
Patterns for Experiential Learning
Submission to the PPP pattern language

project on experiential learning

Editors:

Jutta Eckstein
jeckstein@acm.org

Klaus Marquardt
marquardt@acm.org

Mary Lynn Manns
manns@unca.edu

Eugene Wallingford
wallingf@cs.uni.edu

Introduction

Teaching requires flexibility. Therefore, each teacher needs a collection of
effective techniques. These techniques can be captured in personal pattern
language.

This pattern language in progress proposes some successful techniques to assist
with teaching and learning. For professional educators, these patterns may seem
obvious, even trivial, because they have used them so often. But for those newer
to teaching, they offer a way for experienced teachers to pass on their experiences.

The pedagogical patterns project is working on collecting many types of patterns
that can help teachers teach and students learn. This collection focuses on
experiential learning. They focus on what is needed to learn by experimentation
and by drawing on the students’ own experiences.

Patterns are not step-by-step recipes. Each of these offer a format and a process
for recording knowledge that can then be used by a variety of different teachers in
many different ways.

Introduction to the Pedagogical Patterns Project
Most educators and trainers are not taught how to teach. Rather, they often find
themselves teaching by accident. Typically, a person with a skill that is in
demand, such as a particular programming language, will be asked to teach it.
People assume that if the person is good in this programming language, she will
be good at teaching it. But knowing the subject matter is very different than
knowing how to teach it.

Copyright © the respective pattern authors. Permission is granted for the purpose
of EuroPLoP 2001

Effectively communicating complex technologies is often a struggle for
information technology instructors. They may try various teaching strategies, but
this trial and error process can be time-consuming and fraught with error. Advice
is often sought from other “expert” instructors, but these individuals are not
always readily available. This creates the need to find other ways to facilitate the
sharing of teaching techniques between expert and novice teachers.

This is the goal of the Pedagogical Patterns Project (PPP). Pedagogy is a term that
refers to the “systematized learning or instruction concerning principles and
methods of teaching” [Web59]. Patterns provide a method for capturing and
communicating knowledge such as pedagogy. As an example, imagine that you
are looking for an effective way to teach message passing to experienced
programmers in a weeklong industry course. A friend who is teaching a
semester-long object technology course to traditional age university students has
found an effective technique. He shares it with you without dictating the specific
implementation details. This allows you to use your own creativity to implement
the technique in a way that is most comfortable for you and most useful for your
industry students. This is the essence of patterns – to offer a format and a process
for sharing successful practices in a way that allows each practice to be used by a
variety of people in many different ways.

A collection of patterns could form a repository of techniques for teaching a
specific subject such as object technology (OT). Ideally, many of the patterns
would have even broader scope than OT, but all of them would be useful in many
different training environments because they are proven teaching techniques.

But even this is not the end of the story. Related patterns can be combined in
either a pattern catalog [Bus96] or in a system of patterns [Fow97]. A third
possibility is to relate several patterns within a common problem space, the result
of which is a language of patterns that provides a resource for solving complex
problems. The goal of the project described in this paper is to form pedagogical
pattern languages for teaching object technology. This will provide OT
instructors with the ability to share their effective teaching techniques in a
common format, to document relationships between the techniques and to form
powerful tools known as pattern languages.

For an explicit introduction to Patterns and Pattern Languages see the appendix.

Prerequisites
People are the central focus of teaching. Therefore, the patterns have to deal with
biological and social basics that cannot be ignored. Taking these basics into
account results in motivated participants, which in turn leads to successful
learning. This section highlights some of them.

Effective LearningMotivation

Suitable
Environment

and Atmosphere

Relevant
Content

Good
Teaching

Learning is most effective, when the learners are motivated. Their motivation
results from their interest in the contents, from a convenient and enjoyable
atmosphere and last but not least from a teaching style which enables learning.

Push and Pulls

This section explores some of the global forces these patterns address. Each
pattern tries to resolve these forces in a different way.

• Learning Efficiency: This style of teaching focuses on life long learning by
drawing on the students’ own experiences and by letting them experimenting.
However sometimes another teaching style might be more efficient for short-
term learning.

• Time Consumption: Compared to lecturing, this kind of teaching takes up
more time in a course or seminar. This might conflict with the amount of topics
that have to be covered in total.

• Teacher work: Usually, this kind of teaching requires more work and
preparation for the teacher.

• Learner attitude: Some students prefer the lecture method only, and therefore
may not be open to other approaches such as experiential learning.

• Topic suitability: Some topics may not be suitable for an experiential learning
approach.

• Cultural dependency: Most of the patterns in this collection been used only in
the western world. Some of them may not be suitable for use in other cultures.
For example, Built in Failure is difficult or impossible to implement in
countries where admitting a mistake is not socially acceptable.

The Pattern Language
This pattern language under construction contains patterns from the Pedagogical
Patterns effort [PPP], which were revised and rewritten in Alexandrian form in
order to support the integration into a pattern language. The currently available
patterns focus on a classroom situation at beginner to advanced level, but their
usability is not limited to that. Further patterns will be submitted to future
conferences of the PLoP series.

Quick Access Table
The following table lists some problems, which often occur in a training environment, and the
respective patterns of this language, which address those problems.

