
Towards the Organizational Engineering Pattern Language©

Resources and Roles Based Patterns: The CONTACT, PERSON,
ORGANIZATIONALUNIT and ORGANIZATION Patterns

ALBERTO RODRIGUES SILVA

Instituto Superior Técnico / INESC-ID

(alberto.silva@acm.org)

Abstract. In this paper we argue the need and motivation for an organizational
engineering pattern language focused on the identification of the basic entities, or
constructors, that would support the modelling, monitoring, simulation, and
eventual execution of organizations. The main motivation for those constructors
would be the development of a new class of information systems that would allow
managers to better design, analyse, simulate and run their own organizations and
involved business: something like a “organizational cockpit” or a “business-oriented
CASE tool.

We identify the following minimum set of organizational constructors: resources;
roles; activities and business processes; strategy and politics; time; and space.
Inspired by these constructors we present in this paper a set of organizational
patterns, aligned mainly with the resources and roles constructor, namely:
CONTACT, PERSON, ORGANIZATIONALUNIT and ORGANIZATION. Other patterns,
such as BUSINESS PROCESS, INFORMATION SYSTEM or VISION, MISSION AND GOAL
are just identified and would be described in future work.

1 Introduction
A “pattern” describes a kind of a problem that occurs in some context, and also describes a
reasonable solution for that problem, in a way that this solution can be applied systematically
in different situations (Alexander, 1977). The original application of Alexander’s patterns was
in architecture and civil engineering; the software engineering community later on adopted
this concept, especially as object-oriented design patterns (Gamma et. al., 1994), and more
recently as analysis and business patterns (Fowler, 1996; Penker & Eriksson, 2000; Adams et
al., 2001), which is the main background for this work.

Patterns are about proven solutions, not new or unique ones. Patterns are about beauty,
elegance, knowledge reutilization, soundness and architecture. Patterns represent years of
application development, observation and experience. To find a solution is simple. However,
to find the right solution is usually very hard: you have to understand the problem, the forces
affecting the problem and the tradeoffs and consequences of applying a specific solution.

There are currently many events and work concerning mainly software (analysis and design)
patterns, such as Pattern Languages of Programming conferences (e.g., PLoP, EuroPLoP,
KoalaPLoP, MensorePLoP, SugarLoafPLoP or ChiliPLoP (Hillside Group, n.d)) or the
Software Patterns Series from Addison Wesley (Vlissides, 1996-2003). (The interested reader

©Proceedings of the EuroPLoP’2003. Copyright © 2003, ALBERTO RODRIGUES DA SILVA . All right reserved.

can start reading the “The Pattern Almanac” by Linda Rising (Rising, 1999) to get a broad
vision of the most relevant work already done.)

In spite of the huge number of patterns identified, predominantly from the object-oriented
software engineering area, there is yet an effective opportunity to bring this approach to the
information systems area, specifically to describe high level data models and business
processes in a more interesting and effective way compared to the recurrent very high- level
and conceptual approaches (Zachman, 1987; Wurman, 1997; Sharp & McDermott, 2001).

Traditionally, disparate subjects such as management, economy, sociology, history or even
psychology study organizations. However, and due to the increasing emergence and
importance of information systems in organizations, they have been also studied following the
engineering approach, based on whom we called “organizational engineering” (Bider &
Khomyakov, 1998; Malone, 1999; Eriksson & Penker, 2000). Organizational engineering is a
relatively recent knowledge domain that intent to understand and improve organizations’
structure and behaviour, and also to promote the alignment of their information systems with
their respective business goals.

We claim in this paper that an “organizational engineering pattern language” is needed. This
pattern language should provide a common set of concepts in order the design, understanding
and re-engineering of organizations would be done efficiently and with better results
compared to the current situation. Nevertheless, it is not the aim of this paper to propose “the”
organizational engineering pattern language. We just want to identify and present a relevant,
but necessarily incomplete, “set of organizational patterns”, meaning that this is an open
research area, and so, other patterns should naturally be proposed by different authors in the
future.

There are other initiatives that can be apparently associated with this work. However, they are
quite different and with different focus. For instance, the forthcoming “Common Pattern
Language of Organizational Patterns” (Berczuk et al., --) presents a deep discussion and vast
number of organizational patterns but mainly related to processes, people and organizations
focused on the software development engineering, while the pattern language introduced in
this paper is focused in the business and organizational engineering.

