

More patterns for operating systems access control

Eduardo B. Fernandez and John C. Sinibaldi
Dept. of Computer Science and Eng.

Florida Atlantic University
Boca Raton, FL, USA

ed@cse.fau.edu , John.Sinibaldi@radisys.com

Abstract
We present architectural patterns for access control in operating systems. These
complement the patterns that we introduced in a previous paper. The patterns control
access to resources represented as objects and include patterns for authentication, process
creation, object creation, and object access.

Introduction
We present architectural patterns for access control in operating systems. These

complement the patterns that we introduced in [Fer02]. That paper presented the
following patterns:

• File access control. How do you control access to files in an operating
system? Apply the Authorization pattern to describe access to files by
subjects. The protection object is now a file component that may be a
directory or a file.

• Controlled Virtual Address Space. How to control access by processes
to specific areas of their virtual address space (VAS) according to a set of
predefined access types? Divide the VAS into segments that correspond
to logical units in the programs. Use special words (descriptors) to
represent access rights for these segments.

• Reference Monitor. How to enforce authorizations when a process
requests access to an object? Define an abstract process that intercepts all
requests for resources and checks them for compliance with
authorizations.

• Controlled Execution Environment. How to define an execution
environment for processes? Attach to each process a set of descriptors that
represent the rights of the process. Use the Reference Monitor to enforce
access.

Here we add the following patterns:
• Authenticator. How to verify that a subject is who it says it is? Use a

single point of access to receive the interactions of a subject with the
system and apply a protocol to verify the identity of the subject.

• Controlled-Process Creator. How to define the rights to be given to a
new process? Define their rights as part of their creation.

• Controlled-Object Factory. How to specify rights of processes with

respect to a new object? When a process creates a new object through a
Factory, the request includes the features of the new object. Among these
features include a list of rights to access the object.

• Controlled-Object Monitor. How to control access by a subject to an
object? Use a reference monitor to intercept access requests from
processes. The reference monitor checks if the process has the requested
type of access to the object.

 Assume here that resources are represented as objects, as it is common in modern
operating systems. Figure 1 shows how these patterns are organized into a pattern
language. For example, Authentication is needed for file access and for controlled object
access, a subject must be authorized to access some object in a specific way and we need
to make sure that the requestor is not an impostor. The other three patterns complete the
definition of the Controlled Execution Environment, where now the creation and access
to objects are controlled. The language also shows that access to files is controlled by a
Reference Monitor.

Background
Operating systems are fundamental to provide security to computing systems. The

operating system supports the execution of applications and any security constraints
defined at that level must be enforced by the operating system. The operating system
must also protect itself because compromise would give access to all the user accounts
and all the data in their files. A weak operating system would allow hackers access not
only to data in the operating system files but data in database systems that use the
services of the operating system. The operating system isolates processes from each
other, protects the permanent data stored in its files, and provides controlled access to
shared resources. Most operating systems use the access matrix as security model. An
access matrix defines which processes (subjects in general) have what types of access to
specific resources (resources are represented as objects in modern operating systems). To
apply this model we need to make sure that subjects are authenticated before they
perform any access (using the Authenticator). Processes are the active units that perform
computational work and use resources, we need to control the rights given to each
process when created (Controlled-Process Creator), and to let processes execute in a
controlled environment where they cannot exceed their rights (Controlled Execution
Environment). We also need to define access rights to access new objects (Controlled-
Object Factory), and to control access to objects at execution time (Controlled-Object
Monitor). This latter performs access control by intercepting requests and checking them
for authorization. All these functions are the purpose of the patterns presented in these
two papers.

 Operating systems authenticate users when they first login and maybe again when
they access specific resources. A user then executes an application composed of several
concurrent processes. Processes are usually created through system calls to the operating
system [Sil03]. A process that needs to create a new process gets the operating system to
create a child process that is given access to some resources. Executing applications need
to create objects for their work. Some objects are created at program initialization while
others are created dynamically during execution. The access rights of processes with
respect to objects must be defined when these processes are created. Applications also

Controlled-
Object Factory

Controlled-
Process Creator

Authenticator

File Access
Controlled-
Object Monitor

Controlled
Execution
Environment

Reference
Monitor

Controlled VAS

Uses

Uses

May use

Uses

Enforce access

Enforce access

Enforce access

Control access

Provide Controlled
Object

Provide Controlled
Access

Figure 1. O.S. Access Control Pattern Language

need resources such as I/O devices and others that may come from resource pools; when
these resources are allocated the application must be given rights for them. These rights
are defined by authorization rules or policies that must be enforced when a process
attempts to access an object. This means that we need to intercept every access request;
this is done by the Reference Monitor.