Participants forget the contents. SEEBEFOREHEAR; EXPERIENCING IN THE

TINY, SMALL AND LARGE

Participants are overwhelmed by theory. ONE CONCEPTSEVERAL IMPLEMENTATIONS;
ABSTRACTIONGRAVITY ; SOLUTION BEFORE

ABSTRACTION

Participants expect all solutions – and
especially the one and only solution – from
the teacher. They do not trust their own
knowledge.

ONE CONCEPTSEVERAL IMPLEMENTATIONS;
BUILD AND MAINTAIN CONFIDENCE; THREE

BEARS

Participants don’t know how to learn
outside the official learning environment.

BUILT IN FAILURE; MISSIONIMPOSSIBLE

Participants say the teaching velocity is too
fast, they have a hard time to follow.

EXPOSETHE PROCESS

Only a few students participate, the rest
are quiet.

ROUND ROBIN

Participants have problem grasping the
whole picture.

STUDENT DESIGNSPRINT

ABSTRACTION GRAVITY – FROM HIGH TO LOW

This pattern was written by Gary L. Craig’s Discussion-Activity-Review-Lab-Review [GLC] pattern
and revised by Jane Chandler.

You are about to start a new topic, which is has many levels of abstraction.

❊❊❊

Concepts that must be understood at two levels of abstraction require time for a
Spiral [JB] approach to learning. However this can be time consuming.

❊❊❊

Therefore, introduce a concept at its highest level of abstraction and use
reflection on the concept to link the higher-level abstraction to the lower one.

Introduce each level of abstraction with concrete, practical examples or exercises.
When designing examples or exercises relate the abstract concept to students’
concrete experiences (see SOLUTION BEFORE ABSTRACTION) and ensure that students
see a number of examples of the concept (as in ONE CONCEPT – SEVERAL
IMPLEMENTATIONS).

Consider carefully which of the abstraction levels of the concept to emphasize,
e.g., the higher or lower level or the transformation process between the levels of
abstraction, as this will drive the level of detail required in each activity.

A consequence of this pattern is that students appreciate the links between
concept’s different levels of abstraction.

❊❊❊

For example, begin with a class-wide discussion of the concept at its highest level of
abstraction without focusing on the details. This will support understanding the big
picture. Follow this with small group exercises based around specific (detailed) issues.
Next, review the results of the exercises with the whole class, paying particular attention
to both common and alternative solutions. Use a second set of exercises to enable the
students to produce the lower level of abstraction for themselves. Where appropriate the
lower level abstraction, at least in part, should be illustrated through a transformation.
Finally, evaluate the results of the second set of exercises and reflect on the connections
between the abstraction levels.

This pattern can be used in analysis & design or design & coding courses to show the
relationship between the two phases and provide a context for the decisions made. For
example, introduce the design issues in an initial, class-wide discussion and follow this
with the students undertaking a design exercise. Students then have a sense of
"ownership" of the problem and subsequent design and from this position they can then be
asked to code the design and finally to review and evaluate their code in relation to their
design.

SOLUTION BEFORE ABSTRACTION

This pattern was written by Ian Chai’s Concrete to Abstraction [IC] pattern and revised by Klaus
Marquardt.

You want to introduce a new, abstract topic and you took ABSTRACTION GRAVITY
into account.

❊❊❊

In a typical classroom situation, students may not know what benefit they might
derive from the topic. There is the need to keep students’ interest even in abstract
concepts.

An abstract concept can become the basis for a large number of applications.
However, it is hardly considered useful unless it is related to concrete
experience.

❊❊❊

Therefore, give the students an example of the problem in a setting that they
are comfortable with. After they have found a solution for this example, focus
their attention on those aspects that can be applied to similar problems. When
your students are inexperienced or you feel that the subject matter is very
complex, you should introduce more than one concrete example (see ONE
CONCEPT – SEVERAL IMPLEMENTATIONS).

Use the identified transferable aspects to introduce the general, abstract concept
of the solution. When your students have understood the underlying principle,
you can advance to a more formal description such as abstractions or patterns

This kind of presentation is especially useful for students with little or no
experience in the course area. It assumes that students are not familiar with the
concept with respect to their profession, so that they need to learn a relation that
more experienced professionals probably already discovered themselves. After
some abstractions are introduced this way, the teacher may change the
presentation form and start with abstractions before applying it to example
situations.

❊❊❊

For example, real life experiences can be used to introduce abstract concepts. When two
persons have no language in common, and they do not want to learn another language,
they need a translator. Between two existing software systems that do not understand
each other, you need a component taking a role similar to a translator. This analogy to a
real life experience helps to introduce the concept of the Adapter pattern that allows
establishing contact to a different program without the need to change it.

ONE CONCEPT – SEVERAL IMPLEMENTATIONS

This pattern was written by Marcelo Jenkins’ Design-Do-Redo-Redo [MJ] pattern and revised by
Markus Voelter.

You want to provide more than one SOLUTION BEFORE ABSTRACTION.

❊❊❊

An abstract concept is hard to understand without a concrete implementation or
realization. However, teaching a theory using a concrete implementation might
blur the concept itself, because the concrete implementation might not follow
exactly the abstract model.

❊❊❊

Therefore, use several different implementations of the concept as examples
while teaching the abstract concept. Compare the different implementations
afterwards, to re-discover the essence, the abstract concept. You can use this
pattern in the form of examples, exercises, group work, etc.

