

Parameter Block
Gustavo Patow

Grup de Grafics de Girona,
IIiA, UdG, Spain

dagush@ima.udg.es

Fernando Lyardet
 Darmstadt University of Technology

FB20 Telecooperation, Alexanderstr. 6,
D-64283 Darmstadt, Germany

fernando@tk.informatik.tu-darmstadt.de

ParamBlock Object Behavioral

Also Known As
Data Block, Open Arguments, generic function-binding interface, Undetermined Generic
Arguments, Property List as parameters.

Intent
Parameter Block is used to create a generic interface for parameter passing, decoupling
the API declaration of the procedures and functions from the type and number of the
parameters they receive.

Motivation
The development of complex software relies -among other things- on well defined
interfaces or APIs between the different modules. Unfortunately, as development cycles
tend to shorten, the need for greater parallelism of development activities makes it more
difficult to have well established APIs, since everything is under construction. This
uncertainty introduces a coordination problem for the development team due to
continuous corrections and adaptations required to accommodate the updated interfaces
and as such, it is costly and error prone.
A similar problem occurs when software introduces a plug-in architecture as a
mechanism to allow future extensions. In this scenario, it is difficult to determine
beforehand the information needs for every possible plug-in. Furthermore, as the number
of possible relevant information for the plug-in can be arbitrarily high, it may be not
practical to pass all possible parameters. Besides, sometimes it might be necessary that
the arguments could be added or removed later, at runtime, in order to avoid cluttering
the initial declaration with unused information or allowing expanding the passed
parameters list.
We could use something like the C++ open argument list, like:

void drawInterface (color& background, ...);

This approach is error-prone since the caller is responsible for providing a well formatted
parameter list with correct types for each object, and the called function needs to figure
out what is passed and how.
Finally, another possibility could be a system of global variables but it will turn out to be
cumbersome and will introduce more trouble than providing a different solution.

Context
There are a couple of situations where you would need to resort to this pattern to go
through a developing problem:

• You are developing a flexible piece of software that could be extended in the
future though a plug-in-like mechanism.

• You want a stable interface shared by different programming teams, but still
heavily under development.

• You are also working with a programming language that does not naturally
provide support for API extensions at run-time, like C++ or Delphi (contrary to
Smalltalk that does allow this sort of run-time extensions).

Problem
How do you allow individual functions to augment or change their state (arguments) at
runtime? What should be done when a procedural interface is needed with a generic
purpose parameter-passing mechanism? This is especially true when creating plug-ins
that need an undetermined number of parameters with undetermined types. A similar
situation occurs when you provide a plug-in interface and the interface cannot determine
what parameters the plug-in might require, and it is necessary to provide a fixed API for
unknown implementations and clients.

A possible solution on strongly typed languages like C, is to provide a sufficient number
of void pointers, and each API call would use as many as needed. Unfortunately, since it
is impossible to know in advance how many of those void pointers should be provided,
the approach is not practical. Furthermore, using a list of void pointers to the actual
parameters is not a good solution, since proper casting should be done for each argument.

A runtime mechanism for accessing, altering, adding and removing arguments or
parameters must be provided.

Of course, these problems become even worse when you are also working with a
programming language that does not naturally provide support for API extensions
at run-time.

Solution
Decouple the API declaration from the parameters it receives, to allow a generic
procedural interface to be written with an arbitrary number of parameters being sent, each
one with an arbitrary type.

A practical way to go through is to define a class ParamBlock which is a simple
dictionary of pairs (a MAP [Sandu] or a Property List as parameter [Sommerlad] are
good implementations for this), which is the only real parameter of the implemented
procedures. Thus, from within the called function (functionToDefine), different
parameters are accessed through a generic call with the identifier of the needed parameter
as argument.
An Anything [Sommerlad] is probably the best solution for storing the parameters, since
they are proven as extremely useful universal data parameters, allowing useful interfaces
without overloading. If the language being used is strongly typed, like C++ or Delphi, it
is possible to use the RTTIVisitor pattern [martin-dih] to obtain a type-safe reference to
the corresponding subclass. Also, a Visitor pattern [GoF] could be used, but probably
would add too much complexity to Parameter Block, blurring its advantages. Of course,
should this be the case, all possible parameters should be descendants of the same
Parameter abstract super class. Also, in case of extreme need, a Casting Method
[Meyers] Pattern could be used.

With Parameter Block, the decision of which parameters are passed from the main
application to the plug-in is left to the plug-in itself, and not hard-coded by the developers
of the application.

On the other hand, Parameter Block becomes an indispensable tool when more than one
team is using the same procedural API, which in turn could be changing continuously,
becoming a moving target which becomes a potential development bottleneck and a
serious headache. With Parameter Block, the problem is avoided by letting each user of
the API to define its own parameters, customizing the procedural interfaces to suit their
own needs.

