
A System of Patterns for Fault Tolerance∗

Titos Saridakis
NOKIA Research Center

PO Box 407, FIN-00045 NOKIA Group, Finland
Tel: (+358) 7180 37293 Fax: (+358) 7180 36308

titos.saridakis@nokia.com

ABSTRACT
Many fault tolerance techniques that have been devised, applied and improved
over the past three decades represent general solutions to recurring problems in
the design of fault tolerant computer systems. This document presents some of
the best known such techniques, formatted as patterns and organized by a
classification scheme into a system of patterns for fault tolerance. This pattern
system reveals the relations among the presented patterns for fault tolerance and
delineates a number of ways in which these patterns can be used to refine each
other. In turn, these refinement relations create design frameworks for the devel-
opment of fault tolerant systems with different efficiency and complexity charac-
teristics.
Keywords: Design Framework, Fault Tolerance Pattern, Pattern classification.

1 INTRODUCTION
The indissoluble bonds of computers and failures have produced a plurality of fault
tolerance techniques that can satisfy, potentially, any requirement regarding the be-
havior of a computer system in the presence of faults. Consequently, the develop-
ment of fault tolerant systems does no longer rely on the (re)invention of ways to deal
with various faults that may occur; rather, it relies on the selection of the most appro-
priate one among the well-understood fault tolerance techniques. Each such tech-
nique provides a solution to a recurring fault tolerance problem under a set of clearly
defined assumptions about the type of the failures it deals with and the constraints
about the system behavior it guarantees. Hence, a well-understood fault tolerance
technique outlines a pattern that applies to concrete problems in the design of fault
tolerant systems in the specific context defined by aforementioned assumptions and
constraints. In this document a set of fault tolerance techniques are formatted and
presented as patterns following a form similar to the one used in [3].
In general terms, fault tolerance provides techniques to confront faults and their con-
sequences in a system. These techniques describe the detection of errors in a sys-
tem, and the means that ensure the recovery of a system from errors or the masking
of errors in a system. The patterns presented in this document cover all these three
constituents of fault tolerance, which are error detection, recovery and masking. The
different ways in which the presented patterns can be combined to produce a com-
plete solution for the design of fault tolerant systems are captured in a classification
scheme for the fault tolerance patterns. This classification scheme transforms the

∗ Copyright 2002  by NOKIA. All rights reserved. Permission is granted to copy for EuroPLoP 2002.

mailto:titos.saridakis@nokia.com

presented set of patterns into a system of patterns that provides guidelines on how to
refine the design of a system to transform it into its fault tolerant counterpart.
Although the patterns presented in this document provide solutions to fault tolerance
problems, the content of this document is addressed to software designers and archi-
tects and not to fault tolerance experts. The presented patterns capture widely used
fault tolerance techniques from the field of distributed systems [10] and their compre-
hension does not require profound fault tolerance expertise.
Each pattern in this document presents a solution to a specific problem in detecting,
recovering from, or masking an error. Combining these patterns according to the
guidelines given by the classification scheme provides complete solutions to fault tol-
erance problems in the design of a system. Hence, each such combination of pat-
terns forms the basis for a design framework for fault tolerant systems with specific
properties (e.g. regarding the failure types they can cope with, the number of simul-
taneous errors they can tolerate, the time and complexity overhead of the fault toler-
ant mechanisms, etc).
The remainder of this document is organized in four sections. Section 2 contains a
summary of the background information regarding fault tolerance that is necessary
for a non-expert to follow the presentation. Section 3 presents a set of patterns that
capture well-understood fault tolerance techniques for error detection, recovery and
masking. In section 4 these patterns are organized as a pattern system with the help
of a classification scheme that reveals their relations (mainly dependency and re-
finement relations). The same section contains also a discussion on the relation of
the presented system of fault tolerance patterns with other well-known pattern sys-
tems. The document concludes in section 5 with a brief summary of the presented
work, a brief evaluation of the importance of the system of fault tolerance patterns in
the software design and some reflections on the future of pattern systems for prob-
lems specific to non-functional properties (e.g. security, timeliness, configurability,
etc).

2 BACKGROUND
The long term and profound study of failures in computer systems has delivered a
clear understanding of the different types of failures that may occur and a variety of
techniques for dealing with them. The intent of this section is to provide a summary of
the fault tolerance background that would help system designers and architects to
probe deep into the patterns presented in the following section. This background is
taken from [7] and it includes the system model adopted in this document, the defini-
tions of fault tolerance related terms, a description of the failure types considered in
the context of this document, and a brief presentation of essential fault tolerance
concepts.
A system is an entity with a well-defined behavior in terms of output it produces and
which is a function of the input it receives, the passage of time and its internal logic.
By “well-defined behavior” we mean that the output produced by the system is previ-
ously agreed upon and unambiguously distinguishable from output that does not
qualify as well-defined behavior. The well-defined behavior of a system is called the
system specification. A system interacts with its environment by receiving input from
it and delivering output to it. It may be possible to decompose a system into constitu-
ent (sub)systems. In CBSE terms a system is a component that may consists of the
assembly of a number of smaller components. In OO terms a system is a composi-
tion of objects, each of which may be itself a composition of smaller objects.

A failure is said to occur in a system when the system’s environment observes an
output from the system that does not conform to its specification. An error is the part
of the system, e.g. one of its constituent (sub)systems, which is liable to lead to a
failure. A fault is the adjudged cause of an error and may itself be the result of a fail-
ure. Hence, a fault causes an error that produces a failure, which subsequently may
result to a fault, and so on. Let us consider the following example:

A software bug in an application is a fault that leads to an error when the
application execution reaches the point affected by the bug, which in turn
makes the application crash which is a failure. By crashing, the applica-
tion leaves blocked the socket ports it used which is a fault and the com-
puter on which the application crashed has socket ports which are not
used by any process nevertheless not accessible to running applications
which is an error, and which in turn leads to a failure when another appli-
cation requests these ports.

Based on the above, a fault in a system may propagate to the system's environment.
A system is called fault tolerant when it can deal with faults and their consequent er-
rors in such a way that it does not violate its specification, i.e. the environment of a
fault tolerant system does not perceive a failure of the system. Hence, a fault tolerant
system does not propagate faults to its environment. Fault tolerance techniques are
practical methods that describe how to detect an error and confine it within a system.
The confinement can be based on the restoration of the subsystem on which the er-
ror was detected before that error infects other parts of the system, or it can be based
on the masking of the error occurrence (e.g. by isolating the subsystem on which the
error was detected and using some form of redundancy to deliver the expected out-
put).
Each fault tolerance technique provides different guarantees regarding the properties
associated to the system qualities such as the time or the space overhead introduced
to the normal execution of the system, the efficiency of the reaction to a failure, the
design complexity added to the system, etc. In general, fault tolerance techniques are
based on the following principles:
• Constituents of a fault tolerant system monitor other constituents for failure occur-

rences. By observing a failure, the monitoring subsystem can detect an error on
the monitored subsystem. These monitoring activities are often called error detec-
tion.

• In order to enable the restoration of a subsystem after an error has been detected
on it, appropriate information regarding the subsystem may be saved when certain
conditions are met (e.g. at regular time intervals, right after the subsystem delivers
some output according to its specification, when the subsystem decides by its own
to save the appropriate information, etc). This saving activity is often called check-
pointing. The appropriate information save in a checkpointing activity may vary
from a complete snapshot of the internal subsystem representation (i.e. the state
of the subsystem) to selected piece of its internal representation that have
changed since the last checkpoint.

• When a monitoring subsystem observes a failure on a monitored subsystem, it
may activate a mechanism that will use the last checkpoint of the latter subsystem
in order to eliminate the error that led to the observed failure and restore the sub-
system to an error-free state. These restoration activities are often called error re-
covery.

• In some cases, when a monitoring subsystem observes a failure on a monitored
subsystem, it does not let the erroneous behavior of the latter subsystem affect
any other parts of the overall system by using a some form of redundancy (e.g. a
duplicate of the failed subsystem) to cover up for the observed failure. These ac-
tivities are often called error masking.

Before proceeding with the design of a fault tolerant system, the designer must de-
termine the following two issues. First, the system designer must determine the type
of failures that will be confronted by the fault tolerance mechanism. Different fault tol-
erance techniques have been developed to deal with different failure types and they
may differ in all three means for error detection, recovery and masking. Hence, the
failure types that will be confronted by a system play a decisive role in the selection
of the fault tolerance techniques that can be applied to render the system fault toler-
ant. Some representative failure types are (see [10] for more information on failure
types):

fail-stop failures where the failed system ceases execution without producing any
output and the failure is detectable by its environment,

•

•

•

•

crash failures where the failed subsystem ceases execution without producing any
output but the failure might not be detectable by its environment,
omission failures where a subsystem fails to deliver output to (send omission), or
receive input from (receive omission) its environment, and
byzantine failures where the failed subsystem exhibits arbitrary behavior.

The second issue that must be determined is the unit of failure in the fault tolerant
system. The unit of failure is the minimum part of the system (i.e. the minimum sub-
system) where an error will be confined. Given the recursive decomposition of a sys-
tem into subsystems, any subsystem may potentially be decomposed to smaller con-
stituent systems. By defining the unit of failure, the system designer determines the
subsystems that will be monitored for failures. These subsystems may not be fault
tolerant themselves, and the fault tolerance mechanism that will be put in place will
not provide any guarantees about them experiencing failures. However, their compo-
sition will contain error detection, recovery and/or masking activities that will render
the resulting system fault tolerant with respect to the faults that may appear inside
each unit of failure. For example, in a distributed system consisting of a number of
machines interconnected over a network, the unit of failure can be set to be a ma-
chine or the set of processes that belong to the same application running on a single
machine, or even the individual processes.
Once the failure type and the unit of failure issues are sorted out, the designer has a
clear indication about the what fault tolerance mechanisms to choose and where to
apply them in the system in order to make it fault tolerant. Still, a number of other fac-
tors will influence the final decision of the exact fault tolerance mechanism to be em-
ployed and its exact configuration. These factors include the number of simultaneous
errors that may occur, the design, space and time complexity of the fault tolerant
mechanism and how these align with the requirements about the corresponding sys-
tem qualities, etc.

3 FAULT TOLERANCE PATTERNS
This section presents in the form of patterns a selection of fault tolerance techniques
that deal with error detection, recovery and masking.
3.1 Fail-Stop Processor
Dealing with byzantine failures is extremely difficult and costly because of the arbi-
trary nature of the error that leads to the failure. For example, a system that exhibits
failures of byzantine semantics may deliver erroneous output, or no output at all, or it
may duplicate (correct or erroneous) output. Dealing with all different possible errors
is costly (e.g. different detection techniques for different types of errors) and bears a
big overhead regarding the design, space and time complexity of the system. When
developing a system out of constituents which by their very nature may experience
byzantine failure, it is desirable to transform these constituents to constituents with
equivalent functional specification but with more "designer friendly" failure semantics.
The Fail-Stop Processor pattern [14] describes one way for achieving that.

3.1.1 Context
The Fail-Stop Processor pattern applies to a system that has the following
characteristics:

The system is deterministic, i.e. its output is solely defined by its initial state, the
sequence of inputs it has processed so far and the current time (in terms of clock
time and/or time elapsed since the system initialization).

•

•

•

•

The errors the system may experience are transient, i.e. as opposite to permanent
errors like those caused by algorithmic faults.
The errors the system may experience are not due to errors in the input it re-
ceives.
The errors the system may experience cause it to exhibit byzantine failures.

3.1.2 Problem
In the above context, the Fail-Stop Processor pattern solves the problem of
transforming the byzantine failures to fail-stop failures by balancing the following
forces:
• The error is confined within the failed system and does not infect its environment.
• The error is detected by the environment.
• The time overhead on error-free system execution is kept very low.
3.1.3 Solution
The solution to the above problem suggested by the Fail-Stop Processor pat-
tern is based on the replication of the system and the comparison of the replicas out-
put for unanimity. Each one of the replicas is called a processor in the remainder. All
processors are identical to the system on which the Fail-Stop Processor pattern
is applied, hence they are deterministic. They are all initialized simultaneously and
they receive exactly the same input, hence at any given time and in the absence of
errors they must produce the same output. If the output produced by the processors
are not exactly the same, then an error has occurred and the ensemble of the proc-
essors must be shut down in order to prevent the propagation of the error in the envi-
ronment.