As a consequence, the students learn the abstract concept and see several concrete
implementations. This allows them to distill the concept itself from the
realizations. It is an advantage if the students are already familiar with one of the
concrete realizations. If the pattern is used in the form of exercises or group work,
immediate feedback is critical, to make sure the students don’t implement the
concept wrong several times.

❊❊❊

For example, it is hard to teach object-oriented programming concepts without binding
them to a specific programming language. To change this problem, let the participants
implement a small problem in several languages, and afterwards, let them compare the
solutions using a table with several comparison criteria, such as encapsulation,
polymorphism, inheritance, memory management, syntax, etc.

EXPERIENCING IN THE TINY, SMALL AND LARGE

This pattern was written by Billy B.L. Lim’s Programming in the Tiny, Small, Large [BL] pattern
and revised by Jutta Eckstein.

You want to provide a SOLUTION BEFORE ABSTRACTION for each level of
ABSTRACTION GRAVITY.

❊❊❊

Some topics require a number of iterations in various depths to enforce learning
by repetition.

A complex concept is difficult to understand unless you have experienced it by
example. However concepts are often so complex that experiencing the whole in
one step doesn't help either.

❊❊❊

Therefore, introduce the concept in three stages, tiny, small and large, which
allow you to monitor the students' progress on a topic-by-topic – tiny – basis, to
test if the student can combine the topics and apply them in a larger – small –
setting and to solve a real-world – large – problem using all parts of the concept,
thus seeing the big picture respectively.

Provide a smooth way for the students to get a start into the topic. This is best
done by General Concepts First [VF]. Make sure that each of the stages doesn't
force the students to make a large jump (as in Digestible Package [VF]). And
finally don't forget to give immediate Feedback [VF] to the students' experiences.
You could also first let the students experience the concepts as in SEE BEFORE
HEAR. If you want to emphasize the iterative part of the pattern more, you can use
Spiral [JB] as the context.

As a consequence, students can grasp abstract concepts early in the course
through tiny assignments before they embark on a more challenging one. Provide
the students the possibility to see the big picture without loosing track of the
details by working on the individual pieces and combining those pieces together.

❊❊❊

When you teach the basics of object-oriented design concepts assign to the students one
tiny concept, e.g. a single class for which the students should model the responsibilities.
The next step would be to let them develop a small design, consisting of e.g. three classes,
so they will have to focus also on collaborations. The final large assignment would then be
to design a whole system, where e.g. Design Patterns should be considered. The time
frames for the different stages depend on the whole course length. When you are teaching
a one-week course in industry, the tiny assignment may take only a few minutes, the
small assignment less than an hour whereas the large assignment will run throughout the
whole week.

SEE BEFORE HEAR

This pattern was written by Mary Lynn Manns’ Lab-Discussion-Lecture-Lab Pattern [MLM] and
revised by Mary Lynn Manns.

You want to introduce a new concept. Maybe you want to introduce one
implementation of ONE CONCEPT – SEVERAL IMPLEMENTATIONS, provide the
SOLUTION BEFORE ABSTRACTION or you want to help the students to EXPERIENCING
IN THE TINY, SMALL AND LARGE.

❊❊❊

Learners often find it difficult to convert what they've heard in the classroom into
skills they can use outside the classroom. They will remember less of what they
hear than what they see and experience. However, in the typical and quite
practical classroom lecture format, instructors are often heard saying such things
such a “<this> is what will happen when you do <this>”. But, a “hear before see”
approach is quite abstract, and can make it difficult for the learner to later make
use of the concepts in the lecture.

❊❊❊

Therefore, give learners the opportunity to see and experience a new concept
before they hear about it. Encourage learners to record, and to reflect upon, what
happened when they are involved in the learning.

❊❊❊

For example:

See: Give learners the resources to complete a hands-on lab exercise with detailed step-
by-step instructions and references to documentation where clarification may be obtained.
Include questions throughout to encourage learners to record and analyze their
experiences. Periodically allow time for a learner-centered discussion of unfamiliar
concepts and problems encountered along the way.

Hear: Following the “see” experience, a more traditional “hear” lecture can be delivered
to solidify the new concepts that were introduced during the lab. References should be
made to the experiences the learners just had during the "see" phase.

Learners become actively involved in their learning because they are introduced to new
concepts as they are using them. Instructors can give less abstract lectures since learners
will have had experience with the concepts before a lecture session.

Because of the effort required to develop the hands-on lab for the “see” experience, the prep
time can initially be tedious for the instructor. However, the increased level of student
comprehension that this approach provides seems to decrease the necessity for extensive
follow-up and review periods.

An optional follow-up exercise can be given in the form of a more complex lab that
reinforces and tests each learner's understanding of the new concepts. The instructor can
then evaluate it.

Mistake Pattern and Toy Box [JBx] are See Before Hear patterns.

BUILD AND MAINTAIN CONFIDENCE

This pattern was written by Jutta Eckstein Challenge Pattern [KB] and revised by Jutta Eckstein.

You want to use SOLUTION BEFORE ABSTRACTION, without providing the solution
yourself.

❊❊❊

You want to teach complex concepts, but you do not want to provide solutions.

You want the students to uncover solutions for complex problems by drawing on
their own experience rather than just letting them approve what they have
learned by listening.

How do you challenge students to develop their own solutions?

Students expect the one and only right solution to a problem from the instructor.
But often there is no single answer, but many equally correct answers.

