Metacommand
(c) 2000 Markus Voelter, voelter@acm.org Version 1.5, July 13, 2000

Copyright 2000 Markus Volter. Permission is hereby granted to copy and distribute this
paper for the purposes of the EuroPLoP '2000 conference.

INTENT

METACOMMAND is a compound pattern that enhances COMMAND by allowing a client
application to enhance or modify the common behavior of the command classes used in
the application without modifying the command classes themselves.

CONTEXT AND MOTIVATION
As described by the Gang-of-Four in [GHJV96], you can use the COMMAND pattern to

Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

However, using COMMAND requires that you know these additional features when you
implement the command classes, i.e. at design/implementation time. It is not possible
to dynamically add or remove features. For example, you might want to add logging
facilities to all command classes in a system if debugging becomes necessary or your
customer requires logging for security reasons. Or you might want to add a permissions
check before executing a command, executing the command only if the check permits
the execution.

The METACOMMAND pattern provides this additional flexibility by allowing you to add
these features dynamically at runtime, without modifying the command classes
themselves. The last point is especially important, because in general, there are quite
many command classes in a system, usually one for each user action.

This pattern can be used in two situations: First, the pattern can be used, when a new
application is built from scratch. Second, it is also possible to use the pattern to retrofit
an existing application with additional functionality.

FORCES

The pattern resolves the following forces:

* The common behavior of your command classes should be flexible, enabling you to
change common behavior without modifying the command classes themselves.
This should be achieved without requiring big changes to the programming model
of the original COMMAND pattern.

* This additional flexibility should ideally come without decreasing performance.

* Changing the common behavior should not require changes through the system.
Changes should be localized.

= Retrofitting an existing system with these additional features should be simple. The
necessary changes should be systematic to allow automatic conversion (e.g. by a
script).

mailto:voelter@acm.org

PROBLEM

How do you create a system that allows you to easily modify the common behavior of
command objects, even at runtime?

SOLUTION

Wrap the created command object with a MetaCommand object upon creation
according to the DECORATOR pattern. Use a well-known FACTORY to determine which
concrete MetaCommand class is used to wrap the Command and to execute the
wrapping. When a command is executed, the MetaCommand is executed instead. It
adds its own behavior before in turn executing the contained command.

Structure

Just as in the original COMMAND pattern, the Command class is an abstract base class for
the specific commands that you use in the application. It has an abstract execute()
operation that gets called by the command-executing program entity, no matter what
the concrete command class is.

Command
Féfactory CommandiFacton
==gtatic== + setFactory()
+ yrap) FeontainedCommand ==ahstract=> +wrapCormmandi
==ghsiract== + executel A -
==static=> + create) & . @
creates i
- 1)
=
Az’ o
MetaCormmand
+ getContainedCommandy
ConcreteCommand -
w =
=21
- ConcreteCommand(ConcretedetaCormmand ConcreteCommandFactory E Q'
==gtatic== + createl ﬁ‘ g-
+ exacutal) + executed +wrapzommand(=
ABSTRACT FACTORY DECORATCR . FacTory METHOD

lllustration 1: Class diagram of the METACOMMAND pattern. The classes above the line form
the reusable, abstract base of the pattern, whereas the classes below the line have to be
created specifically for an application.

In addition, the Command class contains a class attribute (Java or C++ static) that
references a well-known CommandFactory object (according to the ABSTRACT FACTORY
pattern, [GHJV96]), which is responsible for automatically wrapping a
ConcreteMetaCommand object around a ConcreteCommand upon creation. MetaCommand
also inherits from Command, so that it can be used wherever a Command is expected. An
application defines several ConcreteMetaCommand classes, the ConcreteCommandFactory
determines, which of these classes will be used to wrap a specific ConcreteCommand
object. You have to make sure that a ConcreteMetaCommand invokes the contained
ConcreteCommand’s execute() operation during its own execution.