Note that since the processors are identical, if a software bug exists in one of them
then it exists in all and it may cause an error on all processors that will be manifested
in the same erroneous output, which cannot be detected by comparing the proces-
sors’ outputs. This is why the context in which the Fail-Stop Processor pattern
applies assumes only transient errors. Similarly, if the error in the system is a conse-
quence of erroneous input, then both processors will produce the same (erroneous)
output and the error will not be detectable by comparison of the processors’ outputs.
Hence, the context in which this pattern applies does not cover erroneous input.
The number of simultaneous errors that this solution can deal with depends on the
number of the processors that have been created. In general, with N+1 processors
this solution guarantees to provide fail-stop failure semantics in the presence of N
simultaneous errors on the processors. The simplest form of this solution consists of
two processors and is capable of transforming a single error of byzantine nature on
one of the processors into a fail-stop failure.
3.1.4 Structure
The solution suggested by the Fail-Stop Processor pattern consists of three en-
tities:
• The processors, which are deterministic systems, they are identical to each other

and they may experience byzantine failures. To deal with N simultaneous errors
N+1 processors are required, each of them mapped to a different unit of failure.

• The distributor, which ensures that all the processors receive exactly the same in-
put (in terms of content and delivery order). It must be mapped to a different unit of
failure than any of the processors in order not to get affected by the errors that
may occur on them.

• The comparator, which receives the outputs of all the processors and compares
them. If there is not unanimity in the outputs or if not all processors deliver output,
the comparator notifies the environment about the error and stops producing any
further output. The comparator must be mapped to a different unit of failure that
any of the processors in order not to get affected by the errors that may occur on
them.

Figure 1a illustrates graphically the structure of a simple fail-stop processor with two
processors. All input to the fail-stop processor is received by the distributor, which
subsequently sends it to both processors. All output of the two processors is sent to
the comparator which decides whether an error has occurred on any of the proces-
sors and if so, it shuts down the whole fail-stop processor. Figure 1b gives the activity
diagram that describes the fail-stop processor.

Figure 1. The stru
tern.

distributor

processor1 processor2

comparator

(b)

[unanimity]
[no unanimity]

Comparator
compares proc-
essors’ outputs

Processor
sends output to

comparator

Processor
sends output to

comparator

Distributor for-
wards input to

every processor

Processors are
initialized simul-

taneously

output

input

unit of
failure

Besides the abo
Processor patte
ting in place the f
taneously and as
not specific to th
not further discus
3.1.5 Conseque
The Fail-Stop
+ It introduces l

overhead amo
ceives and the

+ The design co
since the distr
have quite sim

+ Since many fa
Processor pa
that have to de

+ The processo
Processor p
that in practice
be subject to
functionality wo

(a)
cture (a) and the activity diagram (b) of the Fail-Stop Processor pat-

ve entities involved in the solution suggested by the Fail-Stop
rn, there is another entity needed which will be responsible for put-

ail-stop processor mechanism, i.e. for initializing all processor simul-
suring that they have the same initial state. However, this entity is
e fault tolerance solution suggested by this pattern and hence it is
sed here.
nces
Processor pattern has the following benefits:

ow time overhead since the processors function in parallel. The
unts to the time it takes for the distributor to multicast the input it re-
 time it takes for the comparator to compare and deliver the output.
mplexity introduced by the Fail-Stop Processor pattern is low,
ibutor and comparator, which are entities specific to this pattern,
ple functionality.
ult tolerance techniques assume crash failures, the Fail-Stop
ttern is the basic building block for many fault tolerant architectures
al with byzantine failures.

rs are replicas of the original system on which the Fail-Stop
attern is applied, without any additional functionality. This means
 the processors can be replicas of a legacy system, which cannot
any internal changes such as those that are needed if additional
uld be required by the processors.

The Fail-Stop Processor pattern imposes also some liabilities:
− It introduces relatively elevated space overhead that is proportional to the number

of simultaneous errors it can deal with.
− Although the processors may have byzantine failure semantics, the distributor and

the comparator must not experience byzantine failures. The Fail-Stop Proc-
essor pattern can be recursively applied to each of these entities but eventually
there must be distinct units of failure in the system, which do not experience fail-
ures of byzantine type.

− The distributor and the comparator introduce single points of failure in the system.
The distributor can be replaced by a atomic broadcast protocol if such is available.
Both the distributor and the comparator can be render fault tolerant by applying
some of the following fault tolerance patterns. In any case, the resulting design
complexity of the Fail-Stop Processor pattern is elevated compared to the
one graphically presented in Figure 1.

− The Fail-Stop Processor pattern does not provide means to tolerate faults in
a system. Rather, it provides means detect errors and to render the most demand-
ing type of failures (byzantine failures) into fail-stop failures that are must easier to
deal with from a design and an implementation standpoint.

3.1.6 Related Patterns
The Fail-Stop Processor pattern mainly aims at transforming errors that lead to
byzantine failures into errors that lead to fail-stop failures. The evolution of this pat-
tern that actually masks errors that lead to byzantine failures is the Active Repli-
cation pattern (see section 3.10).

3.2 Acknowledgment
One way to detect crash failures is to have the subsystem, which receives some in-
put, to acknowledge the reception to the sender. The sender, which is charged with
the error detection responsibility, sets a timer right after providing the input to the
monitored subsystem and the latter must acknowledge the reception of the input
within a given time interval, often called a timeout. If no acknowledgement arrives at
the sender within the predefined timeout, the sender can deduce that an error has
occurred on the monitored subsystem.
3.2.1 Context
The Acknowledgment pattern applies to a system that has the following
characteristics:
•

•

The errors the monitored system may experience cause it to exhibit omission or
crash failures.

• The frequency of interactions between the monitored system and monitoring sys-
tem may vary a lot.

• The time it takes for the monitoring system to contact the monitored system is
bound and known.

3.2.2 Problem
In the above context, the Acknowledgment pattern solves the problem of detecting
an error on a system by balancing the following forces:
• The time overhead introduced by the detection mechanism should be kept to a

minimum.
The information that the monitored system has failed is of importance only when
that system is in use (i.e. it has received some input and it is expected to produce
the corresponding output).

• The communication between the monitored system and the monitoring system
must not increase unnecessarily, e.g. there must not be any communication over-
head when the monitoring system does not wish to interact with the monitored sys-
tem.

3.2.3 Solution
The solution to the above problem suggested by the Acknowledgment pattern is
based on acknowledging the reception of input within a given time interval. Once the
monitoring system provides input to the monitored system, it set a local timer to a
predefined timeout. While the timer is counting down from the timeout, the monitoring
system waits to receive an acknowledgment regarding the input reception by the
monitored system. If the acknowledgment arrives before the timeout is expired then
the monitored system is considered to function correctly, otherwise an error will be
detected to have occurred on the monitored system.
Notice that the solution can detect errors that lead to omission or crash failures of the
monitored system, but by no means does it guarantee the correctness of the input
reception by the monitored system or the correct process of the input by the latter.
Sometimes, especially in distributed systems, the lack of an acknowledgment within
the timeout period might be due to transient communication errors. In order to pre-
vent such failures from resulting into the detection of an error on a system that has

not actually experienced one, it is possible to set a number of successive attempts to
send the same input and wait for the corresponding acknowledgement before the
monitoring system deduces that an error has occurred on the monitored system.
3.2.4 Structure
The solution suggested by the Acknowledgment pattern consists of the following
entities:
• The sender, which together with the next entity (timer) constitute the monitoring

system. The sender is the system that needs to contact the monitored system.
• The timer, which is responsible for counting down from the timeout every time an

input is provided to the monitored system. When the timeout period expires for N
consecutive times without receiving an acknowledgment from the monitored sys-
tem, the timer detects an error on the monitored system and informs the sender.
The timer must be mapped to a different unit of failure than the monitored system
(usually it is mapped to the same unit of failure as the sender of the input to the
monitored system).

• The receiver, which together with the next entity (acknowledger) constitute the
monitored system. The receiver is the system to which the sender intends to con-
tact.

• The acknowledger, which is responsible to send an acknowledgment to the timer
every time the monitored system receives input. The acknowledger must be
mapped to the same unit of failure as the receiver.

Figure 2 gives a graphical illustration of the structure and the activity diagram of the
Acknowledgment pattern.

Figure 2. The stru

ack

unit of
failure

acknow
ledger

input

receiver

timer sender

Timeout expires; moni-
tored system failed

Input received;
ack sent

[no ack.] [ack. received]

Timer set
to timeout

Sender sends
input to receiver

3.2.5 Consequen
The Acknowledg
+ It introduces lo
+ The design com

shown in Figur

(a)
cture (a) and the a

ces
ment pattern ha

w time overhead
plexity introduc

e 2.
(b)
ctivity diagram (b) of the Acknowledgment pattern.

s the following benefits:
 that amounts to the time needed to set the timer.
ed by the Acknowledgment pattern is very low, as

+ The Acknowledgment pattern does not introduce any space overhead. Both the
timer and the acknowledger entities do not map to additional architectural or soft-
ware components; rather they describe some additional functionality associated
with the monitoring and the monitored system respectively.

+ In the case of OO systems, where the interaction among subsystems (objects) is
based on method invocations, the acknowledgment can be merged with the reply
to an invocation, reducing further the design complexity introduced by the Ac-
knowledgment pattern.

The Acknowledgment pattern imposes also some liabilities:
− The error on the monitored system is detected only after some input has been is-

sued to it. This means that although an error might have already occurred on the
system long time ago, it will remain undetected until the moment when some input
is sent to the monitored system. Hence, the time overhead for detecting an error
can be quite elevated.

− The timeout must be set based on the time it takes for the input to reach the moni-
tored system plus the time it takes for the acknowledge to reach the monitoring
system. In many cases it is very difficult to have an exact figure for the aforemen-
tioned times, and the timeout is usually the result of estimations based on statisti-
cal observations. Hence, configuring an optimum timeout is not a trivial task.

− The timer and the acknowledger represent functionalities that are added to the
monitoring and the monitored system respectively. Consequently, the application
of this pattern on legacy systems might be very demanding in terms of implemen-
tation effort and space overhead (e.g. in case the legacy system needs to be en-
capsulated in a container which provides the timer or the acknowledger functional-
ities.

3.2.6 Related Patterns
In order to ensure that the error detection provided by the Acknowledgment pattern
concerns a real problem (i.e. a crash of the receiver) and not just a transient commu-
nication failure, the Acknowledgment pattern can be combined with other patterns
like the Riding Over Transients and the Leaky Bucket Counter patterns
from [1].

3.3 I Am Alive
Another way to detect crash failures is to receive in regular time intervals notifications
from the monitored system as a sign that it is alive. These “I am alive” signals serve
as indication of the well-being of the monitored system.
3.3.1 Context
The I Am Alive pattern applies to a system that has the following characteristics:

The errors the monitored system may experience cause it to exhibit crash failures. •

•

•

• The frequency of interactions between the monitored system and monitoring sys-
tem may vary a lot.

• The frequency of communication between the monitored system and the monitor-
ing system is clearly below the saturation limit of the communication network.

• The time interval between successive outputs from the monitored system is not
bound or not known.

• The time it takes for the monitoring system to contact the monitored system is
bound and known.

3.3.2 Problem
In the above context, the I Am Alive pattern solves the problem of detecting an
error on a system by balancing the following forces:

The detection of an error on the monitored system must take place as soon as
possible, even before the environment needs to communicate with the monitored
system.
The monitoring system must have a regularly updated knowledge regarding the
occurrence of errors on the monitored system.