❊❊❊

Therefore, present a problem taken, like in SOLUTION BEFORE ABSTRACTION
from the domain of the students. Provide some hints via questions that have to
be answered and that may lead to a solution. Prepare the students for what they
will have to do on their own, so the objectives are clear. You might also want to
point out where they have to be cautious and where to focus.

Ask the students to develop several solutions by using THREE BEARS with
accompanying criteria for defining the context in which the solution works.

Often students are irritated or uncertain how to progress. Some people aren’t able to
handle a situation like this at all. If this is the case, then you have to provide hints, so the
students are able to overcome their own uncertainty and handle the situation for
themselves. The difficulty for you is to find the optimum way between providing a
structure (so the students won’t explore for themselves anymore) and laissez-faire, which
can mean an incompetent trainer.

Sollmann 1994 reports that the more often students are in this uncertain situation the
better they can handle this kind of situation, or rather the longer it takes till they really
feel uncertain. It is like in a physical training setting, the more you overcome your limits,
the higher your limits will become.

❊❊❊

Walt Disney once used this technique when he found himself dissatisfied with the features
of his staff‘s animations. Finally, in frustration, he told the animators to exaggerate the
movement of all their characters. The result was just what Disney was looking for.
[Thomas1981]

BUILT-IN FAILURE

This pattern was written by Kent Beck’s Three Bears Pattern [KB] and revised by Eugene
Wallingford.

You want to BUILD AND MAINTAIN CONFIDENCE, so the students trust their own
learning capabilities.

❊❊❊

Learning comes from experience, and much useful experience comes from
failure. But a learner who lacks confidence will fear failure, and this fear
impedes or even prevents learning.

Confident learners use failure and frustration as investments whose payoff comes
in future success. They know that a „wrong answer“ offers the opportunity to
discover a misunderstanding and to arrive at a better understanding of the topic.
These knowledge „repairs“ will lead to improved performance over time.

However, many learners do not start out as confident. Traditional schooling
typically discourages or punishes failure through grading schemes and
recognition of academic achievement. Employees may fear that their employers
will see failure as a sign of inability and lead to fewer workplace rewards. As a
result, the confidence to fail is rare and hard to develop.

❊❊❊

Therefore, remove the fear of failure as a barrier to learning by making failure a
part of the learning process.

Create an environment in which failure is an expected and desired outcome of the
learning activity. Build an activity that requires learners to reflect on both the
„correct“ and „incorrect“ answers as a way to better understand the topic. Make
sure that all learners will encounter the negative outcome and that no one will be
stigmatized by not reaching the right answer.

❊❊❊

If you want to learn inline skating you have to learn how to fall. You have to accustom
yourself to do things wrong in order to be able to deal with the problem later on.

Richard Gabriel (often) tells a story of two classes in pottery. One class was told to make
one ”best” pot on which they would be graded. The other was told to make lots of pots and
they would be graded strictly on weight. The second group had no fear and the best pots
came uniformly from the second group.

Eugene Wallingford reports from one of his students, who in order to learn Java, went
home one night and compiled many, many programs in which she had made intentional
syntax errors, just so that she could get a ”feel” for the kind of error messages she would
receive!

THREE BEARS builds failure into the process of learning to recognize a point along a
continuum. MISSION IMPOSSIBLE poses a problem that cannot be solved with a naive
understanding of the topic, encouraging students to explore the topic more deeply.
Mistake [JBx] asks students directly to make and deal with errors.

THREE BEARS1

This pattern was written by Kent Beck’s Three Bears Pattern [KB] and revised by Eugene
Wallingford.

You want the students experience ONE CONCEPT – SEVERAL IMPLEMENTATIONS.

❊❊❊

Many problems challenge the learner to find a solution positioned along some
continuum. Solving these problems effectively requires that the learner discover a
point or a range along the continuum that satisfies the demands of the problem.
But finding such a solution requires that the learner have experience with many
problems, balancing the demands of each in a particular solution. Until they
have sufficient experience, they are likely to be unsuccessful finding the right
balance.

How often should a developer refactor a program? How strictly should a
musician follow the rhythm of the piece? How often should a point guard shoot
the basketball?

1 THREEBEARSderives from a German fairy tale in which a little girl encounters a number of
situations in which her three choices are ‘too hot, too cold, just right’, ‘too hard, too soft, just
right’, and so on.

The process of learning to find such balances creates substantial barriers to the
learner gaining experience. The learner will likely be unsuccessful on the first few
attempts, unlike many other learning activities. Even if the learner stumbles into
the right balance, chances are that the learner will not recognize that the balance
has been struck, or why.

❊❊❊

Therefore, ask the learner to create solutions that lie at both extremes, as well as
at some balance point. The extreme answers will certainly be ‚wrong‘ for the
given problem, but they give the learner permission to explore the boundaries of
the continuum.

First, define the continuum for the learner. The simplest approach is to explain
the reductio ad absurdum at both extremes.

Second, conduct an experiment that gives the learner a chance to locate the
balance for problems whose solutions lie in three different places: at one end of
the continuum, somewhere in the middle, and at the other end of the continuum.

Third, conduct a review that gives the learner an opportunity to reflect on the
experiment.

It is a good idea to combine THREE BEARS with BUILD AND MAINTAIN CONFIDENCE.