Creation of ConcreteCommand objects and the wrapping with a ConcreteMetaCommand is
handled by one or more static create() operations (FACTORY METHOD, see [GHJV96]) in
the ConcreteCommand classes. Please note that these operations formally return

Command, not the ConcreteCommand in which they are declared. This is because the

concrete class of the returned object depends on the factory’s decision which

ConcreteMetaCommand is wrapped around the command. (Note: You cannot use a

constructor here, because a constructor always returns an instance of the class in which
it is declared. A FACTORY METHOD like the create() operation is more flexible is this
respect. That’s why a factory method is also termed a virtual constructor [JC91]). The

create operation will usually look something like this (Java example)

class ConcreteCommand extends Command {
public static Command create(String anArgument) {
ConcreteCommand ¢ = new ConcreteCommand() ;
// process arguments with c

c.anArgument =

anArgument ;

// call wrap to wrap the created ConcreteCommand
return c.wrap();

}

public void execute ()

}

The important part of this code snippet is the return statement: After initialization, the
wrap() operation is called on the new object before it is returned. This creates a
ConcreteMetaCommand and wraps the ConcreteCommand (c in the example) with it. The
operation returns this newly created ConcreteMetaCommand:

public abstract class Command

protected static

CommandFactory factory;

public Command wrap () {
Command result = null;

if (factory

= null) result = factory.wrapCommand(this) ;

return result;

}

Participants

Command

MetaCommand
CommandFactory

ConcreteMetaCommand

ConcreteCommandFactory

ConcreteCommand

Abstract base class for application-specific concrete
command classes. It contains the abstract declaration for
the execute() operation.

Abstract base class for application specific MetaCommand
classes. Wraps around (contains) a ConcreteCommand object.

Responsible for setting up the wrapping between the
ConcreteCommand and the ConcreteMetaCommand.

An application-specific MetaCommand class. Executes the
ConcreteCommand during its own execution. It contains
code common to all ConcreteCommands.

A concrete implementation of CommandFactory.
Responsible for wrapping an instance of a
ConcreteMetaCommnad around a ConcreteCommand.

An application- specific command class. Defines one or
more create() operations, which work as described above.

Interactions

Initialization and command creation

The abstract class Command contains a static reference to an instance of a
CommandFactory object which must be set at the beginning of a program by calling the
Command class’s static setFactory() operation with an instance of a
ConcreteCommandFactory as the only parameter.

To create a ConcreteCommand object, you have to call the static create() operation on the
ConcreteCommand class, of which you need an instance. As demonstrated above, this
operation then creates an instance of its own class, processes all its augments, and then
calls wrap() on the newly created object.

The wrap() operation calls the wrapCommand() operation on the well-known factory that
you have set before, passing the ConcreteCommand as a parameter. The factory
determines which ConcreteMetaCommand should be used, creates an instance of it, and
then sets the passed ConcreteCommand to be the contained command of the newly
created ConcreteMetaCommand. This metacommand (mc) is then returned to the client
application. From the client’s view, this looks like the following;:

Command cmd = MyCommand.create () ;

Note that the type of the variable storing the returned object (cmmd) is Command, not
MyCommand because the concrete type of the returned object depends on the factory.

The following diagram illustrates the previously described processes:

ClientApp : Command factory: Concrete
CommandFactory
rsetFactorvifactons !
icreate(anArgument) ¢ Cancrete
. | Command
wrapl)

wrapCommandicy

mec : Concrete =create=
MetaCorrnand [|

setContainedCommand(c)

me is returned <=
instead of ¢ :
e o Fooeooosennaes me :

lllustration 2: Setting up the factory and creating a ConcreteCommand object.

Executing the command

Just as in the conventional COMMAND pattern, you execute a command by invoking its
execute() ~ operation. But because the create() operation returned the
ConcreteMetaCommand, the invocation reaches the ConcreteMetaCommand’s execute(),
which in turn calls the ConcreteCommand’s execute() after adding its own behavior. This
is shown in the diagram belowr:

Clientapp L Concrete me - Concrete
Caommand MetaCommand

executel)

doSamethingd

execute() :I

dolntendedActiond

.]

lllustration 3: Executing a command in fact executes the ConcreteMetaCommand, which,
after executing its own code, calls the ConcreteCommand's execute operation.

CONSEQUENCES

Using the pattern has the following advantages:

You can change the common behavior of all commands. You only need to
exchange the ConcreteCommandFactory. No change to the ConcreteCommand classes is
necessary. The change is localized to the factory.