Authenticator

Intent
 How to verify that a user (subject) is who it says it is?

Context
 The operating system controls the creation of a session in response to the request
by a subject, typically a user. The authenticated user (represented by processes running
on its behalf) is then allowed to access resources according to her rights. Sensitive
resource access may require additional process authentication. Processes in distributed
operating systems also need to be authenticated when they attempt to access resources in
external nodes.

Problem
 How to prevent impostors from accessing our system? A malicious attacker could
try to impersonate a legitimate user to have access to her resources. This could be
particularly serious if the impersonated user has a high level of privilege.

Forces
 We need to apply these forces:

• There is a variety of users that may require different ways to authenticate
them. We need to be able to handle all this variety or we risk security
exposures.

• We need to authenticate users in a reliable way. This means a robust
protocol and a way to protect the results of authentication. Otherwise,
users may skip authentication or illegally modify its results, exposing the
system to security violations.

• There are tradeoffs between security and cost, more secure systems are
usually more expensive.

• If authentication needs to be performed frequently, performance may
become an issue.

Solution
 Use a single point of access to receive the interactions of a subject with the
system and apply a protocol to verify the identity of the subject. The protocol used may
imply that the user inputs some known values or may be more elaborated. Figure 2 shows
the class diagram for this pattern. A Subject, typically a user, requests access to system
resources. The Authenticator receives this request and applies a protocol using some

Authentication Information. If the authentication is successful, the Authenticator
creates a Proof of Identity (this can be explicit, e.g., a Token, or implicit).

Dynamics
 Figure 3 shows the dynamics of the authentication process. A user requests access
to the Authenticator. The Authenticator applies some authentication protocol, verifies the
information presented by the user, and as a result a proof of identity is created. The user
is returned a Handle for the Proof of identity.

Variants.
 Single Sign-On

Single Sign-On (SSO) is a process whereby a subject verifies its identity and the
results of this verification can be used across several domains and for a given amount of
time. [Kin01]. The result of the authentication is the Authentication Token used to
qualify all future accesses by the user.

PKI Authenticator
Public Key Cryptography is a common way to verify identity. This authentication

can be described with a slight modification of the pattern in Figure 2 (Figure 4). An
Authenticator class performs the authentication using a certificate that contains a public
key from a Certificate Authority that is used to sign the certificate. The result of the
authentication could be an Authentication Token used to qualify all future accesses by
this user (in this case this is also a variant of SSO).

Known Uses
• Most commercial operating systems use passwords to authenticate their

users.
• RADIUS provides a centralized authentication service for network and

distributed systems [Gar 02, Has02].
• The SSL authentication protocol uses a PKI arrangement for

authentication.
• SAML, a web services standard for security, defines one of its main uses

as a way to implement a SSO architecture [sam].

Consequences
 This pattern provides the following benefits:

• Depending on the protocol and the authentication information used, we can
handle any types of users and we can authenticate them in diverse ways.
• Since the authentication information is separated, we can store it in a protected
area, where all subjects may have at most read-only access.

• We can use a variety of algorithms and protocols of different strength for
authentication. The selection depends on the security and cost tradeoffs. Three
varieties include: something the user knows (passwords), something the user has (id
cards), something the user is (biometrics), or where the user is (terminal, node).
• Authentication can be performed in centralized or distributed environments.
• We can produce a proof of identity to be used in lieu of further authentication.
This improves performance.

Some liabilities are:

• The authentication process takes some time.
• The general complexity and cost of the system increase with the level of security.

Related patterns
The Distributed Authenticator [Bro99] discusses an approach to authentication in
distributed systems.
The Distributed Filtering and Access Control framework includes authentication
[Hay00].