The reductio ad absurdum strategy usually gives the learner enough background to begin
learning the continuum. You might also pose a set of questions that will be asked of the
resulting balance. For example, in reviewing the frequency of refactoring, you could ask
‚Was the team able to get into a good flow while programming?‘, ‚Was there sufficient
time for testing?‘, and ‚Did the team deliver its product?‘

Your experiment should ensure that the learner experiences all three options close enough
in time to accurately compare them. Scope the topic to something that can be
accomplished in less than an hour, if possible.

Reviewing the experiment is critical if the learner is to understand how well the solutions
balance the problem‘s demands. A useful technique is to have the learner briefly present
the three solutions to other learners, and then have the rest of the group guess which was
which. This can help learners who have not yet learned the true boundaries of the
continuum.

Some topics are more complex. You may find that reducing a problem to a single
continuum oversimplifies the topic so much that the learner arrives at a simplistic
understanding. In such cases, you will want to follow up this experience with others that
address the problem‘s other facets.

❊❊❊

THREE BEARS has been used to teach requirements engineering. The instructor asks the
learners to write stories that will define the system: one too large in scope to be useful, one
too small, and one just right.

Similarly, THREE BEARS can help learners to explore the ethical continuum that faces
computing professionals. Groups of three are asked to write stories about obviously
ethical applications of computing technology, obviously unethical applications, and

applications that are still unsettled. Later, the groups share their stories with each other
and try to place the stories on the continuum. Interesting discussions usually follow as
the groups disagree with one another about the relative placement of their stories.

Many experienced learners routinely use THREE BEARS in their own learning all the time.
For example, a Smalltalk programmer might learn the constraint-ish ValueModel
framework by deliberately writing systems that use it too much. Some programmers learn
object-oriented programming by writing some programs in which every variable is an
instance of a different class and other programs that use too few classes and objects.

MISSION IMPOSSIBLE

This pattern was written by Alan O’Callaghan’s [AOC] and revised by Eugene Wallingford.

You use BUILT IN FAILURE to help the students to come up with their own
solutions.

❊❊❊

Many teaching situations are limited in duration. The instructor can choose to
omit important concepts in order to fit the available time, but then the learners
will not have been exposed to the full subject. Alternatively, the instructor can
choose to generalize the material to the point that the whole subject can be
covered in the available time. However, such generalizations can oversimplify a
rich, subtle topic to the point that the learners think they have mastered it, even
though they do not yet have sufficient experience with its details.

Any sufficiently complex topic can be understood at many levels of abstraction.
When understanding at deeper levels supports a generalization, then abstraction
can be a powerful tool.

But often new learners arrive at an abstraction not via generalization from a
deeper understanding but from a simplification of something they do not yet
understand. Such simplistic truths are dangerous, because they lead learners to
construct simplistic solutions that do not really solve problems. Worse, the
learners‘ lack of experience prevents them from recognizing the shortcomings
in their thinking.

❊❊❊

Therefore, present the learner with a problem that seems straightforward to
solve but whose complete solution requires a much deeper understanding than
the basic concepts afford.

Choose a problem that at first glance suggests a solution based directly on the
general concepts that the learners have encountered. However, a complete
solution to the problem should require careful consideration of a number of
issues. Indeed, make the development of a complete solution not normally be
possible due to insufficient time to study the full range of issue, insufficient
information available to the learner, or the lack of any solution at all, despite first
impressions.

Follow up the exercise with a brief summary that explains why the problem was
impossible.

The contrast between the learner‘s initial reaction (‚This is easy!‘) and the result of
some study (‚This is a more difficult problem than first we thought!‘) is crucial to
the success of this pattern. It creates in the learner recognition that the subject is
subtler than originally thought. The instructor‘s explanation at the end should
make sure that the learner understands both the impossibility of the problem and
the role played by their still naive understanding in not seeing it.

Use this technique just after the learner has conquered a logical unit of material. It can be
used to form a link between the learning of basic concepts and the more advanced topics
needed to master the ‚impossibility‘ of the problem.

You should be able to present the problem in a short form, and yet it should be complete
enough that the learner has sufficient information to begin work. The learner should be
able to appreciate the unforeseen subtlety of the problem within about 45 minutes, or the
learner will begin to lose interest in the problem.

MISSION IMPOSSIBLE makes learners suspicious about their understanding of basic
concepts so that they continually question those concepts and improve their
understanding of them. Learners occasionally need to be ‚shocked‘ into deeper thinking
about what they are doing in order to appreciate subtleties. This becomes even more
important when such ideas as ‚objects model the real world‘ can be understood in a naive
way that disarms the learner in the face of real problems.

Misused, or overused, the pattern can destroy a learner’s confidence in what she is
learning. Some learning contexts create unstated expectations that the student that they
will be ‚spoon-fed‘ instruction. Many university students come from schools in which rote
learning is the norm. In industry, new ideas are often viewed only as tools or as
programming techniques and so require ‚instruction‘, not ‚education‘. MISSION
IMPOSSIBLE requires initiative and risk-taking on behalf of the learner, and therefore may
not be appropriate in such contexts.

This pattern follows General Concepts First [VF] and is a form of Repeat Topics [VF] that
aims for a deeper understanding of the repeated topics.

❊❊❊

In historic tradition, Zen masters pose questions such as ‚What is the sound of one hand
clapping?‘ in order to encourage their students to lose their worldly inhibitions and
achieve enlightenment.