Our work is definitely closest to initiatives such as Fowler’s “Analysis Patterns” (Fowler,
1996; Fowler, 2003), Silverston’s “Data Models” (Silverston, 2001), or particularly the Open
Information Model, from MDC, and the Organizational Structure Facility, from OMG.

The Open Information Model (OIM) (Meta Data Coalition, 2000) is a set of meta data
specifications to facilitate sharing and reuse between tools and systems. The OIM consists of
over 200 types and 100 relationships, described in UML and organized in an easy-to-use and
easy-to-extend subject areas, which include: (1) analysis and design; (2) component
description; (3) database and data warehousing; (4) business engineering; (5) and knowledge
management. OIM was originally promoted by Microsoft through the MDC (Metadata
Coalition) consortium and was supported particularly by Microsoft SQL Server and OLAP
analysis services. Principally interesting from this paper point of view, is the OIM’s Business
Engineering Metamodel (BEM) that addresses process and organization design among other
features. The proposed BUSINESS PROCESS and VISION, MISSION AND GOAL patterns (to be
analysed in a future paper) were significantly based on the OIM’s BEM concepts.

On the other hand, the Organizational Structure Facility (OSF) (OMG, 2001) is a OMG
specification that provides a structural modeling of organizational elements. OSF is very tight
with the OMG’s specifications, particularly with CORBA and MOF. Consequently and in
spite its flexibility and robustness, it becomes hard to understand and to apply in real

scenarios. Nevertheless, an implementation of the entire "Organizational Structure Facility"
should allow the creation, destruction, manipulation, and query capabilities for organizational
entities and organizational structures that define the hierarchical relationships between those
entities.

This paper has four sections. Section 2 (“Pattern Template”) describes briefly the pattern
template that is used for defining the organizational patterns. Section 3 (“A Set of
Organizational Engineering Patterns: Resources and Roles Based Patterns”) is the main part
of this paper, where the CONTACT , PERSON, ORGANIZATIONALUNIT and ORGANIZATION
organizational patterns are described. Finally, Section 4 (“Conclusions") wraps up with
conclusions and observations for future work.

2 Pattern Template
This section presents the pattern template used along the paper. The template contains the
headings that follow.

Name : Identification of the pattern using an easy-to-read and expressive name.

Context: Description of one or more situations in which the pattern is applicable, as well as
the description of how the pattern relates with the other patterns in the language. In particular,
we will depict the context/pattern relationships, as suggested in Figure 1, with the significance
that “pattern-A contains (or uses) pattern-B means that pattern-B helps to complete pattern-
A, and pattern-A is in the context of pattern-B”.

Pattern-A

Pattern-B

Figure 1: The context/pattern relationships.

Problem: Definition of the problem to be solved by the pattern.

Forces: Description of the key factors that may influence the decision of when should the
pattern be applied.

Solution: Description of the solution provide by the pattern. In order to clarify the proposed
solution we use extensively UML class diagrams (Booch et al, 1999). It should be noticed that
the focus of these patterns are essentially structural, meaning that their goal is to discuss
concepts arrangements in order to provide consistent and suitable data models.

Related Work : Indication of bibliographic references and or patterns that inspired the
specific pattern, in case they exist. Also, discussion of alternative proposals and types of
information systems in which the pattern can be applied.

3 A Set of Organizational Engineering Patterns: Resources and
Roles Based Patterns

When we look for the minimum set of organizational constructors that can allow the
modelling, monitoring, simulation, and eventual execution of organizations, we reach the
following ones as suggested in the Figure 2: resources (e.g., people, money, rooms,
computers; software components), roles (e.g., manager, worker, programmer, seller,
buyer), activities & business processes; and culture & politics & strategy. Also, the time

and the space can be other relevant constructors if we need to support the lifetime and
dynamic of organizations.

This paper is principally focused on the role constructor, mainly around the person and
organization roles and their respective relationships.

 Resource

Role

Activity &
Business Process

Culture &
Politics &
Strategy

Key
Organizational
Constructors

Time

Space

Figure 2: The minimum set of organizational constructors.

The resource constructor is also very important and infrastructural because is the common
concept for a lot of other uses in the organizational context. The resources identification and
characterization is important in different moments of organizations’ life. Particularly in those
moments that is essential to decide and to make changes. For instance, when it is need (1) to
evaluate an organizations wealth in order to buy or sell it; or (2) to evaluate the number and
quality of human resources in order to proceed to employment or unemployment actions; or
even (3) to help deciding some investment plan.

