splitter fed by a coherent state
j�ia in one input port and collinear degenerate SPDC j�ib
in the other [see Fig. 1(a)]. The input states are defined in
the conventional way [13]:

j�i ¼ X1

n¼0

e�ð1=2Þj�j2 �n

ffiffiffiffiffi
n!

p jni; � ¼ j�je{�cs ;

j�i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
coshr

p X1

m¼0

ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffið2mÞ!p

2mm!
ðtanhrÞmj2mi;

(1)

where the phase of j�i has been set arbitrarily to zero,
leaving the relative phase of the two inputs to be deter-
mined by �cs. We denote the pair amplitude ratio of the
coherent state and SPDC by

� � j�j2=r: (2)

In physical terms �2 is the two-photon probability of the
classical source divided by that of the quantum source (in
the limit r, j�j � 1). The larger the value of �, the higher
the relativeweight of the classical resources. We denote the
path entangled state at beam splitter (BS) output modes c
and d [Fig. 1(a)] by jc outic;d. The amplitude for N1 and N2

photons simultaneously in the BS output modes is then
given by

AN1;N2
ð�; rÞ ¼ hN1; N2jc outic;d: (3)

In the absence of SPDC this is simply

AN1;N2
ð�; 0Þ ¼ e�j�= ffiffi

2
p j2ð�= ffiffiffi

2
p ÞN1þN2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1!N2!

p
; (4)

which is nonzero for all values of N1 and N2. By adding
SPDC (r > 0) it is possible to cancel AN1;N2

for arbitrary

values ofN1 andN2 by correctly adjusting � and�cs. In the
limit r � 1, there are bðN1 þ N2Þ=2c distinct solutions for
the equation AN1;N2

¼ 0 for any choice of N1 and N2. For

example, for N1; N2 ¼ 1; 1 we choose � ¼ 1 and �cs ¼
�=2. This produces an absence of 1; 1 coincidence events
at the BS outputs which is similar to the previously studied
case of two-photon holes [7]. As a rule, the higher the
values of N1 and N2, the higher the value of �, implying
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that relatively more photons originate from the classi-
cal source than from the SPDC. In the experimental
part we demonstrate the scheme by measuring two
cases, a four-photon CPH with N1; N2 ¼ 2; 2 and �2 ¼ 3
and a five-photon CPH with N1; N2 ¼ 5; 0 and �2 ¼
½15=ð5� ffiffiffiffiffiffi

10
p Þ�2 � 66:58. In both cases, the overall photon

flux contributed by the SPDC is negligible compared to the
coherent state flux. The SPDC may therefore be viewed as
a small perturbation to the coherent field. It is noteworthy
that our scheme bears some resemblance to a theoretical
proposition for observation of antibunching using a degen-
erate parametric amplifier [14].
Experimental setup and results.—Our setup (Fig. 1) is

similar to the one we have used for generation of NOON
states with high photon numbers in a recent experiment [9].
The scheme requires generation of SPDC and coherent
light with common spatial and spectral modes. The beams

are prepared in perpendicular linear polarizations (Ĥ, V̂)
and overlapped by using a polarizing beam-splitter cube
(PBS). The phase between the beams, �cs, is controlled
before the PBS by using a liquid crystal (LC) phase re-
tarder. The BS of Fig. 1(a) is then implemented in a col-
linear geometry by using a polarization-maintaining fiber

with axes aligned at �45� (X̂, Ŷ). Multiphoton coinci-
dences with N1 and N2 photons arriving simultaneously
in detectors D1 and D2, respectively, are measured as a
function of �cs by using an array of avalanche photo-
diodes. First, we create a four-photon hole by choosing
N1; N2 ¼ 2; 2 (Fig. 2); i.e., the simultaneous arrival of two
photons in D1 and two photons in D2 is canceled while
keeping a constant background flux. For this case �2 ¼ 3
[see Eq. (2)]. Next, we create a five-photon hole by choos-