The programming model is not very different from the original COMMAND
pattern: You only have to use the create() operation instead of the constructor (and
provide the CommandFactories and MetaCommands).

You can easily retrofit an existing application with this increased flexibility. The
handling of created command objects and their execution remains the same, only
the creation process changes (see liabilities).

However, the pattern might also has some liabilities or drawbacks:

An additional level of indirection is introduced. (A ConcreteCommand’s execute() is
called through ConcreteMetaCommand’s execute()). This might impose a slight
performance overhead. The same is true for the creation process, when two objects
must be created instead of just one.

Abstract Command class has to be modified: If the pattern is used in a new
application from the beginning, this is not an issue. However, if an existing
application is retrofitted with metacommands, you will have to modify the abstract
Command class (adding the wrap() operation) and the existing concrete commands
need modification: the create() operation has to be added.

In C++, new link-time dependencies are introduced: The Command class depends
on the factory, and the depends on the MetaCommands.

Some consequences are neither good or bad, they are just consequences:

= The pattern relies on the wrapping MetaCommand object to call the execute()
operation of the contained Command. However, this cannot easily be enforced. In
some cases this is intended (e.g. not executing a Command in case of a failed
permissions check in the MetaCommand). On the other hand, it is possible to actually
modify the behavior of Command classes, and not just to add behavior. This might
be a problem in certified / well tested / safety relevant systems.

* In Java, extending commands (and metacommands) from a base class uses up
their single inheritance link. This is not a problem because usually commands are
just a "glue" between two parts of the application and have no further need to
extend other classes. Often, concrete commands or metacommands are even
anonymous classes. In addition, it is always possible to use interfaces.

* The client application needs to be changed to modify the behavior of the
commands. This is because another factory has to be set. If this is a problem, you
need to use a configurable FACTORY (see below).

EXAMPLES AND SAMPLE CODE

The simplest case

Let’s begin with a very simple implementation of the Command class. Java is used for
the examples.

public abstract class Command
protected static CommandFactory factory;

public static void setFactory(CommandFactory cf) {
factory = cf;
}

public Command wrap () {
Command result = null;
if (factory != null) result = factory.wrapCommand(this) ;
return result;

}

public abstract void execute() ;
}
The Command class above has the important property, that whenever no factory is set,
the wrap() operation returns this, i.e. it returns the object on which it was called. So
whenever no factory is set, the system behaves just like the standard COMMAND pattern
(without any performance overhead). The check whether the factory is null is
implemented very efficiently in Java, and imposes nearly no performance overhead.

Logging

The above example might be the initial implementation for a software system. Later,
when the system is deployed, you might want to log all executed commands. You can
achieve this by executing the following three-step process:

1. A suitable MetaCommand class is created. It is called LogMetaCommand in the
example and could look something like the following:

public class LogMetaCommand extends MetaCommand {

public void execute() {
System.out.println((new Date()) .toString() +
" executing : "+containedCommand) ;

containedCommand.execute () ;

}
2. Create a factory that wraps the ConcreteCommands with a LogMetaCommand. This is
also very simple and straightforward:
public class LogCommandFactory extends CommandFactory {
public Command wrapCommand (Command c) {
LogMetaCommand lcmd = new LogMetaCommand () ;

lcmd. setContainedCommand(¢) ;
return lcmd;

}
3. Set the factory object in the Command class:

public class Test
public Test () {
Command.setFactory (new LogCommandFactory()) ;
Command t = TestCommand.create() ;
t.execute () ;

}

public static void main(String[] args) {
Test test = new Test () ;
!

}
The above piece of code has the consequence, that every command execution in the
system gets logged. This is true for command classes already used in the system, as well

as for those, that are introduced later.