Figure 3: The hierarchy of organizational resources.

To better classify organizations’ resources we propose a hierarchy of types based on two
distinct notions: tangible and intangible resources, as suggested in Figure 3. Tangible
resources correspond to concrete things that can be felt by touch and that are easy to identify
and evaluate. Examples are (1) people, such as owners, shareholders, users, employees,
managers, and external agents that will be involved in the organization in any way; (2)
facilities and equipments, such as buildings, cars, computers, telephones, and commodities
infrastructures such as electricity, water, and telecommunications; (3) software components,
such as operating systems, applicational and databases servers, specific-domain applications,

software libraries; (4) materials, from pencils, paper, notebooks, toner, cartridges, and so on;
and (5) money, which is a translation of all of the above into the language of accounting.

On the other hand, intangible resources correspond to abstract concepts that are much more
hard to identify, such as (1) information and knowledge about everything, from customers,
sales, orders, competitors, funding initiatives, resources, costs, projects, and so on; (2)
organizational units, services that may be charged on a per use basis, mentoring, sales,
marketing, technical support; (4) value set and cultural issues; and (4) information systems, a
set of resources and activities which aim is to support the organization’s business processes as
well as its information needs.

(Of course, we can identify other classification schemas; such as classify resources as
physical (e.g., people) and no-physical resources; or as concrete and abstract resources.
Neverthe less, all these classification schemas are reasonable similar and just present minor
differences and variations.)

Some of the identified resources are particularly analyse in this paper, namely: person (see the
PERSON pattern), organizational unit (see the ORGANIZATIONUNIT pattern), while others such as
node, component and information system would be analysed in future work.

Figure 4 shows, through an UML package diagram, the big picture of the proposed
organizational patterns, as well as their main relationships. A dashed arrow from pattern A to
pattern B means “pattern-A uses pattern-B”.

Organization Pattern

Person Pattern

Business
Process Pattern

Contact Pattern

Vision, Mission,
Goal Pattern

InformationSystem
Pattern

OrganizationalUnit
Pattern

Figure 4: The big picture of the organizational patterns.

In this paper (and future papers) we analyse and discuss these patterns according the
following sequence: (1) CONTACT , (2) PERSON, (3) ORGANIZATIONALUNIT, (4) ORGANIZATION,
(5) VISION, MISSION AND GOAL, (6) BUSINESS PROCESS, and (7) INFORMATION SYSTEM patterns.
However, only CONTACT , PERSON, ORGANIZATIONALUNIT and ORGANIZATION patterns are
analysed in this paper. The others would be present in the future papers. Nevertheless, for the sake of
the reader curiosity and interest, those patterns involve the following considerations.

The VISION, MISSION AND GOAL pattern is strongly influenced by the OIM’s Business
Engineering Model and states clearly the definition of necessary concepts such as business
strategy or business analysis activities. Among others are relevant the following concepts:
vision, mission, goals and impacts. This pattern addresses naturally the politics & strategic
constructor.

The BUSINESS PROCESS is a simple although very important organizational pattern. Business
process is a central concept in the organizational engineering activity. Essentially, it allows
showing the critical and relevant behaviour of organizations, either inside (i.e., intra) or even
outside (i.e., inter) organizations. A business process can be view as an extension of the UML
metatype StateActivity, with a set of specific particularities. This pattern addresses the
activity & business process constructor.

Finally, the INFORMATION SYSTEM is an ample and complex pattern that has multiple
relationships with the other patterns and concepts (e.g., people, organizations, business
processes) but also introduces new ones, more related with information system architectures
and technologies, concepts like nodes (i.e., computational platforms), software components,
execution components, data components, or users and related permissions. This pattern can
involve many organizational constructors.

CONTACT Pattern

Context

Persons have to manage and to deal with contacts regarding their personal and professional
life. A contact usually involves a list of locations, electronic addresses and a set of distinct
telephone numbers.

Contacts are usua lly supported by a disparate number of software applications varying from
PIM (personal information managers) to human resource and payroll systems, from directory
servers (e.g., LDAP/X.500 directory) to CRM or ERP systems.