3.3.3 Solution
Given the variation in the interaction frequency between the monitoring and the moni-
tor systems and the unbound time interval between their successive interactions, ap-
plying the Acknowledgment pattern will not allow the monitoring system to have a
regularly updated knowledge regarding the occurrence of errors on the monitored
system. The solution to the above problem suggested by the I Am Alive pattern is
based on the regular notification of the monitored system well-being to the monitoring
system. In order to minimize the time needed to detect an error in the case of long
idle communication periods, the monitored system must send in regular time inter-
vals, called again timeouts, a signal of its well-being (e.g. a message saying "I am
alive"). On the other hand, the monitoring system sets a timer to the value of the
timeout and waits for the "I am alive" signal from the monitored system. If the timeout
expires without receiving the expected "I am alive" signal then the monitoring system
detects an error on the monitored one.
Notice that the solution can detect errors that lead to crash failures of the monitored
system, but by no means does it guarantee the correctness of the monitored system
execution.
Similar to the Acknowledgment pattern, the I Am Alive pattern can be slightly
modified to tolerate transient communication failures and not let them to lead to the
detection of an error on a correct system. The technique is the same: instead of a
single timeout, the monitoring system waits for N consecutive timeout periods for the

"I am alive" signal. Only if the N-th timeout expires without having received any "I am
alive" signals, the monitoring system detects an error on the monitored one.
3.3.4 Structure
The solution suggested by the I Am Alive pattern consists of the following entities:
• The monitor, which together with the next entity (timer) constitute the monitoring

system. The monitor is the system that needs to know about the well-being of the
monitored system.

• The timer, which is responsible for counting down from the timeout continuously
until it receives an "I am alive" signal or until the timeout expires. In the former
case it just resets the timeout and starts the countdown anew; in the latter case it
detects an error on the monitored system. If the timer is configured to deal with N-
1 transient communication failures, the error will be detected only after the N-th
consecutive timeout has expired without receiving any "I am alive" signal. The
timer must be mapped to a different unit of failure than the monitored system
(usually it is mapped to the same unit of failure as the monitor).

• The subject, which together with the next entity (beacon) constitute the monitored
system. The subject is the system which the monitor needs to know about its well-
being.

• The beacon, which sends "I am alive" signals in regular time intervals that are
smaller or equal to the timeout the timer uses. The beacon must be mapped to the
same unit of failure as the monitored system.

Figure 3 gives a graphical illustration of the structure and the activity diagram of the I
Am Alive pattern.

Figure 3.

monitor

unit of
failure

I am alive

beaconsubject

timer

[no "I am alive"
before

timeout expired]

Timeout expires; moni-
tored system failed

["I am alive" received
before timeout expired]

Timer set
to timeout

Beacon sends
"I am alive"

)

3.3.5 Con
The I Am
+ It introd

sending
+ The des

Figure 3

(a
The structure (a) and the activity diag

sequences
Alive pattern has the following

uces low time overhead (setting
 the "I am alive" signal at the mon
ign complexity introduced by the
.

(b)
ram (b) of the I Am Alive pattern.

benefits:
 the timer at the monitoring system and
itored system).
I Am Alive pattern is low, as shown in

+ The I Am Alive pattern does not introduce any space overhead. Both the timer
and the beacon entities do not map to additional architectural or software compo-
nents; rather they describe some additional functionality associated with the moni-
toring and the monitored system respectively.

+ The I Am Alive pattern detects error on the monitored system at a regular ba-
sis, even during long idle communication periods.

The I Am Alive pattern imposes also some liabilities:
− It introduces a communication overhead (due to the "I am alive" signals) even

when the monitored system is not active (i.e. it does not receive any input and it is
not expected to produce any output other than the "I am alive" signals).

− It introduces computational overhead both to the monitoring and to the monitored
system (the timer and the beacon respectively) even in the case of idle communi-
cation periods.

− The timeout must be set based on the time it takes for the "I am alive" signal to
reach the monitoring system. In many cases it is very difficult to have an exact fig-
ure for the aforementioned times, and the timeout is usually the result of estima-
tions based on statistical observations. Hence, configuring an optimum timeout is
not a trivial task.

3.3.6 Related Patterns
In order to ensure that the error detection provided by the I Am Alive pattern con-
cerns a real problem (i.e. a crash of the subject) and not just a transient communica-
tion failure, the I Am Alive pattern can be combined with other patterns like the
Riding Over Transients and the Leaky Bucket Counter patterns from [1].

3.4 Are You Alive
The I Am Alive pattern introduced communication and computational overhead
even in idle communication periods as the price for detecting an error on the moni-
tored system in minimum time. A more flexible solution regarding that overhead is to
have the monitoring system probing the monitored system for its well-being. This so-
lution is captured in the Are You Alive pattern.

3.4.1 Context
The Are You Alive pattern applies to a system that has the following characteris-
tics:

The errors the monitored system may experience cause it to exhibit crash failures. •
• The frequency of interactions between the monitored system and monitoring sys-

tem may vary a lot.
• The frequency of communication between the monitored system and the monitor-

ing system is clearly below the saturation limit of the communication network.
• The time interval between successive outputs from the monitored system is not

bound or not known.
• The time it takes for the monitoring system to contact the monitored system is

bound and known.
3.4.2 Problem
In the above context, the Are You Alive pattern solves the problem of detecting
an error on a system by balancing the following forces:
• Errors occurred on the monitored system must be detected in the shortest period

that is convenient for the monitoring system.
• The communication overhead introduced must be relatively low.
3.4.3 Solution
In order to avoid the regular communication introduced by the I Am Alive pattern
and at the same time to be able to detect an error on the monitored system even
though no input needs to be provided to it like in the Acknowledgment pattern, the
monitoring system may probe the monitored one whenever it wishes by sending an
"are you alive" signal to it. Upon reception of that signal, the monitored system must
send back an acknowledgment to inform the monitoring system about its well-being.
This acknowledgment is very similar to the one send in the Acknowledgment pat-
tern as a reaction to the communication from the monitoring system. After sending
the "are you alive" signal, the monitoring system sets a timer to a predefined timeout
and waits for the acknowledgment before that timeout expires. If the acknowledgment
does not arrive within the timeout period then the monitoring system detects an error
on the monitored one.
Notice that the solution can detect errors that lead to crash failures of the monitored
system, but by no means does it guarantee the correctness of the monitored system
execution.
Similar to the previous two patterns, the Are You Alive pattern can be slightly
modified to tolerate transient communication failures and not let them to lead to the
detection an error on a correct system. The technique is the same: instead of a single
timeout, the monitoring system waits for N consecutive timeout periods for the ac-

knowledgment of the "are you alive" signal. Only if the N-th timeout expires without
having received any acknowledgments, the monitoring system detects an error on
the monitored one.
3.4.4 Structure
The solution suggested by the Are You Alive pattern consists of the following en-
tities:
• The monitor, which together with the next entity (timer) constitute the monitoring

system. The monitor is the system that needs to know about the well-being of the
monitored system.

• The timer, which is responsible for sending an "are you alive" signal, setting a
timeout and counting down from it while waiting for the acknowledgment to arrive.
If no acknowledgment arrives before the timeout expires, the timer detects an er-
ror on the monitored system. If the timer is configured to deal with N-1 transient
communication failures, after the timeout expires the timer will send again an "are
you alive" signal and repeat the previous process. An error will be detected only
after the N-th consecutive timeout has expired without receiving any acknowl-
edgment. The timer must be mapped to a different unit of failure than the moni-
tored system (usually it is mapped to the same unit of failure as the monitor).

• The subject, which together with the next entity (acknowledger) constitute the
monitored system. The subject is the system, which the monitor needs to know
about its well-being.

• The acknowledger, which is responsible to send an acknowledgment to the timer
every time it receives an "are you alive" signal. The acknowledger must be
mapped to the same unit of failure as the monitored system.

Figure 4 gives a graphical illustration of the structure and the activity diagram of the
Are You Alive pattern.

Figure 4. T

are you alive

unit of
failure

ack

acknow
ledger

subject

timer monitor

Timer sends "are you
alive" and sets timeout

[no ack before
timeout expired]

Timeout expires; moni-
tored system failed

[ack. received before
timeout expired]

Timeout
count down

Acknowledger
sends ack.

(a)
he structure (a) and the activity diag

(b)

ram (b) of the Are You Alive pattern.

3.4.5 Consequences
The Are You Alive pattern has the following benefits:
+ It introduces low time overhead (at the monitoring system the overhead amounts

to setting the timer and sending the "are you alive" signal and at the monitored
system the overhead amounts to sending the acknowledgment).

+ The design complexity introduced by the Are You Alive pattern is low, as
shown in Figure 4.

+ This pattern does not introduce any space overhead. Both the timer and the ac-
knowledger entities do not map to additional architectural or software components;
rather they describe some additional functionality associated with the monitoring
and the monitored system respectively.

+ This pattern detects errors on the monitored system on demand from the monitor-
ing system.

The Are You Alive pattern imposes also some liabilities:
− It introduces communication overhead (due to the are-you-alive signals) even

when there is no need for communication according to the system specification.
− It introduces computational overhead both to the monitoring and to the monitored

system (the timer and the acknowledger respectively) even in the case of idle
communication periods.

− Like in the previous two patterns, the setting an optimum timeout is not a trivial
task.

3.4.6 Related patterns
In order to ensure that the error detection provided by the Are You Alive pattern
concerns a real problem (i.e. a crash of the subject) and not just a transient commu-
nication failure, the Are You Alive pattern can be combined with other patterns
like the Riding Over Transients and the Leaky Bucket Counter patterns
from [1].

3.5 Roll Forward
Once an error has been detected on the monitored system, the system must recover
from it in order to qualify as fault tolerant. As a reminder, error recovery includes the
actions of re-establishing the last correct state that has been saved in some previous
checkpoint. One way of achieving error recovery is to have the fault tolerant system
consisting of two replicas. One replica will be reacting to every input sent to the fault
tolerant system. If no error occurs on that replica and that replica produces success-
fully the output designated by its specification, then the second replica is rolled for-
ward to the new system state. If an error occurs while the replica is processing the
received input, then the failed replica is discarded and the second replica remains
unaffected by the error.
3.5.1 Context
The Roll Forward pattern applies to a system that has the following characteris-
tics:

The errors the system may experience are detectable. •
•

•

•

The errors the system may experience are not due to errors in the input it re-
ceives.
Error-free executions of the system are clearly below any time constraints imposed
on them.
The system is capable of exporting its current state and importing a new state.

3.5.2 Problem
In the above context, the Roll Forward pattern solves the problem of recovering
from an error on a system by balancing the following forces:
• The time to recover from an error must be kept minimum.
• The error-free system execution must not violate any time constraints imposed on

it.
3.5.3 Solution
The solution to the above problem suggested by the Roll Forward pattern is
based on the use of two replicas of the system. One replica will process the new in-
put to the system and if no error occurs then the other replica will roll forward to the
new state. The operation of rolling forward is based on the first replica exporting the
new system state and the second replica importing it. If an error occurs on the first
replica during the processing of the input or the delivering of the output or during the
export of its new state, then that replica is discarded and the second replica, which is
unaffected by the occurred error, takes over the responsibility of providing the func-
tionality expected by the fault tolerant system. If an error occurs on the second rep-
lica during the import of the new state, then the second replica is discarded and the
first replica, which is unaffected by the occurred error, takes over the responsibility of
providing the functionality expected by the fault tolerant system.
Notice that the failure semantics to which the occurred errors may lead are not impor-
tant for the solution suggested by the Roll Forward pattern. The only requirement
is that the error is detectable, which is one of the characteristics of the context in
which this pattern applies.

The above solution can recover from the occurrence of a single error. However, it
cannot deal with the occurrence of two or more simultaneous errors (e.g. one error
occurring on the first replica and at the same time another error occurring on the sec-
ond replica). To be able to recover from 2N simultaneous errors we need to create
2N+1 replicas so at least one will remain unaffected by the occurred errors.
Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after recovering from the first error occurrence. Even in the re-
vised solution for dealing with 2N simultaneous errors, the fault tolerant system even-
tually loses its fault tolerance capabilities (e.g. after the occurrence of 2N simultane-
ous errors or after the occurrence of 2N consecutive errors). To preserve the fault
tolerance capabilities of the fault tolerant system, a mechanism that offers dynamic
management of the replica group must be put in place. The dynamic replica group
management will be responsible to replace with new ones the replicas discarded af-
ter the occurrence of errors.
3.5.4 Structure
The solution suggested by the Roll Forward pattern consists of the following enti-
ties:
• The replicas, which are copies of the original system identical to each other and

which are monitored for errors. Each replica is capable of exporting its state and
importing a new state upon request. Each replica must be mapped to a different
unit of failure.