Figure 2 Authentication Pattern

Proof of Identity

Authentication
Information

1

Authenticator

Requests
id

*

1

<<Creates>>

*
Checks

1

1

Subject

request

CreateProof_Id

verify

Figure 3 Authentication Dynamics

Handle

<<actor>>
 :User

:Proof of
identity

:Authentication
Information

:Authenticator

Figure 4. Class model for PKI authentication

Proof_of
_Identity
(Token)

1

Authenticator

Requests

User

*

1

<<Creates>>

*

Verifies

*

1

Certificate

Public_Key
1 CA_Certificate

Issuerid

authentication_Protocol

Controlled-Process Creator

Intent
Define and grant appropriate access rights for a new process.

Context
 An operating system where processes or threads need to be created according to
application needs.

Problem
 A computing system uses many processes or threads. Processes need to be created
according to application needs and the operating system itself is composed of processes.
If processes are not controlled they can interfere with each other and access data illegally.
Their rights for resources should be carefully defined according to appropriate policies,
e.g., need-to-know.

Forces
 We need to apply the following forces:

• There should be a convenient way to select a policy to define process’ rights.
Defining rights without a policy brings contradictory and not systematic access
restrictions, which can be easily circumvented.
• The child may need to impersonate its parent in specific actions, but this should
be carefully controlled. Otherwise, a compromised child could leak information or
destroy data.
• The number of children created by a process must be restricted or there could be
denial-of-service attacks.
• There are situations where a process needs to act with more than its normal rights,
e.g., to get data from a file to which it doesn’t normally have access.

Solution
 Since new processes are created through system calls or messages to the operating
system, we have a chance to control the rights given to the new process. Typically,
operating systems create a new process as a child process. There are several policies for
granting rights to a child process. The child process can inherit all the rights or a subset of
its parent’s rights. Another policy is to let the parent assign a specific set of rights to its
children (more secure because a more precise control of rights is possible).

Figure 5 shows the class diagram for this pattern. The Controlled Process
Creator is a part of the operating system in charge of creating processes. The Creation
Request contains the access rights that the parent defines for the created child. These
access rights must be a subset of the parent’s access rights.

Dynamics
 Figure 6 shows the dynamics of process creation. A process will request the
creation of a new process. The access rights passed in the creation request will be used to
create the new access rights for the new process.

 Figure 5. Class diagram of Controlled-Process Creator

Process

Creation_Request

Controlled_Process_
Creator

createProcess
id

create
delete
run_as_parent

AccessRight

accessType
object

*

*

*

*

*

1

1

createRights

«creates»

parent

child

 Figure 6. Process creation dynamics

Known Uses
 In many operating systems, e.g., Unix, rights are inherited as a subset from the
parent. Some hardened operating systems such as Hewlett Packard’s Virtual Vault do not
allow inheritance and a new set of rights must be defined for each child [HP].

Consequences
 The advantages of this pattern are as follows:

• The created process can receive rights according to different security
policies.

• The number of children produced by a process can be controlled. This is
useful to control denial of service attacks.

• The rights may include the parent’s id, allowing the child to run with the
rights of its parent.

Controlled-Object Creator

Intent
Objects are created for specific purposes and the rights allowed to the other

processes with respect to their access must be specified when they are created.

:Process_A
:Controlled_Process

_Creator

:Process_B

:Access_Right

create

create
createProcess

rights

Access_Right

Context
A computing system that needs to control access to its created objects because of

their different degrees of sensitivity.

Problem
In a computing environment, executing applications need to create objects for their work.
Some objects are created at program initialization while others are created dynamically
during execution. The access rights of processes with respect to objects must be defined
when these processes are created or there may be opportunities for the processes to
misuse them.

Forces
• Applications create objects of many different types but we need to handle them

uniformly with respect to rights for their access. Otherwise, it would be difficult
to apply standard security policies.

• We need to allow objects in a resource pool to be allocated and have their rights
set dynamically. Not doing so would be too rigid.

• There may be specific policies that define who can access a new object, and we
need to apply them when creating the rights for an object. This is a basic aspect of
security.

Solution
 When a Process creates a new object through a Factory, the Creation_Request
includes the features of the new object. Among these features is a list of rights defining
rights for a Subject to access the created Object (Figure 8).

Dynamics
 Figure 9 shows the dynamics of object creation.

Consequences
 The advantages of the above pattern are as follows:

• It is possible to define rights to use the object according to its
sensitivity.

• Objects allocated from a resource pool can have rights dynamically
attached.

• The operating system can apply ownership policies, e.g., the creator of
an object may receive all possible rights for the objects it creates.