Contacts can be kept in distinct systems: from XML files (e.g., in personal PDA or mobile
phones) to large directory or databases systems (e.g., in enterprise intranet systems).

Contact Pattern

+ Address
+ Contact

+ EAddress
+ Entity

+ Telephone

Organization
Pattern

OrganizationalUnit
Pattern

Person Pattern

Figure 5: The CONTACT pattern and the other patterns in the language.

Context/pattern relationships : Figure 5 shows that the CONTACT hasn’t any dependency, but
helps to complete (at least) the PERSON, ORGANIZATIONALUNIT and ORGANIZATION patterns.

Problems

Knowing that persons, organizations or even organizational units can have contacts, how do
you capture and represent this information in an organizational context? How do you
represent contact information, knowing that a contact can aggregate more that a location, an
electronic address or a telephone number? How do you organize contacts if you would like to
allow contacts sharing among different entities as well as you would like to minimize changes
impact without violate ownership properties?

Forces

A contact can have different types of fields, which number can vary dynamically. For
instance, we can describe a contact with just one electronic address or with a variable number
of electronic addresses, locations and telephone numbers. Hence, it is not possible to design
contacts for a predefined and static number of fields.

A contact can be associated to different kind of entities, such as people, organizations or even
organizational units. This means that both entities should share and aggregate the same
structure of contacts in order to avoid proliferation of contacts types.

Usually, in simple or personal contexts, contacts belong to just one person: the contacts’
owner. However, in business contexts, allow sharing contacts among different entities can
provide better integration and minimize the impact of changes (for instance, the change of an
organization’s telephone number should not require the change of all its employees’ telephone
numbers). Still, in this situation, where a contact is shared among different entities, it is
important to state clearly the specific contact’s owner.

Solution

Define a Contact as an aggregation of distinct parts (e.g., addresses, electronic-addresses
and telephones) and define a generic business Entity that can be the owner or just have
access to contacts.

A flexible solution to this problem is to define a contact has an aggregation of a dynamic set
of specific fields (such as addresses, electronic addresses and telephone numbers) as it is
shown in Figure 6.

There are three main aspects to be considered too. First, because people, organizations or
organizational units can have contacts, they are defined as specializations of the high level
and abstract “entity” concept, which is represented by the Entity class.

Second, because an entity can have a variety of contacts, they are defined separatelly. We
allow the dynamic association of common address (i.e., the Address class), telephones (i.e.,
the Telephone class) and electronic addresses (i.e., the EAddress class), which have a
corresponding type attribute (respectively AddressType, PhoneType and
EAddressType) in order to offer a convenient classification feature.

e.g., Home,
Business, Other

e.g., Phone;
Mobile; Fax

URL, e.g., email,
http, wap, IM

Person
(from Person Pattern)

Organization
(from Organization Pattern)

OrganizationalUnit
(from OrganizationalUnit Pattern)...)

Address
address
zipCode
city
country
AddressType

EAddress
eAddress
EAddressType

Telephone
countryCode
phoneNumber
PhoneType

Contact

** ** **

Entity

name

*

*

*

*

has access

*

1

*

1

owns

Figure 6: CONTACT pattern, the structural definition.

Third, in order to minimize changes impact, we allow sharing a contact among distinct
entities. For example, in a business context, changing the business office contact (e.g., the
phone number) should not require to change the contacts of all associated employees.
Nevertheless, for the sake of manageability, there should be just one owner for each defined
contact. This means that even though a contact can be accessed by different entities (through
the has-access relationship), just one of them has the right to change it (through the owns
relationship).

Contact

Contact Pattern
Address

EAddress

Entity

Telephone
address

electronic-address

telephone

contact entity

Figure 7: CONTACT pattern, the generic collaboration.

Figure 7 shows the generic collaboration regarding the CONTACT pattern application. [Note: A
generic collaboration is represented in UML as a dashed ellipse with a set of dependency
relationships (i.e. dashed arrows) directed to the involved participants. This high- level
representation can be mapped directly to an object diagram, which should be conform with
the respective UML class diagram (Booch et al., 1999).]

amrs :
ConcretePerson

DEI/IST : Contact

Av. Rovisco Pais :
Address

 : Telephone

DEI/IST :
OrganizationalUnit

www.dei.ist.utl.pt :
EAddress

info@dei.ist.utl.pt :
EAddress

fax : Telephone

entity / has-access

address

telephone

eaddress

eaddress

telephone

entity / owns

amrs : PersonCore

DEI/IST : Contact

Av. Rovisco Pais :
Address

DEI/IST :
OrganizationalUnit

entity / owns

www.dei.ist.utl.pt : EAddress

info@dei.ist.utl.pt : EAddress

fax : Telephone

entity / has-access

address
telephone

eaddress

eaddress

telephone

Contact
contact

 : Telephone

Figure 8: CONTACT pattern, application to the DEI/IST university case.