• The manager, which is responsible for receiving all input meant for the fault toler-
ant system and forwarding it to the appropriate replica. In the absence of errors,
the manager triggers the copy of the new state from the replica that processed the
latest input to the other replicas that kept a previously error-free state. The man-
ager also relies on an error detection mechanism to detect errors that may occur
on the replicas. When such an error occurs on a replica, the manager is responsi-
ble for discarding that replica. The manager must be mapped to a different unit of
failure than any of the replicas.

Figure 5 gives a graphical illustration of the structure and the activity diagram of the
Roll Forward pattern. In Figure 5a, block arrows indicate flow of information and
the open arrow labeled “copy state” indicates a signal from the manager to the replica
which treats the input.

Figure 5. Th

 input

Replica1 proc-
esses input

[error] Manager discards
failed replica

[no error]

Manager sends
input to replica1

[no error]

Replica1 copies new
state to replica2

[error] Manager dis-
cards replica1

manager

copy state

unit of
failure

output

input

export
state

replica1

replica2

3.5.5 Cons
The Roll F
+ The desig

the introd
one replic

+ The time
replica is

+ Since the
to the oth
desired t
and loss
“copy sta

The Roll F
− The spac

system is
− The time

the replic
the other

3.5.6 Relat
The manag
The mecha
ment, I Am
and 3.4 resp

(a)

e structure (a) and the act

equences
orward pattern has the
n complexity associated
uction of the manager a
a to the other).

 overhead imposed by
 discarded, and the unaf
 manager is responsible
er, the frequency of “co

radeoff between perform
of information in case o
te” operation).
orward pattern impose
e overhead introduced
 replicated.
 overhead imposed by th
a is able to receive and
 replica.

ed patterns
er entity in the Roll F
nism for the error detec
 Alive and Are You
ectively.
(b)

ivity diagram (b) of the Roll Forward pattern.

 following benefits:
 to this pattern is relatively low and it amounts to
nd the roll forward operation (copy the state from

this pattern is low when errors occur: the failed
fected replica processes the subsequent inputs.
 for triggering the copy of state from one replica
py state” operations can be adjusted to meet the
ance (small number of “copy state” operations)

f an error (number of processing steps since last

s also some liabilities:
by this pattern is relatively elevated; the entire

is pattern in the absence of errors is high; before
 process new input, it must copy its new state to

orward pattern monitors the replicas for errors.
tion can be based on one of the Acknowledg-
 Alive patterns presented in sections 3.2, 3.3

3.6 Rollback
The Rollback pattern presents another way to recover from the occurrence of er-
rors using system replicas. One replica receives and processes the input meant for
the fault tolerant system and at certain moments it can checkpoint its state (i.e. export
its state to an entity that is not affected by its errors). When an error occurs, the sec-
ond replica uses the checkpoint to restore some error-free state the former replica
had reached before the error occurred.
3.6.1 Context
The Rollback pattern applies to a system that has the following characteristics:

The errors the system may experience are detectable. •
•

•

The errors the system may experience are not due to errors in the input it re-
ceives.
The system is capable of exporting its current state and importing a new state.

3.6.2 Problem
In the above context, the Rollback pattern solves the problem of recovering from
an error on the system by balancing the following forces:
• The time overhead for error-free system execution must be kept minimum.
• The error-free state restored after an error occurred is as close as possible to the

last error-free state the failed replica had reached before it experienced the error.
3.6.3 Solution
The solution to the above problem suggested by the Rollback pattern is based on
the use of two replicas of the system and a storage where the checkpoints are kept.
The replica, which receives and processes the input meant for the fault tolerant sys-
tem, exports to the storage at certain moments the state it has reached. If the copy-
ing of state from one replica to the other has low time overhead, then the second rep-
lica can play the role of the storage. Otherwise, the storage can be a piece of shared
memory or a file in a file system common to the two replicas. If an error occurs on the
first replica during the processing of the input, that replica is discarded and the sec-
ond replica imports the last checkpoint and uses it to roll back to the last known error-
free state of the fault tolerant system.
Notice that the failure semantics to which the occurred errors may lead are not impor-
tant for the solution suggested by the Rollback pattern. The only requirement is
that the error is detectable, which is one of the characteristics of the context in which
this pattern applies.
The above solution can recover from the occurrence of a single error. However, it
cannot deal with the occurrence of two or more simultaneous errors on the replicas
(e.g. one error occurring on the first replica and at the same time another error occur-
ring on the second replica). To be able to recover from 2N simultaneous errors on the
replicas we need to create 2N+1 replicas so at least one will remain unaffected by
the occurred errors.
Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after recovering from the first error occurrence. Even in the re-
vised solution for dealing with 2N simultaneous errors, the fault tolerant system even-
tually loses its fault tolerance capabilities (e.g. after the occurrence of 2N simultane-

ous errors or after the occurrence of 2N consecutive errors). To preserve the fault
tolerance capabilities of the fault tolerant system, a mechanism that offers dynamic
management of the replica group must be put in place. The dynamic replica group
management will be responsible to replace with new ones the replicas discarded af-
ter the occurrence of errors.
If the errors that may occur on the fault tolerant system do not lead to fail-stop or
crash failures where the failed system ceases execution, the system replicas are not
necessary. The single copy of the system can checkpoint at certain moments its state
to the storage and when an error occurs, the failed system which has not crashed
can import the last checkpoint and continue its execution from there.
3.6.4 Structure
The solution suggested by the Rollback pattern consists of the following entities:
• The replicas, which are copies of the original system identical to each other and

which are monitored for errors. Each replica is capable of exporting its state and
importing a new state upon request. Each replica must be mapped to a different
unit of failure.

• The storage, which is used to store the checkpoints that contain the state that the
replica that processes the input exports at certain moments. The replicas may re-
place the storage in the following way: when the checkpoints are created, each
replica exports them to the other replicas and imports form them the checkpoints
these replicas have created. However, if the storage is used then it must not be
subject to errors, i.e. it must behave like stable storage that survives errors.

• The manager, which is responsible for receiving all input meant for the fault toler-
ant system and forwarding it to the appropriate replica. In the absence of errors,
the manager triggers the copy of the new state from the replica that processed the
latest input to the storage. The manager also relies on an error detection mecha-
nism to detect errors that may occur on the replicas. When such an error occurs
on a replica, the manager is responsible for discarding that replica. The manager
must be mapped to a different unit of failure than any of the replicas.

Figure 6 gives a graphical illustration of the structure and the activity diagram of the
Rollback pattern. In Figure 6a, block arrows indicate flow of information and open
arrows indicate signals from the manager to the storage and to the replica which
treats the input.

Figure 6. The st

replica2 replica1

export
state

input unit of
failure

import
state

storage

save
state

provide
state

manager

output

input

[checkpoint] Replica1 saves
checkpoint

Replica1 proc-
esses input

[error]

Manager instructs
replica2 to import
last checkpoint

[no error]

Manager discards
replica 1

[no
checkpoint]

Manager sends
input to replica1

[no error]

Manager decides
about checkpoint

[error]

)

3.6.5 Consequ
The Rollback
+ The design c

complexity of
manager and

+ The time ove
amounts to t
time overhea
checkpoint op
tem.

+ An extreme c
instructs a ch
with the nam
cleaning it fro
design compl

The Rollback
− The space ov

replicas and
points. If the
of crash failu
checkpoint an
fault tolerant

(a

ructure (a) and the activity diagram

ences
pattern has the following benefit
omplexity of this pattern is rela
 the Roll Forward pattern) an
 the checkpoint operation.
rhead introduced by this patter
he checkpoint operation when
d depends on the frequency
eration and it can be tuned to

onfiguration of the Rollback p
eckpoint only at the start up of
e "system purge" because it ro
m any possible error effects. Th
exity and the time overhead ass
pattern imposes also some liabi
erhead introduced by this patte

the storage. One way to circum
fault tolerant system does not e
res then the manager can instru
d to restore the last error-free
system do lead to fail-stop or c

(b)

 (b) of the Rollback pattern.

s:
tively low (comparable to the design
d it amounts to the introduction of the

n during error-free system execution
the manager instructs it. Hence the
in which the manager instructs the
 take optimal values for a given sys-

attern is the one where the manager
the system. This scheme is often met
lls the system back to the initial state
e system purge scheme removes the
ociated to the checkpoints.
lities:
rn is relatively elevated, including the
vent this liability is to use only check-
xperience errors that lead to fail-stop
ct the failed system to import the last

state. If the errors experienced by the
rash failures, then a dynamic replica

management can be used to create a replica just in time to import the last check-
point. This scheme reduces the space overhead of the Rollback pattern but it in-
creases the time overhead in the presence of an error since a new copy of the
system must be created and initialized to the last checkpoint.

− The time overhead introduced by this pattern in the presence of an error is rela-
tively elevated and it amounts to the time needed to import the last checkpoint by
the replica that takes over the processing of the input to the fault tolerant system.

− Tuning the manager to perform checkpoints in optimal intervals is a difficult task
and it requires extensive study of the system implementation in order to create a
statistical model that indicates the frequency of errors at different periods of the
system operation.

− If the platform where the fault tolerant system will be deployed does not offer any
persistent storage or stable storage facilities which could be used to accommodate
the storage entity of the Rollback pattern, then the designing this entity in a way
that does not introduce a single point of failure in the fault tolerant system intro-
duces a significant design overhead.

− In the extreme case of the Rollback pattern (the system purge scheme), the time
overhead in the presence of an error is elevated since it includes the time neces-
sary to create and initialize a new copy of the system. Moreover, the new copy of
the system is found at its initial state and all information associated with the execu-
tion of the failed system up until its failure is completely lost. This is often too re-
strictive to let the system purge scheme be of practical use.

3.6.6 Related patterns
The manager entity in the Rollback pattern monitors the replicas for errors. The
mechanism for the error detection can be based on one of the Acknowledgment, I
Am Alive and Are You Alive patterns presented in sections 3.2, 3.3 and 3.4 re-
spectively.

3.7 Passive Replication
The Roll Forward and the Rollback patterns provide solutions for recovering
from errors that may occur on a system. However, the processing performed by the
fault tolerant system while the error occurred is lost in both cases and in the best
case the system recovers to the state it had reached right before starting to process
the last input it received before the error occurred. In many circumstances this loss of
information is not good enough for the fault tolerant system under design. Rather, so-
lutions that provide error masking must be employed. Error masking techniques
guarantee that the occurrence of an error will not result in the loss of the results of
the processing the system was performing when the error occurred.
One way to mask the occurrence of errors is to employ system replicas, use one of
them for handling input and the other replicas as backups in the case an error occurs
on the original. This technique is also known in the fault tolerance literature with the
name primary-backup (see [10]).
3.7.1 Context
The Passive Replication pattern applies to a system that has the following
characteristics:

The errors the system may experience are detectable. •
•

•

The errors the system may experience are not due to errors in the input it re-
ceives.
The system is capable of exporting its current state and importing a new state.

3.7.2 Problem
In the above context, the Passive Replication pattern solves the problem of
masking an error on the system by balancing the following forces:
• The input received by the system must be processed and the designated output

must be delivered independently of whether an error occurs on the system.
• The time overhead for error-free system execution must be kept minimum.
• If an error occurs on the system, the environment is able to tolerate a delayed out-

put from the system which is takes considerably longer than the usual delay occur-
ring in error-free execution.