Known Uses
 The Win32 API allows a process to create objects with various create system calls
using a structure containing access control information (DACL) that is passed as a
reference. When the object is created the access control information is associated with the
object by the kernel. The kernel returns a handle to the caller to be used for access to the

object. Other operating systems apply predefined setups of rights; for example all the
members of the owner’s group in Unix may receive equal rights for a new file.

 Figure 8. Class diagram of the Controlled Object Creator

Controlled-Object Monitor

Intent
 How to control access by subjects to objects.

Context
 An operating system consisting of objects that have controlled access.

Process Factory

Creation_Request

Object

Subject

Access_Right

include

* 1<<create>>

*

1

*

*

Problem
 When objects are created we define the rights of processes over them. These
authorization rules or policies must be enforced when a process attempts to access an
object.

 Figure 9. Object creation dynamics

Forces
 The following forces apply:

• There may be many objects with different access restrictions defined by
authorization rules; we need to enforce these restrictions when a process attempts
to access an object.

• We need to control different types of access or the object may be misused.

:Process :Factory

:Object

:Access_Right
Object

create
AccessRights

create

create

attach

Solution
 Use a Reference_Monitor to intercept access requests from processes. The
reference monitor checks if the process has the requested type of access to the object
according to some Access_Rule.

 Figure 10 shows the class diagram for this pattern. This is a more specific
implementation of the Reference Monitor pattern of [Fer02]. The modification shows
how the system associates the Rules to the secure object in question.

Dynamics
 Figure 11 shows the dynamics of secure subject access to a secure object. Here
the request is sent to the Reference Monitor where it checks the Access Rules. If the
access is allowed, it is performed and result returned to the subject. Note that here, a
Handle or ticket is returned to the Subject so that future access to the secure object can be
directly performed without additional checking.

Figure 10. Class diagram of the Controlled Object Monitor

Consequences
 The advantages of this pattern are as follows:

• The access rules can implement an access matrix defining different
types of access for each subject.

Reference_MonitorProcess Access_Rule

Access_Request

Access_Type

Object

request_Access*

*

*

*

1 1 check

access

• Each access request can be intercepted and accepted or rejected
depending on the authorization rules.

 The disadvantages are:

• Need to protect the authorization rules.
• There is an overhead in controlling each access.

 Figure 11. Sequence diagram for validating an access request

Implementation
 A possible implementation would be: A user is authenticated when she logs on.
Created objects inherit the original user’s ID that is contained within a token. This token
associates with the user process to be used by the Operating System to resolve access
rights. Only those authorized may have the desired access to the secure object.

Each object that a user wishes to access may have an associated Access Control
List (ACL). This will list what right each user has for the associated object. Each entry

:Process

<<actor>>

:Reference-

Monitor

:Access-

Rule

:Object

object, acc_Type
requestAccess

process,

object,

acc_Type

check

OK
requestAccess

acc_Type

specifies what right any other object within the system can have. In general, each right
can be an “allow” or a “deny.” These are also known as Access Control Entries (ACE) in
the Windows environment [Har01, Mic00, Zac99]. The set of access rules is also known
as the Access Control List (ACL) in Windows and most operating systems.

An alternative to the ACL are capabilities. A capability corresponds to a row in an

access matrix. This is in contrast to the ACL, which is associated with the object. The
capability indicates to the secure object that the subject does indeed have the right to
perform the operation. The capability may carry some authentication features in order to
show that the object can trust the provided capability information. A global table can
contain rows that represent capabilities for each authenticated user [And01]. Or the
capability may be implemented as a list corresponding to each user indicating what object
the each user has access to [Kin01].

Uses of the combined patterns

The following examples use combinations of the above patterns:

Windows NT
The Windows NT security subsystem provides security using the patterns described
here. It has the following three components [Har01, Kel97, Mic00]:

• Local Security Authority (LSA)
• Security Account Manager (SAM)
• Security Reference Monitor (SRM)

The Local Security Authority (LSA) and Security Account Manager (SAM) work

together to authenticate the user and create the user’s access token. The security
reference monitor runs in kernel mode and is responsible for the enforcement of
access validation. When an access to an object is requested, a comparison is made
between the file’s security descriptor and the SID information stored in the user’s
access token. The security descriptor is made up of Access Control Entries (ACE’s)
included in the object’s Access Control List (ACL). When an object has an ACL the
SRM checks each ACE in the ACL to determine if access is to be granted. After the
SRM grants access to the object, further access checks are not needed since a handle
to that object is returned the first time, which allows further access.