Structure
When applying Parameter Block in your application, you will usually develop an
auxiliary dictionary which will be a data structure that maps slot names to values. This
dictionary is the only data structure that needs to be passed from the main application to
the requested function.

Figure: the basic structure of the Parameter Block Pattern, where the

interaction between the caller and the called function are shown.

This way, when implementing the method at the plug-in, something like this could be
used:

void CalledFunction.mainMethod(paramBlock){

 …

 //we need the “XXX” parameter from the block:

 double xxx = paramBlock.getParamNamed(“XXX”).AsDouble();

 …

}
Note that here, implicitly, we are using an Anything Pattern to store the paramBlock
elements. It must be mentioned that a parameter naming convention should be established
from the very beginning, as it would be impossible to find the right names for each
parameter without it.

Implementation
For the implementation of this pattern, a couple of steps should be taken:

1. Evaluate if there is a real need for using the Parameter Block pattern. The main
forces that should be checked are
• You need to provide a runtime mechanism for accessing, altering, adding and

removing arguments or parameters. Unfortunately, Parameter Block also
would result in a more cumbersome syntax (code bloat).

• You are also working with a programming language that does not naturally
provide support for API extensions at run-time. Unfortunately, this advantage
is somewhat counter-forced by a loose of all semantic guidance from the

functionType Caller.callFunction(){
 paramBlock = prepareNeededParams();
 return CalledFunciton.mainMethod
(paramBlock);

void CalledFunction.mainMethod(paramBlock){
 xxxType xxx =
 paramBlock.getParam(“xxx”).asXXXType;
…}

CalledFunction

mainMethod (paramBlock): void

Caller

prepareNeededParams(): paramBlock
callFunction(): functionType

ParamBlock

interfaces and checks from your programming language, and, if implemented,
a slower parameter validation mechanism.

• There are several teams working on the same API, and this API is still under
development. You must provide a mechanism for API extensions, at the same
time providing a stable API to share by all teams working on a code.

It is very important to note that this solution has some drawbacks, as well, since
the parameter passing mechanism ceases to be explicit and extra work must be
done to have it working properly (parameter checking, completeness, …).

2. Decide the following participants:
• Decide which the parameter names will be, and use them as are the key values

by which the arguments will be looked for in the paramBlock..
• Called Function: The object with the function that needs the arguments to

perform its tasks.
• Decide which will the Function Caller be, since this is the class (or classes)

responsible of the creation of the paramBlock that stores the passed
arguments, and is also the subsystem responsible of registering the references
and providing the corresponding arguments at runtime.

It is also important no to forget to defina a Dictionary, which is a random access
data structure where the arguments are stored and later retrieved by their id
(probably just the parameter name).

3. In order for this mechanism to be completely generic, a registration of the
parameters needed by the function should be performed first:

 void CalledFunction.init(funcitonCaller){
 funcitonCaller.register("nameOfNeededParameter1");

 funcitonCaller.register("nameOfNeededParameter2");

 ...

 }

The advantage of using this pre-registering mechanism is that the caller knows in
advance exactly which parameters will be needed by the CalledFunction, being
able to implement mechanisms to avoid time/memory waste. This registering
process should be done as soon as the plug-in or library is loaded, but could be
delayed to any time before any call to the CalledFunction,

4. When calling the implementations for this), which is the only real parameter of
the implemented procedures. In C++

 funtionType CalledFunciton.functionToDefine
 (ParamBlock& paramBlock){

 ...

 }

5. The paramBlock is built by the Parameter Server by using the registered needed
arguments for the calledFunction.

6. From within the called function (functionToDefine), different parameters are
accessed through a generic call of the form

 neededParam = paramBlock.getParam("name");

7. If the Anything Pattern is used for storing the elements in the paramBlock, the
previous line would change to get advantage of the respective conversion
functions:

neededType neededParam

 = ParamBlock.getParam("name").AsNeededType();
8. If more than one function will use this mechanism, the registration should be

procedure-based. In this case, the paramBlock dictionaries would use triples of
the form (FunctionID, ArgumentID, Value), which could be easily implemented
as nested lists.

Variants
Property List: This pattern [Sommerlad] is used for attaching a flexible set of attributes

to an object in run-time. Each attribute is given a name represented by a data value,
and attributes can be added or removed on a per object basis.

Known Uses
• Maya SDK: Maya is a professional 3D modeling and animation system used in

the professional film industry which uses this mechanism to add new functionality
through user-defined plug-ins. Each plug-in register the parameters needed in a
function Initialize and the method Compute() receives a structure called
dataBlock which contains the needed run-time parameters. To downcast, Maya
uses a CastingMethod pattern [meyers]. For example, to create a surface shader
plug-in called PhongNode, the method compute() (the called function) receives a
block of type MDataBlock that contains all the passed parameters. When the
called function needs any parameter, it retrieves it from the block and converts it
to the desired type (labeled with (1) in the code below). Maya’s API also allows
output parameters (marked with (2) in the code) to be returned this way:

MStatus PhongNode::compute(const MPlug& plug, MDataBlock& block) {

 ...