Asynchronous command execution

The pattern can be used to execute normal commands asynchronously. The following
piece of code is a MetaCommand that creates a Thread before executing the contained

Command.

public class AsynchMetaCmd extends MetaCommand implements Runnable {
public void run() {
getContainedCommand () .execute () ;
}

public AsynchMetaCommand (FAFCommand cCmd) {
setContainedCommand (cCmd) ;
}

public void execute() {
Thread t = new Thread(this) ;
t.start () ;

Permissions

Often, you need to retrofit a system with security features, i.e. that certain commands
may only be executed by certain users (or groups of users). Once again, Metacommand
provides a simple solution for this problem by using MetaCommands that check the
permissions before executing the contained command. The check itself could be
delegated to another class:

public class PermissionMetaCommand extends MetaCommand {

public void execute() {
if (PermissionManager.instance () .allows(containedCommand))
containedCommand.execute () ;
else reportError(); // show message or throw exception, etc.
}
}
Queuing

In some applications, you will find that it makes sense to queue some commands for
asynchronous execution. You can use Metacommand to implement such a queuing
facility. Two building blocks are necessary here. A QueueingMetaCommand and a
QueueFactory.

Upon execution, the QueueingMetaCommand puts the contained Command into a queue
which is then processed asynchronously by another thread. The QueueFactory
determines whether the command should be queued or not. If it should not be queued,
then the factory does nothing and returns the command itself. If, on the other hand, the
command should be queued, it wraps the command with a QueueingMetaCommand.

Note: If the time between enqueuing the commands and their execution is long, and if
the factory is replaced during this time span, then the already enqueued (and therefore
wrapped) command objects will not change their behavior to reflect the chances
imposed by the new factory.

ANOTHER SOLUTION — AND WHY IT DOES NOT WORK

Another solution that comes to mind immediately is simply to provide the Command
classes with a before() and after() method. It would be the responsibility of the
ConcreteCommand classes execute() methods to call them. This does not work because:

* You cannot give different groups of ConcreteCommand classes different common
behavior in the before() and after() methods. To do this, you would have to insert an
additional layer of abstract command classes which implement common behavior
in the before() and after() methods. But because you usually do not know the
grouping of the ConcreteCommands from the beginning, you would have to change
the class hierarchy constantly, every time, you want to change the grouping.

* You cannot change anything at runtime, except by using state dependent case
statements in the command classes before() and after() methods.

* You cannot implement permissions and queuing cleanly this way because the result
of the before() method does not influence the behavior of the main execute() method.
You could create such a behavior by using exceptions somehow, but this is not a
very practical solution. (Example, Queuing: The before() method could place itself
(this) into a queue, then set a flag, which is tested by the execute() method after its

before() call. If set, the method returns. When execute() is once again called, this time
by the thread that processes the queue, before() must not be called again, instead the
core of the execute() operation must be run. This can also be achieved by using a
couple of flags. But all in all, this is not a very elegant solution).

* Composability (as described in the next section) is not possible.

VARIANTS AND IMPROVEMENTS

Create concrete Commands using the Factory

In the proposed solution, the concrete command classes provide a static create()
operation that internally contacts the factory to wrap a MetaCommand around the
command. There is another way how you can do that: let a factory create the concrete
command and wrap the MetaCommand around it. Instead of calling create() on the
required Command class, creating a command would then be delegated to the factory:

// traditional
Command ¢ = SomeConcreteCommand.create () ;
// alternative:
Command ¢ = CommandFactory.instance () .createSomeConcreteCommand () ;
The advantage of this approach is that the Command class does not need to know the
factory, and it does not need the wrap() operation. Create() operations on all concrete
command classes are also not necessary. However, in the factory you need to
implement a create...() operation for each new concrete command. Alternatively, you
can use a pluggable factory like the one described in [OV0O0].

Multiple Layers

You can compose multiple layers of MetaCommands. If your system contains a
LogMetaCommand class, a QueueingMetaCommand class and a PermissionMetaCommand
class, then you can easily build systems that have all features just by creating another
factory:

public class LQPCommandFactory extends CommandFactory {
public Command wrapCommand (Command c)
LogMetaCommand lc = new LogMetaCommand(c) ;
QueueingMetaCommand gc = new QueueingMetaCommand(lc) ;
PermissionMetaCommand pc = new PermissionMetaCommand(gc) ;
return pc;

}

The result of the work of this factory is the following containment structure:

PermissionMetaCommand

QueueingMetaCommand

LogMetaCommand

C

lllustration 4: Containment structure if multiple MetaCommands are wrapped.