MISSION IMPOSSIBLE has been used in teaching of object-oriented concepts both to
university students and to software professionals. Often, the basic truths about objects
that distinguish them from structured methods are expressed in a way that leads the
learner to underestimate the intellectual effort needed to master object-oriented concepts.
A common example is Meyer‘s ‚Objects are there for the picking‘ in response to the
question, ‚Where do I find the objects?‘) Such a situation creates a perfect opportunity to
apply this pattern.

For example, a one-hour tutorial [AOC2] uses MISSION IMPOSSIBLE to help learners
realize that even relatively simple programs become tortuous when they apply a naive

notion of object in both analysis and design. This tutorial uses a simple scenario from
[Cook 1994] to help the learners see the need for transformation from the objects in the
analysis model to those in the design model.

Larger Than Life [JBx] is a variation of MISSION IMPOSSIBLE, where students benefit from
seeing larger problems than they can solve at their current state of development.

EXPOSE THE PROCESS

This pattern was written by Byron Weber-Becker’s Expose The Process Pattern [BWB] and revised
by Markus Voelter.

You want to introduce a new concept. Maybe you want to introduce one
implementation of ONE CONCEPT – SEVERAL IMPLEMENTATIONS, provide the
SOLUTION BEFORE ABSTRACTION or you want to help the students to EXPERIENCING
IN THE TINY, SMALL AND LARGE.

❊❊❊

Examples and exercises form a vital part of any teaching effort. However, often
examples and (correct solutions to) exercises only show the final result. The
process of getting there, including the necessary decisions, dead-ends and
backtrackings, alternatives and principles are not obvious. As a result, students
get frustrated because they do not find the same solution, or simply do not know
how to approach the problem.

❊❊❊

Therefore, when showing examples or “ideal” solutions to exercises, also show
and explain the process of getting there. Show the critical decision points to the
students and allow them to make their own proposals on how to go on. When
asking them to do an exercise, ask them to also document alternative solutions,
and why they do not lead to the desired result. When discussing the exercise in
class, let the students show and discuss alternative solutions.

Be sure to honor “silly questions” (as in Jeanine Meyer and Joe Bergin’s Gold Stars
for Confusion [JM]) and honor the students’ work on a topic, even if the correct
solution one was not found (as proposed in Exercise Emphasize Process by
Fricke/Voelter in [VF]).

This pattern takes time. You have to reduce the amount of what you cover in a
session; however, the things still covered will be more thoroughly understood.

Do not use the pattern when introducing a new topic. It is not very productive to
let the students struggle to find a solution without suitable tools – and then
showing an elegant solution using a new technique. The pattern works best
during a consolidation phase, when students are practicing formerly introduced
topics and learning how best to apply them.

Also make sure that you don’t bore students. If they are all so good that they see
the right solution from the beginning, don’t force them to care about other
solutions, which they would consider in practice.

❊❊❊

There are several ways to implement this pattern. One is to go into a lecture/seminar with
a problem, but without a solution, trying to find the solution together with the
participants. This is a bit risky, in case you do not find the solution... Alternatively, you
can try to find the solution offline before, and write down all decision points, etc.

You should try to involve students. But be careful: If the good students always suggest
the “ideal” solution first, you have to suggest worse solutions to get the variety. This is
not ideal, therefore start by showing weaker solution first, then asking the students for
improvements.

The pattern has been used in the introductory programming course at the University of
Waterloo (Waterloo, Ontario, Canada), and in the books An Introduction to Computer
Science using Java by Kamin et. al. [KMR] and Designing Pascal Solutions: A Case
Study Approach by Clancy et al. [CLF].

STUDENT DESIGN SPRINT

This pattern was written by Joseph Bergin’s Student Design Sprint [JB2] and revised by Joseph
Bergin.

You want the students experience ONE CONCEPT – SEVERAL IMPLEMENTATIONS.

❊❊❊

Students need to practice design at all levels. They also need quick feedback and
peer review on early attempts. Most educators recognize now that students need
to be exposed to design early. Most also recognize the need for teamwork and for
critical analysis. We eventually need to teach system design, but beginners need
program design as well. If we don't teach it then students will develop their
own ad-hoc techniques that may reinforce bad habits. If you use a Spiral [JB]
approach the elements of simple design should come in the first cycle.

❊❊❊

Therefore, use some variation of the following highly structured activity. This
activity can take place in a seminar, classroom, or in a lab.

Divide the students into groups of two (or three). Give them a design problem
and ask the teams to produce a design outline in 15-20 minutes. There should be a
written sketch of the design in that time, perhaps with CRC cards if it is an object
design. The instructor can look over shoulders and comment or not, but few hints
should be given. Questions should be answered freely.

At the end of 15-20 minutes, the instructor poses a set of questions about the
designs without asking for answers. The questions should be such that they
cannot be favorably answered by some set of poor designs.

The students are then regrouped by combining pairs of nearby groups, so that
you now have groups of 4 or five students and each group has two of the original
designs. The task is now modified slightly and the groups are asked to produce a
new design.

After another 15-20 minutes the instructor again poses a set of questions for
thought, regroups the students again into still larger groups, modifies the task
slightly and again puts the students to work.