 (2) MFloatVector& refrColor

 = block.inputValue(aRefractedColor).asFloatVector();

 ...

 (1) MDataHandle outColorHandle = block.outputValue(aOutColor)

 MFloatVector& outColor = outColorHandle.asFloatVector();

 …

}

• Apache http server: it provides a similar structure for its module extension API.
thus allowing a modules separate functions that are called within the phases of
request processing to communicate within this structure, without the surrounding
code needing to know about the module's needs.

Consequences
Advantages:

• Generic procedural API: You can write a generic procedural interface that
allows an arbitrary number of parameters being sent, each one with an arbitrary
type. This is also good for Object Oriented Framework hook methods.

• API changes at runtime: You can add and remove arguments at runtime.
• Less impact of API changes on development: Parameter Block allows a degree

of change without compromising communication between different modules, thus
leveraging coordination effort of the development team.

• Testability: a generic testbed might be easily constructed by using configuration
data to fill in the paramblocks.

• Parameter Editor: It is easy for you to build a parameter editor, since the
information can easily be retrieved.

• Arguments Evolution: Arguments can evolve to first-class arguments as an
application evolves. This is the case when an argument is recognized to have a
recurrent appearance across different implementations.

• Iterating on the parameters: You would be able to traverse and, perhaps,
process, iteratively the parameters in a function.

Disadvantages:

• Code Bloat: Syntax is more cumbersome in the absence of reflective support:
normally, access to arguments is quite straightforward, but with this pattern it
becomes different, more verbose.

• Overdose Danger: if you are only using one generic parameter, you loose all
semantic guidance from the interfaces and checks from your programming
language. Checking the types and correctness of the passed parameters becomes
much more difficult.

• Slower parameter validation: If you implement mechanisms to detect wrong
supply of arguments you might find that they are much slower. An example
would be Smalltalk's "doesNotUnderstand:", which can be implemented to trap
incorrectly formatted messages, can be orders of magnitude slower since the
dictionary must be thoroughly checked for each call.

• Runtime Overhead: You will access individual parameters in a slower way than
with conventional parameter passing.

See also
• Polymorphic parameter passing in general, since Parameter Block is a specific

variation of the theme for passing arbitrary data around in a structured way.
• Casting Method [meyers]: use this in case of extreme need to downcast the

parameter object.
• Comand [GoF]: This pattern encapsulates a request as a parameterized object,

decoupling an object from the operations performed on it, while Undetermined
Generic Arguments decouples the procedural interface of a command from the
parameters it needs to work.

• Arguments Object, Selector Object and Curried Object [Noble]: these three
patterns are intended to simplify an existing but complex protocol. Thus the need
to know in advance the arguments a function must be provided.

• Generic function-Binding Interface [Bilas] is the use of two simultaneous
patterns: Undetermined Generic Arguments and Command, but the Undetermined
Generic Arguments is used with ordering in the dictionary as the key to access
each parameter.

• Accumulator [Yelland]: is a variant of the Curried Object [Noble] which
simplifies the protocol used to create objects.

• MAP [Sandu]: is one of the best way to represent the dictionary that holds the
parameter collection

• RTTIVisitor [martin-dih] is what is used to avoid casting inside the defined
function that uses this parameter passing mechanism. As mentioned above,
Visitor [GoF] could also be used, but could easily render the solution unfeasible.

Acknowledgements
We would like to specially thank our shepherd, Peter Sommerlad, for his help and
experienced point of view. This would have not been possible without him. We also
would like to thank our universities and, specially, to the Europlop Committee for their
help that allowed such a great experience.

Bibliography
[Bilas] Scott Bilas "A Generic Function-Binding Interface", in Game Programming

Gems, Mark DeLoura Ed., Charles Rivers Media, pp. 56--67, ISBN
1584500492

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, "Design
Patterns: Elements of Reusable Object-Oriented Software", Addison
Wesley, October 1994.

[martin-dih] "Dual-Inheritance Hierarchies", in "Design Patterns for Dealing with Dual
Inheritance Hierarchies in C++", Robert C. Martin, C++ Report, April,
1997. Available at: http://www.objectmentor.com/

[meyers] Effective C++, Scott Meyers, Addison-Wesley Publishing, 1992. ISBN 0-
201-56364-9

[Noble] "Arguments and Results" James Noble, Plop 1998
[Sandu] "Collection Patterns" Dorin Sandu, Plop 2001
[Sommerlad] “Do-it-yourself Reflection”, Peter Sommerlad and Marcel Rüedi, EuroPlop

1998
[Yelland] "Creating host compliance in a portable framework: a study in the reuse of

design patterns". In Proceedings of 10th Conference on Object-Oriented
Programming Languages, Systems and Applications, San Jose, CA, 1996