Upon execution, the commands are executed “outside-in”. First, the
PermissionMetaCommand checks whether the command is allowed to be executed. If so,
the command is put in a queue. Upon execution, a log message is created and then,
finally, the command itself gets executed. Note, that the order wrap order of the
commands is significant: If, for example, permission checking is contained inside of
logging, the command will be logged although perhaps it will not be executed. The
same is true for queuing and permissions. There is no use of checking a permission after
it has been inserted into the queue (because they will be executed asynchronously).

Multiple wrapped Factories

If you use many different combinations of wrapping MetaCommands in an application, it
might be impractical to create a corresponding factory for each combination. Instead,
the CommandFactory class can be modified to contain a reference to another factory. The
factories could recursively call wrapCommand() on the referenced factory, thereby
adding multiple layers of MetaCommands around the original ConcreteCommand.

Controlling the Factory

If there is no general common policy about which MetaCommand the factory should use,

classes that have other names or additional parameters. This makes it possible for the
creator of a command to determine the behavior of the factory at runtime, because the
factory can use the supplied parameters to determine whether a MetaCommand will be
set or not, and to pass additional parameters to the MetaCommand.

RELATED PATTERNS

METACOMMAND of course has a close relationship to COMMAND - it is an extension. The
COMMAND pattern is described in the classic Gang of Four book [GHJV96].
METACOMMAND is actually a compound pattern, i.e. it is a combination of several other
patterns. These serve as building blocks for METACOMMAND. The following GoF
patterns (see [GHJV96]) are used:

The CommandFactory is an instance of the ABSTRACT FACTORY pattern: is responsible for
creating and returning instances of the correct MetaCommand. The create() operation in
the command classes is implemented according to FACTORY METHOD. The containment
structure of the commands (and of the factories, see VARIANTS AND IMPROVEMENTS) is an
implementation of the DECORATOR pattern.

In their article Compounding Command [VH99], John Vlissides and Richard Helm look at
how the Command pattern can be enhanced by combining it with other patterns. They
explore the benefits of nesting commands, however, they did not include a factory.

Another pattern that extends Command and addresses quite similar concerns is Peter
Sommerlad’s COMMAND PROCESSOR pattern [PS96]. In the COMMAND PROCESSOR
pattern, commands are not executed directly. Instead, they are executed by A COMMAND
PROCESSOR. This component can be used to implement additional code, for logging,
queuing etc. So, instead of wrapping MetaCommand objects around each
ConcreteCommand to implement common behavior, the COMMAND PROCESSOR pattern
places this common code into the COMMAND PROCESSOR component.

The decision which of the two patterns should be used, could be guided by the
following observation:

= COMMAND PROCESSOR leaves the creation of commands unchanged and requires
modifications at all locations where commands are executed. So whenever it is not
possible (or feasible) to modify the creation of command objects, THE COMMAND
PROCESSOr pattern should be used.

* METACOMMAND leaves the execution of commands unchanged but requires changes
in the code at all locations, where commands are created. So whenever it is not
possible (or feasible) to modify the execution of commands, the METACOMMAND
pattern should be used.

Because of the above, the METACOMMAND pattern as well as the COMMAND PROCESSOR
pattern can be used in refactoring projects, where it is necessary to introduce
unanticipated features into a software system.

It is also interesting to see the relationship to Kevlin Henney's Executing around
Sequences patterns [KHO00]. He shows ways how to execute some code "around" other
code in sequential C++ code (e.g. freeing resources at the end of a block that have been
allocated at the beginning). METACOMMAND provides a way to achieve the same effect
for command objects.

OTHER RELATED WORK

Metalevel programming

You could see the METACOMMAND pattern as a way to dynamically change the class of
the commands, because arbitrary behavior can be added or removed at any time.
Another way to achieve this is by using meta level programming, if it is available in the
language in use. For example, CLOS (see [KRB91]) provides this feature as part of its
meta object protocol: Whenever a class (let's say, Command) is declared, you can specify
the metaclass (let's call it M), of which this class (Command) is an instance. The metaclass
M is responsible for invoking operations of instances of the concrete class Command. By
overriding the invokeMethod() operation in the metaclass M, you can add behavior to all
objects of the class Command. In pseudo-Java, this looks like the following:

public metaclass M extends MetaClass {
public void invokeMethod(Object obj, String name, Object[] args) {
if (name.equals("execute")
System.out.println("executing: "+obj.getClass () .getName()) ;
super.invokeMethod (obj, name, args) ;

}
}

public abstract class Command useMeta M {
public void execute() ;
}

public class TestCommand extends Command {
public void execute() {
// do something
}

}

TestCommand ¢ = new TestCommand () ;
c.anOperation(); // will print log message before executing

To see how this is done in CLOS, have a look at the book The Art of the Metaobject
Protocol [KRB91].