3.7.3 Solution
The solution to the above problem suggested by the Passive Replication pat-
tern is based on the solution suggested by the Rollback pattern. Two system repli-
cas are created, one that receives and processes the input meant for the fault toler-
ant system (called primary), and another replica (called backup) that remains inactive
under error-free execution of the system. Every new input sent to the primary is regis-
ter to a log facility. A manager decides when the primary must checkpoint to storage
its state (e.g. before the registered input is forwarded to the primary). The log for-
wards to the primary the input and the latter processes it. If an error occurs on the
primary while processing the input, the backup is activated, imports the last check-
point, receives from the log facility the last registered input and starts processing it,
replacing the failed primary.
Notice that the failure semantics to which the occurred errors may lead are not impor-
tant for the solution suggested by the Passive Replication pattern. The only re-

quirement is that the error is detectable, which is one of the characteristics of the
context in which this pattern applies.
The above solution can mask the occurrence of a single error. However, it cannot
deal with the occurrence of two or more simultaneous errors (e.g. one error occurring
on the primary and at the same time another error occurring on the backup). To be
able to recover from 2N simultaneous errors 2N+1 replicas are needed so at least
one will remain unaffected by the occurred errors.
Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after masking the first error occurrence. Even in the revised so-
lution for dealing with 2N simultaneous errors, the fault tolerant system eventually
loses its fault tolerance capabilities (e.g. after the occurrence of 2N simultaneous er-
rors or after the occurrence of 2N consecutive errors). To preserve the fault tolerance
capabilities of the fault tolerant system, a mechanism that offers dynamic manage-
ment of the replica group must be put in place. The dynamic replica group manage-
ment will be responsible to replace with new ones the replicas discarded after the oc-
currence of errors.
In practice, since the backups are inactive prior to the occurrence of an error, the
manager may choose not to create the backups at system start up but only when the
error occurs. This variance can be practically useful especially in cases where the
space constraints are very tight and the creation of a new copy of the system has
relatively low time overhead.
If the errors that may occur on the fault tolerant system do not lead to fail-stop or
crash failures where the failed system ceases execution, the backup of the fault tol-
erant system is not necessary. The primary can checkpoint at certain moments its
state to the storage and when an error occurs, the failed primary which has not
crashed can import the last checkpoint and continue its execution from there.
3.7.4 Structure
The solution suggested by the Passive Replication pattern consists of the fol-
lowing entities:
• The primary, which is a copy of the system that processes input and delivers out-

put in the absence of errors. In addition, the primary exports its state (checkpoint)
when the manager instructs so. It must be mapped to a different unit of failure than
any of the following entities.

• The backup, which is identical to the primary, remains inactive in error-free execu-
tion and gets activated when an error on the primary is detected. Upon its activa-
tion, the backup is instructed by the manager to import the last checkpoint and
then it receives from the log the last input in order to take over primary’s role. The
backup must be mapped to a different unit of failure than the primary.

• The log, which is the facility responsible for registering all input intended for the
primary and for replaying the last input when requested by the manager. The log
must be mapped to a different unit of failure than any of the primary and the
backup.

• The storage, which is the facility responsible for storing the state that the primary
exports and for providing the last exported state to the backup upon request from
the manager. The storage must not be subject to errors, i.e. it must behave like
stable storage that survives errors.

• The manager, which is responsible to activate the backup when an error occurs on
the primary, request from the storage to provide the last state saved by the pri-
mary, and request from the log to replay the last registered input. The manager re-
lies on an error detection mechanism to detect errors that may occur on the pri-
mary. The manager must be mapped to a different unit of failure than any of the
primary and the backup.

Figure 7 gives a graphical illustration of the structure and the activity diagram of the
Passive Replication pattern. In Figure 7a, block arrows indicate flow of informa-
tion and open arrows indicate signals from the manager.
3.7.5 Consequences
The Passive Replication pattern has the following benefits:
+ The time overhead introduced by this pattern in error-free system execution is low

and it amounts to the time needed to register the received input at the log facility
and the time needed by the primary to save its state at the storage facility.

+ The space overhead in terms of system replicas introduced by this pattern for error
masking is low (2N backups + 1 primary for masking 2N errors).

+ The communication overhead inside the fault tolerant system in the absence of er-
rors is low and it includes the input registration to the log facility and the saving of
primary's state to the storage facility.

The Passive Replication pattern imposes also some liabilities:
− The design complexity introduced by this pattern is higher that the design

complexity of the pattern for error recovery (§3.5 and §3.6) and relatively elevated
compared to the other patterns for error masking presented in the remainder.

− In the presence of errors, the time overhead introduced by this pattern is elevated
because of the time required to activate the backup, load the last state the primary
had saved and replay the last input. In the case where the dynamic replica group
management creates the backup when the primary fails (see §3.7.3), the time
overhead will be even higher.

Figure 7. The structure
tern.

input

tered at log

Manager instructs
log to replay last

input

[error] [no error]

[no checkpoint]

[checkpoint] Primary check-
points to storage

Primary proc-
esses input

Manager activates
backup

Input regis-

[no error] [error]

Manager decides
about checkpoint

primary

manager

backup

log

storage

unit of
failure

replay

activate

check
point

provide
state

last input

last state save state

input

output

− In addition to the sp
tern introduces a sp

− If the platform wher
persistent storage o
the log and the stor
signing these two en
the fault tolerant sys

3.7.6 Related patterns
The manager entity in
errors. The mechanism
edgment, I Am Aliv
3.3 and 3.4 respectivel
In certain cases where
system replica as the b
as a lightweight altern
pattern the backup can
essential functionality.
currence of an error o
gency mode" using the

(a)
(a) and the activity d

ace overhead in te
ace overhead relat
e the fault tolerant
r stable storage fac
age entities of the
tities in a way that
tem introduces a s

the Passive Rep
 for the error detec
e and Are You

y.
 space and cost c
ackup entity, the B

ative of the Passi
 be a trimmed dow
Usually, when the
n the primary the
 backup until the p
(b)
iagram (b) of the Passive Replication pat-

rms of system replicas (backups), this pat-
ed to the log and the storage entities.
system will be deployed does not offer any
ilities which could be used to accommodate
Passive Replication pattern, then de-
 does not introduce single points of failure in
ignificant design overhead.

lication pattern monitors the primary for
tion can be based on one of the Acknowl-
Alive patterns presented in sections 3.2,

onstraints prohibit the use of a full-fledged
ackup pattern (see [16]) can be employed
ve Replication pattern. In the Backup
n version of the primary, providing only the

 Backup pattern is employed, after the oc-
fault tolerant system will operate in "emer-
rimary is repaired.

3.8 Semi-Passive Replication
Another way to mask errors, without having to pay long time penalties when errors
occur, is to follow a similar scheme like in the Passive Replication pattern, only
having the primary entity exporting its state directly to the backup entity. This way,
the backup is standby and when an error occurs on the primary, the backup needs
only the last registered input in order to replace the failed primary. This technique is
also known in the fault tolerance literature with the name cold standby.
3.8.1 Context
The Semi-Passive Replication pattern applies to a system that has the follow-
ing characteristics:

The errors the system may experience are detectable. •
•

•

The errors the system may experience are not due to errors in the input it re-
ceives.
The system is capable of exporting its current state and importing a new state.

3.8.2 Problem
In the above context, the Semi-Passive Replication pattern solves the problem
of masking an error on the system by balancing the following forces:
• The input received by the system must be processed and the designated output

must be delivered independently of whether an error occurs on the system.
• The error-free execution of the system must suffer minimum time penalties.
• The time penalty introduced by the solution in the presence of errors must be kept

low.
3.8.3 Solution
The solution to the above problem suggested by the Semi-Passive Replication
pattern is similar to the solution suggested by the Passive Replication pattern
with the difference that in this case there is no need for the storage entity. Two sys-
tem replicas are created, one that receives and processes the input meant for the
fault tolerant system (called primary), and another replica (called backup) that imports
the state of the primary every time the latter attempts to checkpoint it. Similarly to the
Passive Replication pattern, every new input sent to the primary is register to a
log facility. Again, a manager decides when the primary must checkpoint its state
(e.g. before the registered input is forwarded to the primary). The log forwards to the
primary the input and the latter processes it. If an error occurs on the primary while
processing the input, the backup is activated, receives from the log facility the last
registered input and starts processing it, replacing the failed primary.
Notice that the failure semantics to which the occurred errors may lead are not impor-
tant for the solution suggested by the Semi-Passive Replication pattern. The
only requirement is that the error is detectable, which is one of the characteristics of
the context in which this pattern applies.
The above solution can mask the occurrence of a single error. However, it cannot
deal with the occurrence of two or more simultaneous errors (e.g. one error occurring
on the primary and at the same time another error occurring on the backup). To be
able to recover from 2N simultaneous errors 2N+1 replicas are needed so at least
one will remain unaffected by the occurred errors.

Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after masking the first error occurrence. Even in the revised so-
lution for dealing with 2N simultaneous errors, the fault tolerant system eventually
loses its fault tolerance capabilities (e.g. after the occurrence of 2N simultaneous er-
rors or after the occurrence of 2N consecutive errors). To preserve the fault tolerance
capabilities of the fault tolerant system, a mechanism that offers dynamic manage-
ment of the replica group must be put in place. The dynamic replica group manage-
ment will be responsible to replace with new ones the replicas discarded after the oc-
currence of errors.
If the errors that may occur on the fault tolerant system do not lead to fail-stop or
crash failures where the failed system ceases execution, the backup of the fault tol-
erant system is not necessary. The primary can checkpoint at certain moments its
state to the storage and when an error occurs, the failed primary which has not
crashed can import the last checkpoint and continue its execution from there.
3.8.4 Structure
The solution suggested by the Semi-Passive Replication pattern consists of
the following entities:
• The primary, which is a copy of the system that processes input and delivers out-

put in the absence of errors. In addition, the primary exports its state (checkpoint)
when the manager instructs so. It must be mapped to a different unit of failure than
any of the following entities.

• The backup, which is identical to the primary, received primary’s checkpoints in
error-free execution and gets activated when an error on the primary is detected.
Upon its activation, the backup receives from the log the last input in order to take
over primary’s role. The backup must be mapped to a different unit of failure than
the primary.

• The log, which is the facility responsible for registering all input intended for the
primary and for replaying the last input when requested by the manager. It must
be mapped to a different unit of failure than the primary and the backup.

• The manager, which is responsible to activate the backup when an error occurs on
the primary and request from the log to replay the last registered input. The man-
ager relies on an error detection mechanism to detect errors that may occur on the
primary. The manager must be mapped to a different unit of failure than any of the
primary and the backup.

0 gives a graphical illustration of the structure and the activity diagram of the Semi-
Passive Replication pattern. In 0a, block arrows indicate flow of information
and open arrows indicate signals from the manager.

Figure 8. Th
tion pattern.

[no
checkpoint]

[error] [no error]

Primary check-
points to backup

[checkpoint]

Manager acti-
vates backup

Primary proc-
esses input

Input regis-
tered at log

[no error]

Manager instructs
log to replay last

input

[error]

Manager decides
about checkpoint

activate

manager

unit of
failure

last
 input

save

replay

input

input

output

log

backup primary

3.8.5 Conse
The Semi-P
+ The desig

duced by
(compare

+ The time
and it am
and the tim

+ The space
ups + 1 pr

+ The comm
rors is low
input regi
backup.

The Semi-P
− In the cas

the time a
since it in
(for the co
cast mech

− In the pre
elevated
Passive

(a)
e structure (a) and the activity diagram (b) of

quences
assive Replication pattern has the
n complexity of introduced by this patte
the Passive Replication pattern sin
Figure 7a and 0a).
overhead introduced by this pattern in er
ounts to the time needed to register the

e needed by the primary to export its sta
 overhead introduced by this pattern for
imary for dealing with 2N errors).
unication overhead inside the fault toler
 (as low as in the Passive Replicat

stration to the log facility and the chec

assive Replication pattern imposes
e where 2N backups are created to de
nd communication overheads in an erro
cludes the communication from the prim
mmunication overhead in a group of rep
anism can lower significantly this overhe
sence of errors the time overhead introd
(though, considerably lower than the tim
Replication pattern in the same ca

(b)
 the Semi-Passive Replica-

following benefits:
rn is lower than the one intro-

ce the storage entity is removed

ror-free system execution is low
received input at the log facility
te to the backup.

 error masking is low (2N back-

ant system in the absence of er-
ion pattern) and it includes the
kpoint of primary's state to the

 also some liabilities:
al with 2N simultaneous errors,
r-free system execution is high,
ary to every one of the backups
licas see [8]). An efficient multi-
ad.
uced by this pattern is relatively
e overhead introduced by the

se) and it amounts to the time

needed by the log facility to replay the last registered input plus the time to proc-
ess it and deliver the designated output.