FIG. 1 (color online). Experimental setup for generation of
correlated photon holes. (a) Schematic of the setup depicting a
50=50 beam splitter fed by a coherent state and SPDC. The
correlated photon holes occur in modes ĉ and d̂ after the beam
splitter by adjusting the relative phase and amplitude of the two
input beams. Measurement of multiphoton coincidences is per-
formed by using photon-number-resolving detectors.
(b) Detailed layout of the setup. A pulsed Ti:sapphire oscillator
with 120 fs FWHM pulse width and 80 MHz repetition rate is
doubled by using a 2.74 mm lithium triborate (LBO) crystal to
obtain 404 nm ultraviolet pulses with maximum power of
225 mW. These pulses then pump collinear degenerate type-I
SPDC at a wavelength of 808 nm by using a 1.78 mm long beta
barium borate (BBO) crystal. The SPDC (Ĥ polarization) is
spatially and temporally overlapped with a coherent state (V̂
polarization) by using a PBS. A thermally induced drift in the
relative phase, �cs, between Ĥ and V̂ polarizations is corrected
every few minutes by using a LC phase retarder. The coherent
light amplitude is adjusted by using a variable attenuator. Modes
â (b̂) of panel (a) are realized collinearly by using V̂ (Ĥ)
polarizations, respectively. These modes are then coherently
mixed by using a polarization maintaining fiber (PMF) aligned
with the �45� (X̂, Ŷ) polarization axes. The spatial and spectral
modes are matched by using a (single-mode) PMF and a 3 nm
FWHM bandpass filter (BPF) centered at 808 nm. Photon-
number-resolving detection is performed using five single-pho-
ton-counting modules (SPCM, Perkin Elmer). Additional com-
ponents: long-pass filter (LPF) and short-pass filter (SPF).
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FIG. 2 (color online). Measurement of a 2; 2 correlated photon
hole. (a) (left y axis) Coincidence events with two photons in D1

and two photons in D2 as a function of relative phase �cs

between the coherent state and the SPDC (see Fig. 1). The
minima correspond to phases in which the 2; 2 coincidence is
canceled, implying a correlated photon hole. The solid line is a
theoretical calculation taking into account the overall setup
transmission and detector positive-operator-valued measures
[9]. The visibility is 94:9� 1%. Error bars indicate �� statis-
tical uncertainty. The dashed line indicates the classical bound
for this measurement; see Eq. (6) and the preceding discussion.
All points below this line (shaded area) exhibit nonclassical
behavior. The two arrows indicate the position of the correlated
photon holes. (b),(c) (right y axis) The single counts in detectors
D1 and D2 as a function of �cs which exhibit virtually no phase
dependence; the straight solid line is a guide to the eye.
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ing N1; N2 ¼ 5; 0 (Fig. 3); i.e., we cancel the probability
for simultaneous arrival of five photons in D1 and zero in
D2. In practice, for this case, we used all five of our single-
photon detectors [Perkin Elmer single-photon-counting
modules (SPCMs)] in D1 and therefore could not postse-
lect events with zero counts in D2. At the employed flux,
however, the higher order 5; 1 coincidence events (which
could have been eliminated by postselection) are extremely
rare with only a minor effect on the measured signal and
may be neglected. For the five-photon case, �2 ¼ 66:58,
implying that the coherent state two-photon probability is
66.58 times larger than that of the SPDC. Remarkably, such
a weak perturbation of quantum light has a dramatic effect
on the measured five-photon events. The single counts, on
the other hand, show no phase dependence in either case as
seen in Figs. 2 and 3 (triangles). This is because the SPDC
process generates only even photon numbers with no

single-photon events to interfere with those of the coherent
state.
Because of losses, higher order events have the effect of

adding a background to the N photon coincidence mea-
surement. This reduces the experimental visibilities and is
the main limiting factor in observing photon holes with
higher photon numbers. The overall transmission in our
setup, which accounts for detector efficiencies and other
sources of loss, is 12.5%. This is measured by taking the
ratio of coincidence to single counts using only the SPDC
beam (coherent state blocked). The solid lines accompany-
ing the experimental plots (Figs. 2 and 3) are calculated by
using an analytical model of the experiment taking into
account the overall transmission and the detector positive-
operator-valued measures [9].
Nonclassical properties.—To quantify the nonclassical-

ity of the generated states, we derive a classical bound for
Glauber’s nth order, equal-time, correlation function

gðnÞð� ¼ 0Þ. For � � 1 this correlation function is propor-
tional to the n photon coincidence signal of a single spatial
mode divided by the single count raised to the nth power.
Note that we chose � ¼ 0 since we are interested in pho-
tons arriving to the detectors at the same time. For thermal

light, which exhibits bunching, gðnÞð0Þ ¼ n!, and for a

coherent state gðnÞð0Þ ¼ 1 [13,15]. In the following, we
show that the result for a coherent state is actually the
lower bound for an arbitrary classical state, i.e., a state with
an arbitrary non-negative well-behaved P function [16].
The inequality was implied in Titulaer and Glauber’s work
on high-order correlation functions of coherent fields [16]
and is derived here somewhat differently:

gðnÞð� ¼ 0Þ ¼ Trf�̂Êð�Þn ÊðþÞng
Trf�̂Êð�ÞÊðþÞgn ¼

R
Pð�Þj�j2nd2�

½RPð�Þj�j2d2��n � 1;