This can continue for as many cycles as the instructor wishes. At the end, the
instructor should evaluate the resulting designs and make comments. It may be
enough to show one or two of the best designs and explain why these are better
than the others. If poor designs are also to be shown, it might be best if the names
of the designers are not attached.

Alternatively, the groups can be required to present and justify their designs and
the rest of the class can critique them.

For some situations one cycle may be all that is needed, followed by a discussion
of the issues. In this case the instructor can ask the groups which designs had
certain characteristics.

❊❊❊

Alistair Cockburn [AC] has a wonderful exercise for students designing a coffee machine
in about three or four cycles in which the requirements become more sophisticated each
cycle. In the first cycle the machine can deliver coffee for 35 cents. In the second it can also
deliver soup for 25 cents.

This can be used in program design in the early phases of a student's learning. The task
can be to write a function with a given set of pre and post conditions. The tasks in the
later cycles can be to tighten the pre conditions and/or strengthen the post conditions.

Alternatively, the task could be to develop some code with a given invariant and the
questions can involve ways that a user might invalidate the invariant if the design is not
sound.

This pattern can be used when learning data structure design. For example, the students
can be asked to design a linked list, without telling them how it will be used. They must
design a protocol and pick an implementation strategy. The instructor can then suggest
some uses to which a linked list might be put and ask if the design supports that use.

ROUND ROBIN

This pattern was written by Kent Beck and David Bellin's Round Robin [BB] pattern and revised
by Joseph Bergin.

You want all students to participate in a discussion.

❊❊❊

One of the most difficult aspects of teamwork is getting everyone in the room to
work on equal footing. Both organizational differences (jobs, position, etc.) and
personality can quickly and inadvertently lead to a core of speakers and a core of
listeners. Moreover, the fact that the listeners are not talking does not mean they
are not thinking or that they are in agreement. However, you want to get
everyone's participation and input and you especially want to encourage the
quieter members to take a more active role.

❊❊❊

Therefore, use a round robin technique to solicit suggestions.

Go around the room or table. As each member of the team contributes an idea,
write it down on the board. The facilitator should do the writing since the other
members of the team should be watching and thinking. If there is a team member
who does not have enough information on a particular problem to contribute to
the brainstorming, that person can act as scribe to keep them involved. However,
if a team is chosen well, every member should be an important source of ideas.
The goal of the round robin is to allow the group to move ahead at an even tempo
but to give people enough time to think. Short pauses are fine, but breaks of more
than 60 seconds can interrupt the momentum and ideas may be lost. To keep
things going you can establish a "pass" policy. If someone is really stumped, they
can "pass" for that round, but they should take their regular turn the next time
around. The facilitator needs to be sensitive here. If someone is slower to speak,
don't cut off his or her turn too soon. At the same time, keep things moving so
that other people do not forget what they want to say. The brainstorming is
complete when everyone in the group has to pass.

However, this works better in small groups (6 or so) than large (20). You may need to
factor out a subset of the group to use this effectively. Or you can partition the large
group into smaller groups and use this in each group. To do that requires a facilitator in
each group.

❊❊❊

For example, you can use this in coming up with suggestions for the initial CRC cards for
a class design of a new problem being considered by the class. You can also use it to get
comments on the flaws in a suggested design. You can also use this in any Brainstorming
[DB] session.

Appendix A: Pattern Format
The patterns in this pattern language use a form similar to the one used by
Alexander in his book A Pattern Language [CA]. All patterns are written in the
you-form, thus directly talking to you, the teacher. In addition to the pattern
name, each pattern is divided in several sections. The sections are separated by
❊❊❊. It starts setting the context, which is followed by the forces and the problem
in bold font. The next section outlines the solution in bold font including the
consequences, limitations and disadvantages. The discussion of the solution is in
italics. The last section in italic font provides examples and additional
information. References to patterns inside this pattern language are in CAPITAL
LETTERS, references to patterns published elsewhere are in normal font, but
followed with the [pointer] to the reference section.

Appendix B: Introduction to Patterns and Pattern
Languages
This pattern language under construction is for instructors in industry and
academia. They will probably not be familiar with patterns and pattern languages.
That’s why we include a small section on this topic. If you are familiar with
patterns and pattern languages you can skip this section.

The first pattern language was a called „A Pattern Language – Towns, Buildings,
Constructions“ and was published in 1977 by the architect Christopher Alexander
et. al. [CA]. He defines a pattern as follows:

Each pattern describes a problem that occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

That means, that patterns offer a format and a process for sharing successful
practices in a way that allows each practice to be used by a variety of people in
many different ways.

Alexander introduces 253 patterns in the architecture domain. He presents
patterns for everything from designing independent regions, to cities, to buildings
and even to designing single rooms. By relating these patterns within a common
problem space he transforms this collection of patterns to a pattern language. It
provides a consistent way to create a comfortable environment for people to live
in.

At the beginning of the nineties the software community started using
Alexander’s technique to capture and communicate wisdom in software
development. The movement began at OOPSLA, a major object-oriented
conference. The first book that was publicly available was „Design Patterns“ by
Gamma, Helm, Johnson, and Vlissides called the Gang of Four [GoF]. It was
published in 1994 and presented a catalog of 23 patterns on how to design
software systems. In the meantime, domain specific patterns and pattern
languages have been created, and the pattern movement has its own set of
conferences, namely the PLoP, EuroPLoP, ChiliPLoP and KoalaPLoP (PLoP stands
for Pattern Languages of Programs). Many of the patterns presented at these
conferences can be found in [PLoP1, PLoP2, PLoP3, PLoP4]

In the more recent past the scope of the pattern languages expanded once again, now
including patterns of group working, designing software in groups, and pedagogic
patterns, that deal with the problem of how to teach (especially IT topics). This pattern
language in progress is intended as another addition to the pedagogic pattern movement,
which can be found on the internet at [PPP].