− In addition to the space overhead in terms of system replicas (backups) this pat-
tern introduces a space overhead related to the log entity. Still, this space over-
head is lower than the overhead introduced by the Passive Replication pat-
tern in the same case since it does not include the storage entity.

− If the platform where the fault tolerant system will be deployed does not offer any
persistent storage or stable storage facilities which could be used to accommodate
the log entity, then designing the log in a way that does not introduce a single point
of failure in the fault tolerant system introduces a significant design overhead.

3.8.6 Related patterns
The manager entity in the Semi-Passive Replication pattern monitors the pri-
mary for errors. The mechanism for the error detection can be based on one of the
Acknowledgment, I Am Alive and Are You Alive patterns presented in sec-
tions 3.2, 3.3 and 3.4 respectively.
In certain cases where space and cost constraints prohibit the use of a full-fledged
system replica as the backup entity, the Backup pattern (see [16]) can be employed
as a lightweight alternative of the Semi-Passive Replication pattern. In the
Backup pattern the backup can be a trimmed down version of the primary, providing
only the essential functionality. Usually, when the Backup pattern is employed, after
the occurrence of an error on the primary the fault tolerant system will operate in
"emergency mode" using the backup until the primary is repaired.

3.9 Semi-Active Replication
To avoid the complexity involved with exporting and importing the state of a system,
the Semi-Active Replication pattern provides an alternative way for error
masking. Instead of having only one replica actively processing input to the fault tol-
erant system and the rest of the replicas passively waiting for an error to occur on the
primary, in the Semi-Active Replication pattern all the replicas are actively
processing the input in parallel. If an error occurs on one of the replicas, the others
will be able to promptly deliver the designated output. This technique is also known in
the fault tolerance literature with the names hot standby and coordinator/cohorts (see
[10]).
3.9.1 Context
The Semi-Active Replication pattern applies to a system that has the following
characteristics:

The errors the system may experience are detectable. •
• The errors the system may experience are not due to errors in the input it re-

ceives.
3.9.2 Problem
In the above context, the Semi-Active Replication pattern solves the problem
of masking an error on the system by balancing the following forces:
• The input received by the system must be processed and deliver the designated

output independently of whether an error occurs on the system.
• The error-free execution of the system must suffer minimum time penalties.
• The time penalty introduced by the solution in the presence of errors must be kept

very low.
3.9.3 Solution
The solution to error masking suggested by the Semi-Active Replication pat-
tern is based on a group of two replicas (i.e. a group consisting of identical copies of
the system) which process in parallel the input to the fault tolerant system. One of the
replicas (called coordinator) has the leadership of the group and the other replica (the
cohort) is monitoring the coordinator for errors. In an error-free execution, the coordi-
nator is the one that delivers the output to the environment, In this case the cohort
keeps the output it has produced until it is sure that the coordinator has delivered the
output to the environment and then it discards it. If an error is detected on the coordi-
nator then the cohort takes over the responsibility of the coordinator to deliver the
output to the environment.
Notice that the failure semantics to which the occurred errors may lead are not impor-
tant for the solution suggested by the Semi-Active Replication pattern. The
only requirement is that the error is detectable, which is one of the characteristics of
the context in which this pattern applies.
The above solution can mask the occurrence of a single error. However, it cannot
deal with the occurrence of two or more simultaneous errors (e.g. one error occurring
on the coordinator and at the same time another error occurring on the cohort). To be
able to recover from 2N simultaneous errors 2N+1 replicas are needed so at least
one will remain unaffected by the occurred errors.

Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after masking the first error occurrence. Even in the revised so-
lution for dealing with 2N simultaneous errors, the fault tolerant system eventually
loses its fault tolerance capabilities (e.g. after the occurrence of 2N simultaneous er-
rors or after the occurrence of 2N consecutive errors). To preserve the fault tolerance
capabilities of the fault tolerant system, a mechanism that offers dynamic manage-
ment of the replica group must be put in place. The dynamic replica group manage-
ment will be responsible to replace with new ones the replicas discarded after the oc-
currence of errors.
In the version of the Semi-Active Replication pattern where more that one co-
horts exist, there is a need for a protocol which will be used to decide which of the
cohorts will take over the coordinator responsibilities once an error is detected on the
coordinator. This protocol is often implemented as a replica group management
mechanism (e.g. see [8]) based on a variety of schemes like predefined order in the
group of replicas, group member voting, etc.
3.9.4 Structure
The solution suggested by the Semi-Active Replication pattern consists of the
following entities:
• The coordinator, which is a copy of the system that processes input and delivers

output to the environment of the fault tolerant system. When the coordinator de-
livers the output to the environment, it notifies the other system replicas (see co-
horts below) as a synchronization action that enables the latter to start the proc-
essing of the following input. The coordinator must be mapped to a different unit
of failure than any of the following entities.

• The cohort, which is a system replica like the coordinator that receives exactly the
same input (same content, same order of delivery) as the coordinator. Besides
processing the input, the cohort monitors the coordinator for errors. If the cohort
detects an error on the coordinator, then it takes the responsibility to deliver the
designated output that should be delivered by the coordinator. In an error-free
execution, the outcome of processing the input by the cohort does not produce
any output to the environment. The cohort must be mapped to a different unit of
failure than the coordinator.

• The distributor, which is responsible to ensure that all system replicas (i.e. the co-
ordinator and the cohorts) receive the same input (same content, same order of
delivery). It must be mapped to a different unit of failure than the coordinator and
the cohorts.

0 gives a graphical illustration of the structure and the activity diagram of the Semi-
Active Replication pattern. In 0a block arrows indicate flow of information and
open arrows indicate signals exchanged among the system replicas.

Figure 9. The st
tion pattern.

distributor

input

unit of
failure

monitor

sync.
coordina-

tor
cohort

input

output

Coordinator
delivers output

Cohort processes input
and monitors coordinator

Cohort replaces
coordinator

Input to the
system

[no error]

Coordinator proc-
esses the input

[error]

3.9.5 Conseque
The Semi-Acti
+ The time over

low since the
only penalty
atomic multic

+ In the presen
and it amoun
needed by th
coordinator a

+ The space ov
horts + 1 coor

+ The design c
Active Rep
previous two

The Semi-Acti
− This pattern h

group of syst
organization (

− The commun
The same re
atomic broadc
output deliver
significantly c

(a)
ructure (a) and the activity diagram (b) of the Se

nces
ve Replication pattern has the following
head introduced by this pattern in error-free
 coordinator provides directly the output to
is the indirection of the input through the

ast mechanism can remove this overhead.
ce of errors, the time overhead introduced b
ts to the indirection of the input through the
e cohorts to detect the error on the coordina
nd deliver the already produced output to the
erhead introduced by this pattern for erro
dinator for dealing with 2N errors).
omplexity of the error masking mechanism
lication pattern is lower than the corresp
patterns for error masking.
ve Replication pattern imposes also so
as a high design complexity associated to

em replicas including the synchronization,
i.e. the election of a new coordinator) capab
ication and synchronization overhead of the
lative order of input delivery to the replicas
ast protocol. In addition to this the synchron
y by the coordinator makes the functioning
ommunication intensive.

(b)
mi-Active Replica-

 benefits:
 system execution is very
the environment and the
 distributor. An efficient

y this pattern is also low
 distributor and the time
tor, decide upon the new
 environment.

r masking is low (2N co-

suggested by the Semi-
onding complexity of the

me liabilities:
 the management of the
error detection and self-
ilities of the group.
replica group is elevated.
 has the overhead of an
ization of the group upon
 of the group of replicas

− The stepwise synchronization of the group members with respect to the input they
receive, i.e. the coordinator cannot start processing new input before the cohorts
have finished their processing and vise versa, forces the group of replicas to per-
form as slowly as the slowest of its members. This can be a problem if there are
significant differences in the performance of the different group members.

− In the case of dynamic management of the replica group (i.e. when a failed mem-
ber is replaced by a new cohort) in order to sustain the group's fault tolerance ca-
pabilities it is necessary for old group members to be able to export their current
state and for the new cohort to import that state and initialize itself with it.

3.9.6 Related patterns
The cohorts in the Semi-Active Replication pattern monitor the coordinator for
errors. The mechanism for the error detection can be based on one of the Acknowl-
edgment, I Am Alive and Are You Alive patterns presented in sections 3.2,
3.3 and 3.4 respectively. Also, the dynamic management and the synchronization of
the group of system replicas can be based on the Object Group pattern (see [8]).

3.10 Active Replication
The most powerful technique for masking errors is the one suggested by the Active
Replication pattern. Similarly to the previous pattern, the Active Replication
pattern uses a group of system replicas where all members of the group actively re-
ceive and process every input received by the monitored system. However, opposite
to the Semi-Active Replication pattern, in this pattern all replicas deliver their
output without having to monitor each other or temporarily keeping their output until a
selected group member delivers the output to the environment. The error masking
technique captured by the Active Replication pattern is also known in the fault
tolerance literature with the names server group and state machine approach (e.g.
see [15]).
3.10.1 Context
The Active Replication pattern applies to a system that has the following char-
acteristics:

The system is deterministic, i.e. its output is solely defined by its initial state, the
sequence of inputs it has processed so far and the current time (in terms of clock
time and/or time elapsed since the system initialization).

•

•

•

The errors the system may experience are not due to errors in the input it re-
ceives.
The errors the system may experience cause it to exhibit byzantine failures.

3.10.2 Problem
How to mask the occurrence of an error by balancing the following forces:
• The input received by the monitored system must be processed and deliver the

designated output independently of whether an error occurs on the monitored sys-
tem.

• The error-free execution of the system must suffer minimum time penalties.
• The time penalty introduced by the solution in the presence of errors must be kept

very low.
• The monitored system is deterministic.
3.10.3 Solution
The Active Replication pattern is the extension of the Fail-Stop Proces-
sor pattern (see §3.1) from error detection to error masking. The solution suggested
by this pattern is based again on a group of system replicas. Similarly to the Semi-
Active Replication pattern, all replicas receive the same input (same content,
same delivery order) but in this case all the group members deliver their output to the
comparator. The latter is an extension of the comparator entity from the Fail-Stop
Processor pattern, which is responsible to decide (e.g. by majority voting) what is
the correct output. In an error-free execution, given that the system replicas are de-
terministic, the comparator will receive identical outputs from all replicas and it will
forward one of these to the environment of the fault tolerant system. If an error occurs
on one of the replicas, the output that replica will produce will be different from the
outputs produced by the replicas that did not experience an error at the same time.
Using three system replicas, the comparator is capable to detect which is the errone-

ous output. Subsequently, the comparator forwards to the environment the correct
output and discards the failed replica.
The above solution can mask the occurrence of a single error. However, it cannot
deal with the occurrence of two or more simultaneous errors (e.g. two errors occur-
ring one at the same time, each on a different replica). When the comparator uses
majority voting to decide on the correct output, in order to be able to recover from N
simultaneous errors 2N+1 replicas are needed so that the majority of the replicas will
be unaffected by the occurred errors and the majority voting will correctly identify the
error-free output.
Another limitation of the original solution is that the fault tolerant system loses its fault
tolerance capabilities after masking the first error occurrence. Even in the revised so-
lution for dealing with N simultaneous errors, the fault tolerant system eventually
loses its fault tolerance capabilities (e.g. after the occurrence of N simultaneous er-
rors or after the occurrence of N consecutive errors). To preserve the fault tolerance
capabilities of the fault tolerant system, a mechanism that offers dynamic manage-
ment of the replica group must be put in place. The dynamic replica group manage-
ment will be responsible to replace with new ones the replicas discarded after the oc-
currence of errors.
Like in the case of the Fail-Stop Processor pattern, the replicas must be deter-
ministic systems (i.e. their output is solely defined by their initial state, the sequence
of inputs they have processed so far and the current time) and they must all have
been initialized in the same state and they have synchronized clocks.
3.10.4 Structure
The entities introduced by the Active Replication pattern are:
• The processors, which are replicas of the deterministic systems that must be ren-

dered fault tolerant and which may experience byzantine failures. To deal with N
simultaneous errors 2N+1 processors are required, each of them mapped to a dif-
ferent unit of failure.