(5)

where the last inequality follows immediately from a mul-
tidimensional form of Jensen’s inequality [17,18]. We note
that for n ¼ 2 this inequality is a well known result of
Cauchy’s inequality [13]. Correlated photon holes require
a bound for the two-point equal-time Glauber correlation

function gðm;nÞðx1; x2; � ¼ 0Þ, where x1 and x2 correspond
to the BS output modes [Fig. 1(a)]. The derivation is based
on the single-mode result, Eq. (5), and requires the as-
sumption that the two-mode P function describing the BS
outputs is separable. i.e., P1;2ð�;	Þ ¼ P1ð�ÞP2ð	Þ, a con-
dition which is satisfied by all classical two-mode Gaussian
states [19]. By using this assumption, the inequality fol-
lows immediately from the single-mode result applied to
each of the modes independently:

gðm;nÞðx1; x2; � ¼ 0Þ ¼ Trf�̂Êð�Þmðx1ÞÊð�Þnðx2ÞÊðþÞnðx2ÞÊðþÞmðx1Þg
Trf�̂Êð�Þðx1ÞÊðþÞðx1Þgm Trf�̂Êð�Þðx2ÞÊðþÞðx2Þgn

¼
R
P1;2ð�;	Þj�j2mj	j2nd2�d2	

½RP1ð�Þj�j2d2��m½
R
P2ð	Þj	j2d2	�n

¼
R
P1ð�Þj�j2md2�

½RP1ð�Þj�j2d2��m
R
P2ð	Þj	j2nd2	

½RP2ð	Þj	j2d2	�n
� 1: (6)
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FIG. 3 (color online). Measurement of a 5; 0 correlated photon
hole. Here, all five detectors were employed in D1 by placing an
Ĥ transmitting polarizer followed by a half-wave plate just
before the PBS in the detector box. This allows us to measure
five-photon events in D1 (see Fig. 1). (a) (left y axis)
Coincidence events with five photons in D1 as a function of
relative phase �cs between the coherent state and the SPDC. The
minimum, indicated by an arrow, corresponds to the phase in
which the N1 ¼ 5, N2 ¼ 0 coincidence is canceled, implying a
correlated five-photon hole. The solid line is a theoretical cal-
culation taking into account the overall setup transmission and
detector positive-operator-valued measures [9]. The visibility is
98:6� 1:3%. Error bars indicate �� statistical uncertainty. The
dashed line indicates the classical bound for this measurement;
see Eq. (6) and the preceding discussion. All points below this
line (shaded area) exhibit nonclassical behavior. (b) (right y axis)
The single counts in detector D1 as a function of �cs which
exhibit virtually no phase dependence; the straight solid line is a
guide to the eye.
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The classical bounds in Figs. 2 and 3 are obtained by
raising the single counts to the appropriate powers and
multiplying by a numerical factor to account for the repe-
tition rate and the structure of our detector [Fig. 1(b)]. For
the four-photon case (Fig. 2) we substitute m ¼ 2 and n ¼
2, violating the classical bound by 23.92 and 21.17 stan-
dard deviations at the phases for which the photon holes are
created. For the five-photon case (Fig. 3) we substitute
m ¼ 5 and n ¼ 0, and the bound is violated by 25.5
standard deviations.

Conclusion.—Mixing coherent light and SPDC is typi-
cally done in conjunction with homodyne detection [13] by
using a ‘‘macroscopic’’ local oscillator as the coherent
state. Adopting this paradigm in the ‘‘few photon’’ regime
and using number-resolving detectors brings to light a rich
structure exhibiting various nonclassical signatures. This
enabled us to create NOON states [9] in a recent work and
correlated photon holes here. Extending the present work
to higher photon numbers can be done by using essentially
the same setup, requiring only additional detectors to
enable higher coincidence measurements. This does not
entail a larger SPDC flux since relatively more of the
photons originate from the coherent state which is practi-
cally unlimited in intensity, providing experimental sim-
plification. As in the case of NOON states, however, the
visibility of interference is limited by the overall setup
transmission (currently 12.5%), determined by accounting
for all sources of photon loss including the detector effi-
ciency. This value could be improved by using high purity
SPDC sources which can be spectrally mode matched to
coherent states without requiring a bandpass filter [20–22].
Improved single-mode fiber coupling of the photon pairs
and high efficiency photon-number-resolving detectors
[23,24] would also be beneficial. Reaching a transmission
of 25% would allow measuring states with ten photons in a
setup similar to ours.

In this work, we have focused on the elimination of
specific multiphoton events due to interference of coher-
ent and down-converted light. Such photon holes are in-
triguing since their nonclassicality stems from the absence
of multiphoton events. Indeed, such states have been
shown to be potentially useful in increasing the se-
cure data rate and transmission distance in quantum cryp-
tography [25,26]. They may also be beneficial in the con-
text of high precision quantum measurements [27]. It
would be interesting to compare their performance with
that of previously studied states, particularly in the pres-
ence of loss [28].
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