Aspect-oriented programming

It is also interesting to have a look at the relationship to aspect-oriented programming
(AOP, [AOP]). AOP supports the definition of cross-cutting concerns of a software
system in a single entity called an aspect. Aspects can introduce new methods into (one
or more) classes, and can add before and after code to existing methods. Modifying
existing methods this way is called "advising a method”.

You can use this to create an aspect that advises the execute() operations of all
ConcreteCommand objects, thereby achieving the same effect as the code within the
MetaCommands. AOP requires a special tool (called an aspect weaver for Aspect], an AOP
implementation for Java, [A]]). MetaCommand allows similar features to be
implemented without the availability of aspects (but requiring more work!).

The example from above would look like the following;:

aspect Log {
advise * Command.execute() {
static before {
System.out.println("executing: "+thisClassName) ;

}
}
}

KNOWN USES

The pattern was used in the ThoughtPad application [VS], a tool to create topic maps.
Here, the pattern has been applied after the program has been finished (it already used
the conventional COMMAND pattern for all user interface actions). As described above,
only the creation of the commands had to be changed. The Metacommands have been
used to add permission checks to the program.

IBM’s PRODIKOS project uses the METACOMMAND pattern in its user interface
architecture. The system will later be integrated with Lotus Workflow, although it is
not yet clear at the beginning of the project what this integration will look like. A single
metacommand will be used for all command objects to analyse the concrete command
and then trigger the correct process in Lotus Workflow.

ACKNOWLEDGEMENTS

Many thanks to my shepherd Wolfgang Keller for giving many useful hints and
comments on how to improve the paper. It has improved significantly! I'd also like to
thank the participants of MATHEMA'’s design patterns courses (Feb. 14 - Feb. 21, 2000)
for discussing this paper with me. Last but not least, I'd also like to thank the
participants of the EuroPLoP 2000's workshop D "Design and Programming".

REFERENCES
[A]]
[AOP]

[GHJV96]

[KHO0]

Jea]

[KRB91]

[OV00]
[PS96]

[VH96]

[VS]

Xerox PARC, Aspect] homepage at http:/ /aspectj.org

Xerox PARC, AOP homepage at
http:/ /www.parc.xerox.com/csl/projects/aop

Gamma, Helm, Johnson, Vlissides; Design Patterns, Elements of Reusable
Software Design, Addison-Wesley 1996

Kevlin Henney, Executing around Sequences, Proceedings of EuroPLoP"
2000

Jim Coplien, Advanced C++ Styles and Idioms, Addison-Wesley 1991

Kiczales, Rivieres, Bobrow, The Art of the Metaobject Protocol, MIT Press
1991

Oliver Vogel, Generic Factory in Proceedings of EuroPLoP' 2000

Peter Sommerlad, Command Processor, in Pattern Languages of Program
Design 2, Addison-Wesley 1996

John Vlissides and Richard Helm, Compounding Command, in C++
Report April 1999

voelterSOFTWARE, ThoughtPad homepage at
http:/ /www.voelter.de/thoughtpad

http://aspectj.org/
http://www.parc.xerox.com/csl/projects/aop
http://www.voelter.de/thoughtpad

	Intent
	Context and Motivation
	Forces
	Problem
	Solution
	Structure
	Participants
	Initialization and command creation
	Executing the command

	Consequences
	Examples and sample code
	The simplest case
	Logging
	Asynchronous command execution
	Permissions
	Queuing

	Another solution – and why it does not work
	Variants and improvements
	Create concrete Commands using the Factory
	Multiple Layers
	Multiple wrapped Factories
	Controlling the Factory

	Related patterns
	Other related work
	Metalevel programming
	Aspect-oriented programming

	Known uses
	Acknowledgements
	References