• The distributor, which ensures that all the processors, receive exactly the same
input (in terms of content and delivery order). It must be mapped to a different unit
of failure than any of the processors in order not to get affected by the errors that
may occur on them.

• The comparator, which receives the outputs of the processors and decides (e.g.
by majority voting) what will be the output of the fault tolerant system. Once the
output is decided, it is delivered to the environment and the processors, which
produced a different output (including those that did not produce any output at
all), are discarded as failed. The comparator must be mapped to a different unit of
failure that any of the replicas.

Figure 10 gives a graphical illustration of the structure and the activity diagram of the
Active Replication pattern.

Figure 10. The structure (a) a
tern.

output

processor

processor processor

comparator

unit of
failure

input

input

output

distributor

Processor
sends output to

comparator

Processors initial-
ized simultaneously

…

Comparator compares replicas’
outputs and delivers correct

output to the environment

Processor
sends output to

comparator

Comparator dis-
card failed proc-

essors

Distributor forwards
input to all processors

[no error] [error(s)]

3.10.5 Consequences
The Active Replicatio
+ The time overhead introd

The only time penalties i
is due to the indirection
the comparator to decid
of the fault tolerant syst
the first time overhead.

+ In the presence of errors
(lower than the correspo
lication pattern) and
tributor and the time nee
delivered to the environm

+ The design complexity i
Semi-Active Repli
Processor pattern), sin
cific to this pattern, have

(a)
nd the activity

n pattern has
uced by this

ntroduced by
of the input th
e what is the
em. An efficie

, the time ov
nding overh
it amounts to
ded by the co
ent.

ntroduced by
cation patt
ce the distrib
 quite simple
(b)
diagram (b) of the Active Replication pat-

 the following benefits:
 pattern in error-free system execution is low.
 the Active Replication pattern solution
rough the distributor and the time needed by
correct output to be sent to the environment
nt atomic multicast mechanism can remove

erhead introduced by this pattern is also low
ead introduced by the Semi-Active Rep-
 the indirection of the input through the dis-
mparator to decide on the output that will be

 this pattern is relatively low (lower than the
ern and comparable to the Fail-Stop
utor and comparator, which are entities spe-
functionality.

+ This pattern, opposite to the Semi-Active Replication pattern, does not in-
troduce any synchronization overhead stemming from the communication inside
the group of replicas.

+ This pattern is one of the very few alternatives for dealing with byzantine failures.
The Active Replication pattern imposes also some liabilities:
− The space overhead introduced by this pattern is high, the highest space over-

head introduced by the four patterns for error masking presented in this paper: it
takes 2N+1 replicas to mask N errors. On the other hand, the masked errors may
lead to byzantine failures, which is something that the previous three patterns for
error masking did not address.

− Although the processors may have byzantine failure semantics, the distributor and
the comparator must not experience byzantine failures. The Fail-Stop Proc-
essor pattern (see §3.1) can be applied to each of these entities in the case
where they may experience failures of byzantine type.

− The distributor and the comparator introduce single points of failure in the system.
The distributor can be replaced by an atomic broadcast protocol if such is avail-
able. Both the distributor and the comparator can be rendered fault tolerant by ap-
plying some of the fault tolerance patterns already presented in this paper. In any
case, the resulting design complexity of the Active Replication pattern is
elevated compared to the one graphically presented in Figure 10.

3.10.6 Related patterns
The Active Replication pattern is the evolution of the Fail-Stop Processor
pattern (see section 3.1) for masking errors that lead to byzantine failures. The dy-
namic management and the synchronization of the group of system replicas can be
based on the Object Group pattern (see [8]).

4 CLASSIFICATION SCHEME
The fault tolerance patterns presented in the previous section provide solutions to
problems of smaller to bigger scale that repeatedly appear in the design of fault toler-
ant systems (e.g. how to detect, how to recover from, and how to mask an error). To
increase the added value of the presented patterns they can be organized in the form
of a pattern system. Such a system of fault tolerance patterns would provide substan-
tial help to the system designers and architects in their effort to develop fault tolerant
systems. The help that the pattern system would provide is to reveal the relations
among the presented patterns and to provide instructions about the combinations of
these patterns that produce complete solutions to design problems in the develop-
ment of fault tolerant systems.
The remainder of this section presents the properties (and hence the added value) of
a pattern system, the classification scheme for the fault tolerance patterns and how it
is used to organize the presented patterns and transform them to a system of fault
tolerance patterns. It also presents the way that the resulting pattern system can be
used to create design frameworks for the development of fault tolerant systems, and
how it can be combined with other well-known pattern systems (e.g. [3] and [4]).
4.1 Pattern Systems
A pattern system is a collection of patterns together with guidelines for their imple-
mentation, combination and practical use in the development of software systems.
Pattern systems do not cover completely the solutions that may exists to design prob-
lems in the particular domain in which they apply; that would be the definition of a
pattern language. Rather, pattern systems describe only certain aspects of the con-
struction of software systems leaving to the designer's skills the completion of the
software architecture of the system under construction. In practice pattern systems
are easier to build than a pattern language (because they don't have to completely
cover their domain of application) and they are more flexible in being applied in dif-
ferent domains of software system design [3].
A pattern system has the following properties:
• It provides a sufficient base of patterns for addressing/resolving design problems

in the domain where it is applied.
• It describes all its constituent patterns uniformly.
• It exposes the various relationships among its constituent patterns.
• It provides an organization schema for its constituent patterns.
• It supports the development of software systems with a set of instructions about

how to implement and combine its constituent patterns.
• It supports its own evolution, which allows the integration of new patterns and

consequently the adaptation of the pattern system to new technology trends.
In the remainder of this section we describe a classification scheme and how it is ap-
plied in the organization of the set of fault tolerance pattern presented in section 3 in
a way that all the above properties are satisfied.
4.2 Organizing Fault Tolerance Patterns
A straightforward classification scheme for the patterns presented in section 3 is the
one stemming from the aspects of fault tolerance (i.e. error detection, recovery, and
masking) to which each pattern provides a solution. The two main advantages of this

classification scheme are that it naturally reflects the essential qualities and the appli-
cation sub-domains of the patterns, and that it creates a set of classification catego-
ries with direct dependency relations among them. These dependency relations are
founded on the fact that most error masking mechanisms are based on error recov-
ery mechanisms, which are in turn based on error detection mechanisms. This im-
plies that a pattern in the error masking category can be refined by a pattern in the
error recovery category in order to elaborate the aspects of the solution regarding the
removal of error effects. Subsequently, the error recovery pattern can be refined by
some pattern in the error detection category to elaborate the aspects of the solution
regarding the detection of an error.
In this classification scheme, the first four patterns (Fail-Stop Processor, Ac-
knowledgment, I Am Alive, and Are You Alive) belong to the (error) Detec-
tion category. The next two patterns (Roll Forward, and Rollback) belong to the
(error) Recovery category. Finally, the last four patterns (Passive, Semi-Passive,
Semi-Active, and Active Replication) belong to the (error) Masking category.
Most of the patterns in the latter two categories rely on an error detection mecha-
nism, which yields a dependency between these patterns and the Detection cate-
gory. Another dependency relation exists between the Active Replication and
the Fail-Stop Processor patterns where the former is the evolution and the ad-
aptation of the latter in masking errors.
The three aforementioned categories of fault tolerance patterns are not specific to the
patterns presented in this document. In fact, existing fault tolerance patterns can be
classified under these categories (e.g. the Backup pattern [16] can be classified un-
der the Masking category). Moreover, these three categories do not cover the entire
domain of fault tolerance. Other categories can be added to this classification
scheme in order provide a complete set of categories for fault tolerance patterns. For
example, the (error) Assessment category can be added to our classification scheme
in order to classify patterns like the Leaky Bucket Counter and the Riding
Over Transients patterns (both from [1]) that are used to assess the nature of oc-
curred errors. Figure 11 illustrates graphically the classification scheme and the rela-
tions among the different categories as well as the possible extensions of the classifi-
cation categories and their contents (depicted in shaded shapes). More regarding the
extensibility of the classification scheme can be found in subsection 4.4.

Recovery

Detection

Roll
Forward

Fail-Stop
Processor

I Am
Alive

Acknowl-
edgment

R U Alive

Rollback

Leaky
Bucket

Riding Over
Transients

Backup

Masking

Assess-
ment

Passive
Semi-

Passive
Semi-
Active

Active

Fault Tol-
erance

Figure 11. Classification of the presented patterns according to the fault tolerance aspect
criterion.

Besides the straightforward classification of the presented patterns based on the fault
tolerance aspects to which they are associated, a number of complementary classifi-
cation schemes can be applied to the patterns presented in section 3. The purpose a
classification scheme serves is to help the system designers to find the appropriate
pattern for a specific design problem. The classification scheme presented above has
its own advantages but it does not give any information about a number of properties
associated with the fault tolerance pattern (e.g. complexity, time and/or space over-
head, failure types confronted, etc) which can be key elements in the selection of the
appropriate pattern for a given fault tolerance problem. Hence, we introduce five
additional classification schemes based on the following criteria:
1. the design complexity of a pattern,
2. the space overhead introduced by a pattern in terms of additional entities that

need to be created for the mechanism dictated by the fault tolerance pattern,
3. the time overhead introduced by a pattern in the absence of errors,
4. the time overhead introduced by a pattern in the presence of errors, and
5. the failure types to which a pattern applies.
The first four classification schemes regarding complexity, space overhead and time
overhead with and without errors, have three categories each: one for low impact,
one for medium impact and one for high impact. The classification of the fault toler-

ance patterns to these categories follows the benefits and the liabilities of each pat-
tern as they are described in their consequences. One important note is that for the
error detection patterns the distinction between the time overhead in the absence
and in the presence of errors is not relevant. However, for reasons of uniform presen-
tation as the rest of the fault tolerance patterns we classify them under these two
categories, considering as time overhead the time spent by the system exclusively on
error detection activities. For the error recovery patterns the time overhead repre-
sents the impact on the time that takes for the system to become operational and ac-
cept another invocation. Finally, for the error masking patterns, the time overhead
represents the impact on the time it takes to reply to an accepted invocation.
The last classification scheme regarding the failure types supported by patterns has
two categories: the crash failure (or failure with stronger semantics like fail-stop fail-
ure) and the byzantine failures. Among the presented patterns there are only two, the
Fail-Stop Processor and the Active Replication patterns, which deal with
byzantine failure. The Semi-Active Replication pattern can also deal with byz-
antine failures with certain enhancements (see section 3.9), hence it can be placed
under the Byzantine category with a note regarding these enhancements. All other
seven fault tolerance patterns are placed under the Crash category. Table 1 provides
a summary of all six dimensions of the composite classification scheme proposed for
the set of fault tolerance patterns presented in section 3.

Pattern Com-
plexity Space Time

(no failures)
Time

(failures)
Failure Type Fault

Tolerance Aspect
Fail-Stop
Processor M H L L byzantine

Acknowledg-
ment L L L L crash

I Am Alive M L M M crash
Are You Alive M L M M crash

Error
Detection

Roll Forward M M M L crash
Rollback M M L M crash

Error
Recovery

Passive
Replication M M L H crash

Semi-Passive
Replication M H L H crash

Semi-Active
Replication H H L M byzantine*

Active
Replication H H L L byzantine

Error
 Masking

Table 1. The six dimensions of the composite classification scheme for the fault tolerance patterns.