 Types of object permissions are: No access, Read, Change, Full Control, and
Special Access. For directory access, the following are added: List, Add, and Read.

Further, Windows utilizes the concept of a Handle for access to protected objects within
the system. Each object has a Security Descriptor (SD) which contains a Discretionary
Access Control List (DACL) of the object. Also, each process had a security token in
addition which contains an SID (Secure ID) which identifies the process. This is used by
the kernel to determine whether access is allowed. The ACL contains Access Control

Entries (ACE’s) that indicate what access is allowed for a particular process SID. The
kernel scans the ACL for the rights corresponding to the requested access.

 A process requests access to the object when it asks for a handle using, for
example, a call to CreateFile(). CreateFile() is used to create a new file or open an
existing file. When the file is created a pointer to a SD is passed as a parameter. When an
existing file is opened, the request parameters in addition to the file handle, contains the
desired access, such as GENERIC_READ. If the process has the desired rights for the
access, the request succeeds and an access handle is returned. Thus different handles to
the same object may have different accesses [Har01]. Once the Handle is obtained,
additional access to read a file will not require authorization to be done again. Also, the
handle may be passed to another trusted function for further processing.

Java 1.2 Security
The Java security subsystem provides security using the patterns described here. The Java
Access Controller builds access permissions based on permission and policy. It has a
checkPermission method that determines the codesource object of each calling method
and uses the current Policy Object to determine the permission objects associated with it.
Note that the checkPermission method will traverse the call stack to determine access of
all calling methods in the stack. The java.policy file is used by the Security Manager that
contains the grant statements for each codesource.

Acknowledgements

We thank our shepherd Wolfgang Keller for his valuable suggestions that improved this
paper considerably. The workshop participants at EuroPLoP 2003 also gave valuable
comments.

References
[And01] R. Anderson, Security Engineering, Wiley 2001

[Bro99] F.L. Brown and E.B. Fernandez, "The Authenticator pattern", Procs. of Pattern
Languages of Programs Conf. (PLoP99), http://jerry.cs.uiuc.edu/~plop/plop99

[Fer99] E.B.Fernandez, "Coordination of security levels for Internet architectures",
Procs. 10th Intl. Workshop on Database and Expert Systems Applications, DEXA99

[Fer01] E B. Fernandez and R.Y. Pan, “A pattern language for security models”, Procs.
of PLoP 2001, http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-
papers.html

[Fer02] E.B.Fernandez, "Patterns for operating systems access control", Procs. of PLoP
2002, http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Gar02] S. Garfinkel, Web Security, Privacy & Commerce, 2nd Edition O’Reilly

 2002.

[Har01] J. M. Hart, Win32 System Programming, Second Edition, Addison Wesley 2001

[Has02] J. Hassell, RADIUS, O’Reilly, 2002.

[Hay00] V. Hays, M. Loutrel, and E.B.Fernandez, "The Object Filter and
Access Control Framework", Procs. of PLoP 2000,
http://jerry.cs.uiuc.edu/~plop//plop2k/proceedings/proceedings.html

[HP] Hewlett Packard Corp., Virtual Vault,
http://www.hp.com/security/products/virtualvault

[Kel97] M. Kelley, “Windows NT Network Security, A Manager’s Guide,”
Lawrence Livermore National Laboratory, 1997.

[Kin01] C. King, et.al., Security Architecture, Osborne McGraw Hill 2001.

[Lan99] C. R. Landau, “Security in a Secure Capability-Based System,” Operating
Systems Review, October 1999.

[Mic00] Microsoft, Windows 2000 Security, Technical Reference, 2000

[sam] SAML, http://www.saml.org and http://www.oasis-open.org/committees/security/

[Sch00] D. Schmidt, et.al. “Pattern-Oriented Software Architecture,” Wiley 2000.

[Sil03] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts (6th Ed.), John
Wiley & Sons, 2003.

[Vis99] P. Viscarola, “Windows NT Device Driver Development,” Macmillan Technical
Publishing, 1999.

[Zac99] W. H. Zack, Windows 2000 and Mainframe Integration, Macmillan Technical
Publishing 1999.