References
AC Alistair Cockburn, Website,

http://members.aol.com/acockburn/

AOC Alan O’Callaghan, Mission Impossible,
http://sol.info.unlp.edu.ar/ppp/pp21.htm

AOC2 Alan O’Callaghan, The Topsy-Turvy Worlds we live and work in
– and the different ways we need to use objects in each of them,
Proceedings of the Educators’ Symposium, OOPSLA 1998

BB Kent Beck and David Bellin, Round Robin,
http://sol.info.unlp.edu.ar/ppp/pp6.htm

BL Billy B.L.Lim, Programming in the Tiny, Small, Large,
http://sol.info.unlp.edu.ar/ppp/pp10.htm

Bus96 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M. (1996). Pattern-Oriented Software Architecture: A
System of Patterns. Chichester, England: John Wiley & Sons.

BWB Byron Weber-Becker, Expose the Process,
http://sol.info.unlp.edu.ar/ppp/pp56.htm

CA Christopher Alexander et.al., A Pattern Language: Towns –
Buildings – Construction. Oxford University Press 1977

Cook 1994 S. Cook, J. Daniels, Designing Object Systems, Prentice Hall
1994

CLF Clancy, Linn, Freeman, Designing Pascal Solutions: A Case
Study Approach, 1992

DB David Bellin, Brainstorming,
http://sol.info.unlp.edu.ar/ppp/pp4.htm

Fow97 Fowler, Martin (1997). Analysis Patterns. Reusable Object
Models. Reading, MA: Addison-Wesley Longman, Inc.

GLC Gary L. Craig, Discussion-Activity-Review-Lab-Review,
http://sol.info.unlp.edu.ar/ppp/pp18.htm

GoF Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley 1995

IC Ian Chai, Concrete to Abstraction,
http://sol.info.unlp.edu.ar/ppp/pp1.htm. This references
the patterns “Acquaintance Examples” and “Colorful
Analogy” from Dana Anthony, Patterns for Classroom
Education, Proceedings of PloP’95

JB Joseph Bergin, Spiral, http://csis.pace.edu/ppp/pp32.htm

JB2 Joseph Bergin, Student Design Sprint,
http://sol.info.unlp.edu.ar/ppp/pp60.htm

JBx Joseph Bergin, Mistake, Toy Box, Larger than Life,
http://csis.pace.edu/~bergin/PedPat1.3.html

JE Jutta Eckstein, Learning to Teach and Learning to Learn,
Proceedings of EuroPLoP 2000, UKV Konstanz, 2001.

JM Jeanine Meyer and Joseph Bergin, Gold Stars for Confusion,
http://csis.pace.edu/ppp/pp58.htm

KB Kent Beck, The Three Bears,
http://sol.info.unlp.edu.ar/ppp/pp17.htm

KMR Kamin, Mickunas, Reingold An Introduction to Computer
Science using Java, McGraw-Hill, 1998

MJ Marcelo Jenkins, Design-Do-Redo-Redo pattern,
http://sol.info.unlp.edu.ar/ppp/pp13.htm

MLM Mary Lynn Manns, See before Hear,
http://sol.info.unlp.edu.ar/ppp/pp60.htm

PPP Pedagogical Patterns Project,
http://www.pedagogicalpatterns.org

PLoP1 Coplien, Schmidt (eds.), Pattern Languages of Program Design,
Addison Wesley 1995

PLoP2 Vlissides, Coplien, Kerth (eds.), Pattern Languages of Program
Design 2, Addison Wesley 1996

PLoP3 Martin, Riehle, Buschmann (eds.), Pattern Languages of
Program Design 3, Addison Wesley 1998

PLoP4 Harrison, Foote, Rohnert (eds.), Pattern Languages of Program
Design 4, Addison Wesley 2000

Sollmann
1994

Sollman and Heinze. Visionsmanagement. Erfolg als
vorausgedachtes Ergebnis. (Vision Management. Success as
a pre-thought result.) Orell Füssli, 1994.

Thomas
1981

Frank Thomas, Ollie Johnston, Disney Animation: The Illusion
of Life Abbeville Press, New York 1981

VF Markus Voelter, Astrid Fricke, SEMINARS,
http://www.voelter.de/seminars

Web59 Webster’s New Collegiate Dictionary. (1959). G & C
Merriam Co.

Authors

Joseph Bergin can be reached at berginf@pace.edu

Jane Chandler can be reached at jane.chandler@port.ac.uk

Jutta Eckstein can be reached at jeckstein@acm.org

Mary Lynn
Manns

can be reached at manns@unca.edu

Klaus
Marquardt

can be reached at marquardt@acm.org

Markus Völter can be reached at voelter@acm.org

Eugene
Wallingford

can be reached at wallingf@cs.uni.edu

Acknowledgements
Many thanks are due to Martine Devos, the EuroPLoP shepherd for this pattern
collection, who had to struggle with a whole committee of authors and editors.