Figure 8 shows an application example of the CONTACT pattern: the author’s university
contact. The left and right side of the figure are semantically equivalent. The left side shows
the information through a UML object diagram, while the right side shows the same

information through a specific collaboration diagram, where is more evident the name of the
pattern (represented in UML as a dashed ellipse) and its respective participants.

Related Work

The CONTACT pattern is used (or can be used) in several types of information systems such as
personal information manager (PIM) systems (e.g., Microsoft Outlook, Elefante or Chandler),
human resource and payroll systems, customer relationship managers, application service
provider (ASP) based systems, or global identity infrastructures (e.g., Microsoft Passport or
Liberty Alliance).

This pattern is being applying, with minor adjustments, in some of our current projects,
namely the PUC (http://berlin.inesc- id.pt/projects/puc/), e-Escola (www.eescola.org) and e-
Arte (http://berlin.inesc- id.pt/projects/e-arte/) projects.

The proposed pattern is mainly based from our experience in R&D projects as well as from
other proposals such as CWM (OMG, 1999) and OSF (OMG, 2001).

PERSON Pattern

Context

Every organization and its related information systems have to deal with information about
people. Organizations maintain people information due to different reasons, such as: to pay
salaries to their employees; to better understand their customers and improve sales; or just to
satisfy their shareholders’ interests. However, a person can easily perform different roles
regarding an organization. (For example, Mary Brown can be simultaneously a customer and
an employee regarding the ABC company, and a shareholder of XYZ company. Or in a
university organization, John Black can be simultaneously a student, a teacher and a student’s
parent.)

Furthermore, people keep a set of common information (such as name, gender or date of
birth) as well as a set of contacts and addresses varying from home and business addresses to
emails, web addresses and phone numbers.

There are numerous applications where management of people, their roles and their skills are
critical, varying from human resources systems to Web portals, from project management to
e-learning systems.

OrganizationalUnit
Pattern

Organization Pattern

Person Pattern
+ ConcretePerson

+ ConcretePersonRoleA
+ ConcretePersonRoleB

+ Person
+ PersonRole

Contact Pattern

InformationSystem
Pattern

Person

Contact

Figure 9: The PERSON pattern and the other patterns in the language.

Context/pattern relationships : Figure 9 shows the relationship of the PERSON with the other
patterns in the language. It is evident that the CONTACT helps to complete the PERSON pattern.
Use PERSON pattern when you want to model, for instance, an OrganizationalUnit or an
Organization.

Problem

How do you capture and represent person information in an organizational context, knowing
that people can perform different roles regarding one or more organizations or even regarding
the society? How can you manage flexibly and elegantly the disparate number of possible
roles that a person can perform, with the involved specific information and behaviours?

Forces

A person has a set of common information, such as name, gender, date of birth, nationality or
national identification. She can also have a disparate number of contacts.

A person can perform different roles depending the situation (i.e., according the space
constructor) or even along its history (i.e., according the time constructor). Every person role
has a distinct set of information and a specific behaviour. For instance, currently I can be a
“professor” and a “scientific coordinator at the department” when I am in the University, a
“researcher” and a “group leader” when at the INESC research lab, or even a “bank-
customer” when at my local bank…

We don’t want to have neither an explosive number of classes regarding the support of all
possible combinations of person roles, nor a unique and big class collecting all the attributes
(and behaviours) associated to all the roles.

Solution

Model a Person as an entity with a varying number of PersonRoles. Implement this by
making the PersonRoles decorators for Person.

A flexible solution to this problem is shown in Figure 10. There are two main aspects to be
considered. First, because a person can perform diverse roles along the space and the time
(e.g., can perform in a given period of time and depending on the situation, roles like
customer, shareholder or collaborator), which can be attached or detached dynamically, we
adapt the design pattern DECORATOR in order to support this unpredictability. [The
DECORATOR pattern (Gamma et al, 1994) allows attaching dynamically additional
responsibilities or roles to an object.]