The organization of the fault tolerance patterns outlined by the composite classifica-
tion scheme depicted in Table 1 and partially in Figure 11, forms the basis for satisfy-
ing the first four properties of a pattern system mentioned in subsection 4.1 (i.e. a
sufficient base of patterns for the fault tolerance domain which are described uni-
formly and are organized by a classification scheme which reveals their relation-
ships). The way our system of fault tolerance patterns satisfies the last two properties
(i.e. the set of instruction for the combination of the fault tolerance patterns and the
support for the evolution of the pattern system) is described in the following subsec-
tions.

4.3 Design Frameworks for Fault Tolerant Systems
In the context of software design, a design framework is a partially complete software
architecture that defines the structure and the properties for a group of inter-related
subsystems, and also the places where adaptations for specific functionality should
be made [3]. A design framework can be constructed by applying a pattern (or a set
of patterns) in order to create the partially complete design of a software system.
Moreover, frameworks include the design decisions about how to combine patterns
and how to refine patterns using other patterns. Thus, frameworks alleviate the de-
signer from the process of identifying which combinations of patterns lead to a par-
tially complete solution for a given problem. But the designer has still to decide
whether a given framework (i.e. partially complete design of a system) provides a so-
lution that adheres to the system requirements. An example of a framework is the
case of the Model-Viewer-Controller (MVC) framework presented in [6]. The Model-
Viewer-Controller architectural pattern [3] is refined by the Observer, the Com-
posite, and the Strategy patterns [4] that elaborate respectively the model-viewer
relationship, the relationship between a viewer and its sub-viewers, and the viewer-
controller relationship.
The classification scheme illustrated in Figure 11 provides the basis for various de-
sign frameworks for the development of fault tolerant systems. The relations among
the classification categories and among the patterns provide instructions for combin-
ing the fault tolerance patterns in order to produce design frameworks similar to the
MVC framework. For example, a design framework for the development of fault toler-
ant systems that deals with byzantine failures can be created by combining the Pas-
sive Replication, the Rollback and the Fail-Stop Processor patterns.
The Passive Replication pattern provides the solution for masking an error by
keeping a checkpoint state of the system monitored for errors and an inactive copy of
it. The Rollback pattern is then used to refine the mechanism of activating the copy
when an error occurs. Finally, the Fail-Stop Processor pattern is used to refine
the way an error is detected and also to transform the occurrence of a byzantine fail-
ure to a fail-stop failure for the fault tolerant mechanism outlined by the combination
of the Passive Replication and the Rollback patterns. Similar combinations of
pattern as indicated by the dependency relations in Figure 11 can produce a variety
of small design frameworks for the development of fault tolerant systems with differ-
ent requirements.
It is important to notice that an individual fault tolerance pattern does not offer a com-
plete solution for fault tolerance in the design of a system; rather it offers a solution to
a specific problem (e.g. detection, recovery, or masking of an error) which is part of
the complete fault tolerance solution. The different design frameworks that can be
created as described above offer complete fault tolerance solutions. Still, the com-
pleteness of the fault tolerance solution refers to design problems. In order to provide
support for the complete development (from the conception until the coding and the
deployment) of a fault tolerant system, the presented system of fault tolerance pat-
tern must be combined with some existing development framework for the construc-
tion of fault tolerant systems. Such development frameworks can be environments
specifically aimed at the development of fault tolerant systems like fault tolerance
support based on the State Machine Approach [15], the ISIS toolkit [2] and the de-
velopment support for the Object Group pattern [8], or implementations of CORBA
2.6 which provide fault tolerance primitives (fault tolerant CORBA [11]).

4.4 Evolution of the System of Fault Tolerance Patterns
To complete the description of the system of fault tolerance patterns, it remains to
show how it satisfies the last property of a pattern system given in subsection 4.1, i.e.
the support of the system's own evolution which allows the integration of new pat-
terns. The composite classification scheme summarized in Table 1 can be extended
in various ways in order to allow the evolution of the system of fault tolerance pat-
terns. One way to extend the classification is to add new categories reflecting other
fault tolerance aspects besides error detection, recovery and masking. An example of
how new classification categories can be added to the presented classification
scheme is given in subsection 4.2 where the category (error) Assessment was added
(see shaded shapes in Figure 11). Other classification categories could also be
added which would allow the insertion of patterns that describe solutions for different
types of broadcast and order of invocation requests delivery needed in replication-
based error masking (e.g. atomic broadcast [9], virtual synchrony [2], etc). Such ex-
tensions will result to a number of new relations among the fault tolerance patterns,
hence it will increase the number of design frameworks that can be created from the
pattern system which will, in turn, result in design support for a wider range of fault
tolerance problems, and in more elaborated description of the design solutions.
Another way to extend the composite classification scheme is by adding new
(sub)classifications regarding other properties that can be used to qualify the fault
tolerance patterns besides complexity, space and time overheads, and failure types.
Such new (sub)classifications may include a quantification of the ease of dynamic
reconfiguration for the mechanisms described by each fault tolerance pattern, the
number of simultaneous errors that each pattern can deal with, etc. These extensions
will increase the selection criteria that a software designer may use for selecting the
appropriate pattern for a given fault tolerance problem. Hence, the support for design
decisions will increase along with the usability of the system of fault tolerance pat-
terns.
Finally, an important way of extending the system of fault tolerance patterns is by in-
vestigating the relations of the fault tolerance patterns with patterns in other well-
known pattern systems like those presented in [3] and [4]. In some cases, especially
with patterns that have an inherited distributed nature (e.g. Master Slave [3], Facade
[4], etc), the relation with some fault tolerance patterns (especially those in the error
masking category) can be straightforward. In other cases the relations between fault
tolerance patterns and patterns from other systems will be more vague or even non-
existent. However, independently of how trivial or difficult is the task of merging the
system of fault tolerance patterns with other pattern systems the effort is worthwhile.
The benefit of such a merge of fault tolerance patterns with other pattern systems
would be a basis of partial design solutions that cover both the fault tolerance and the
functional aspects of the development of software systems. But most importantly, the
benefit would be the set of instructions about how to combine these partial solutions
in order to obtain a complete solution for the design of a system that, among other
qualities that it will possess, will also be fault tolerant.

5 CONCLUSION
In this document we presented a set of patterns that provide solutions to problems
specific to different aspects of fault tolerance including error detection, recovery and
masking. Our contribution is not in the conception of these solutions, which actually
are well-known solutions that have been applied on fault tolerant computer systems
for the past three decades. Rather, our contribution is the formatting of these solu-
tions as patterns for system design and their organization in a pattern system that re-
veals the dependencies among them. These dependencies outline refinement rela-
tions that can be used to support the creation of design frameworks for the develop-
ment of fault tolerant systems. We have shown that the organization of the fault toler-
ance patterns by means of a six-dimension classification scheme satisfies the proper-
ties of a pattern system, and most importantly those of instructions about how to
combine the fault tolerance patterns and support for the evolution of the pattern sys-
tem. The presented pattern system is by no means complete, neither in terms of the
set of patterns it contains nor in terms of the classifications it proposes for the in-
cluded patterns. It forms however a sufficient basis for a variety of design solutions in
the development of fault tolerant systems.
The importance of the presented pattern system in the design of fault tolerant sys-
tems is comparable to the importance of other pattern systems in the domain of ob-
ject-oriented design. Software designers and architects are provided with a set of so-
lutions for fault tolerance specific problems and a set of practical instructions about
how to combine these solutions to achieve a complete design of the fault tolerance
aspects of a software system. The practical benefits of this system of fault tolerance
patterns are twofold. On one hand the designers have a systematic way to investi-
gate the fault tolerance solution that best fits a system under development. On the
other hand, experience has shown that the same fault tolerance solutions presented
as patterns are assimilated by designers and architects more easily (e.g. see [12]). In
particular, personal experience with the presented set of fault tolerance patterns has
shown that industrial designers and architects are much more comfortable with pat-
terns than with descriptions of the same solutions when presented in some formal
context like the one given in [13].
The full potential of the system of fault tolerance patterns in the support for the design
of software systems can be exploited in the merge with a pattern system that sup-
ports the development of the functional aspects of software systems (e.g. [3] and [4]).
The added value of such a merge is the support it provides for the development of
integrated, multi-view software architectures that cover both the functional and the
fault tolerance aspects of a software system [5]. The benefits can increase even
more when pattern systems providing design solutions for other non-functional as-
pects of software systems (e.g. security, see [17]) are merged too. However, not all
domains of non-functional properties (e.g. configurability, timeliness, usability, etc)
are mature enough to produce pattern systems and even in the case of mature do-
mains such as timeliness, related pattern systems are still to appear.

6 REFERENCES
[1] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K. Nicodemus. Fault-

Tolerant Telecommunication System Patterns. In J. M. Vlissides, J. O. Coplien, and N. L.
Kerth, editors, Pattern Languages of Program Design - 2. Addison Wesley, 1996.

[2] K. P. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS Toolkit.
IEEE Computer Society Press, 1994.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: a System of Patterns, Volume 1. John Wiley & Sons, July 2001.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reus-
able Object-Oriented Software. Addison Wesley, October 1994.

[5] V. Issarny, T. Saridakis, and A. Zarras. Multi-view Description of Software Architectures.
In the Proceedings of the 3rd International Software Architecture Workshop, pages 81-
84, November 1998.

[6] R. Johnson. Patterns and Frameworks. In L. Rising, editor, The Patterns Handbook:
Techniques, Strategies, and Applications. SIGS Reference Library, Cambridge Univer-
sity Press, 1998.

[7] J. C. Laprie. Dependability: Basic Concepts and Terminology. Dependable Computing
and Fault-Tolerant Systems, Volume 5, Springer-Verlag, 1992.

[8] S. Maffeis. The Object Group Design Pattern. In the Proceedings of the USENIX Con-
ference on Object-Oriented Technologies, pages 294-303, June 1996.

[9] S. Mishra and R. D. Schlichting. Abstractions for Constructing Dependable Distributed
Systems. Technical Report TR 92-19, the University of Arizona, August 1992.

[10] S. Mullender (editor). Distributed Systems, 2nd edition. ACM Press, 1993.
[11] OMG Document. Fault Tolerant CORBA. Chapter 25 in the Common Object Request

Broker: Architecture and Specification, Revision 2.6, OMG, December 2001.
[12] R. L. Ramirez. A Design Patterns Experience Report In L. Rising, editor, The Patterns

Handbook: Techniques, Strategies, and Applications. SIGS Reference Library, Cam-
bridge University Press, 1998.

[13] T. Saridakis and V. Issarny. Developing Dependable Systems Using Software Architec-
ture. In the Proceedings of the 1st Working IFIP Conference on Software Architecture,
pages 83-104, February 1999.

[14] R. D. Schlichting and F. B. Schneider. Fail-Stop Processors: an Approach to Designing
Fault-Tolerant Computing Systems. ACM Transactions on Computing Systems,
1(3):222-238, August 1983.

[15] F. B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Ap-
proach. ACM Computing Surveys, 22(4):299-319, December 1990.

[16] S. Subramanian and W.-T. Tsai. Backup Pattern: Designing Redundancy in Object-
Oriented Software. In J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors, Pattern
Languages of Program Design - 2. Addison Wesley, 1996.

[17] J. Yoder and J. Barcalow. Architectural Patterns for Enabling Application Security. In N.
Harrison, B. Foote and H. Rohnert, editors, Pattern Languages of Program Design - 4.
Addison Wesley, 1999.

	INTRODUCTION
	BACKGROUND
	FAULT TOLERANCE PATTERNS
	Fail-Stop Processor
	Context
	Problem
	Solution
	Structure
	Consequences
	Related Patterns

	Acknowledgment
	Context
	Problem
	Solution
	Structure
	Consequences
	Related Patterns

	I Am Alive
	Context
	Problem
	Solution
	Structure
	Consequences
	Related Patterns

	Are You Alive
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Roll Forward
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Rollback
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Passive Replication
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Semi-Passive Replication
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Semi-Active Replication
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	Active Replication
	Context
	Problem
	Solution
	Structure
	Consequences
	Related patterns

	CLASSIFICATION SCHEME
	Pattern Systems
	Organizing Fault Tolerance Patterns
	Design Frameworks for Fault Tolerant Systems
	Evolution of the System of Fault Tolerance Patterns

	CONCLUSION
	REFERENCES

