Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Differential Coordinates for Interactive Mesh Editing

MPG-Autoren
/persons/resource/persons45525

Sorkine,  Olga
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., & Seidel, H.-P. (2004). Differential Coordinates for Interactive Mesh Editing. In F. Giannini, & A. Pasko (Eds.), Shape Modeling International 2004 (pp. 181-190). Los Alamitos, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-29C3-E
Zusammenfassung
One of the main challenges in editing a mesh is to retain the visual appearance
of the surface after applying various modifications. In this paper we advocate
the use of linear differential coordinates as means to preserve the
high-frequency detail of the surface. The differential coordinates represent
the details and are defined by a linear transformation of the mesh vertices.
This allows the reconstruction of the edited surface by solving a linear system
that satisfies the reconstruction of the local details in least squares sense.
Since the differential coordinates are defined in a global coordinate system
they are not rotation-invariant. To compensate for that, we rotate them to
agree with the rotation of an approximated local frame. We show that the linear
least squares system can be solved fast enough to guarantee interactive
response time thanks to a precomputed factorization of the coefficient matrix.
We demonstrate that our approach enables to edit complex detailed meshes while
keeping the shape of the details in their natural orientation.