Second, because a person can have a variety of contacts we detach them from its nuclear
definition. That is the reason the Person class derives from the Entity class. Hence, we
allow the dynamic association of contacts according the CONTACT pattern (see CONTACT
pattern presented previously).

ConcretePersonRoleA
addedStateA

ConcretePersonRoleB
addedStateB

Entity
name

ConcretePerson

gender
title
dateOfBirth
notes

Person
name

PersonRole

1

*

1

+person

*

Figure 10: PERSON pattern, the structural definition.

Figure 11 shows the generic collaboration corresponding to the PERSON pattern. Figure 12
depicts two PERSON pattern applications: (1) the left side, regarding the business application
domain; and (2) the right side, regarding a classic academic application domain.

Person Pattern

ConcretePersonRoleA ConcretePersonRoleB

Person ConcretePerson

ConcretePersonRole ConcretePersonRole

Person ConcretePerson

Figure 11: PERSON pattern, the generic collaboration.

Customer
currentCredit
maxCredit
preferences

Shareholder
sharesNumber
percentage

ConcretePerson
name
gender
title
dateOfBirth
notes

Person Pattern

(from Generic Collaboration)

Employee
salaryClass
professionalTitle
skills
contractDate

ConcretePersonRole ConcretePersonRole

ConcretePersonRole
ConcretePerson

Person Pattern

(from Generic Collaboration)

ConcretePerson

name
gender
title
dateOfBirth
notes

Student

studentID
courseName
currentCredits
currentGrade

Professor

professorID
academicTitle
yearsOfExperience

Administrative
administrativeID
professionalLevel

ConcretePerson

ConcretePersonRole

ConcretePersonRole

ConcretePersonRole

Figure 12: PERSON pattern applied to different application domains.

Related Work

The PERSON pattern is inspired mainly on the DECORATOR pattern (Gamma et. al., 1994) and
has a tight dependency with the CONTACT pattern. Also the ROLE OBJECT pattern (Baumer et.
al., 2000) could be considered because it has the same structure of the DECORATOR pattern,
but allows introducing new operations dynamically. However, because the PERSON pattern is
essentially structural (i.e., it does not focus on operations) the DECORATOR pattern seems to be
a more simple and natural adoption. The PERSON is used by the ORGANIZATIONALUNIT and
ORGANIZATION patterns (because organizational units and organizations have relationships
with people through their different business roles) as well as the INFORMATION SYSTEM
pattern (because information systems are used by people/users).

The domain model of OSF (OMG, 2001) also expresses the Person concept and its respective
roles.

As it was referred for the CONTACT pattern, the PERSON pattern can be used in a extensive set
of information systems such as personal information manager systems (e.g., Microsoft
Outlook, Elefante or Chandler), human resource and payroll systems, customer relationship
managers or application service provider (ASP) based systems. From our own experience, the
majority of information systems have to deal with person and person roles information. For
instance, this pattern is being applying, with minor adjustments, in some of our current
projects, namely the PUC (http://berlin.inesc- id.pt/projects/puc/), e-Escola (www.eescola.org)
and e-Arte (http://berlin.inesc- id.pt/projects/e-arte/) projects.

ORGANIZATIONALUNIT Pattern

Context

Organizations are internally structured according a varying number of schemas. These
structures are based on organizational-units, which are called differently depending the
situations, namely: departments, sections, services, project groups… Moreover, these
organizational-units can establish different kind of relationships between themselves, as well
as can be arranged hierarchically in order to better reflect responsibility, power or
management relationships (For example, the “administrative department” of a common
organization can be arranged around two or three specific sub-organizational units, called
“sections”).

Organizational-units offer a suitable abstraction to deal with people, skills, roles and business
processes. The traditional representation of organizations is based mainly on the identification
of organizational-units as well as on their respective relationships and, sometimes, on the
involved leaders or managers.

OrganizationalUnit Pattern
+ Employee

+ OrgUnitPosition
+ OrganizationalUnit

+ OrganizationalUnitType
+ Skill

Contact Pattern
Person Pattern

Organization Pattern

OrganizationalUnit
Person

ContactContact

Figure 13: The ORGANIZATIONALUNIT pattern and the other patterns in the language.

Context/pattern relationships : Figure 13 shows the relationship of the
ORGANIZATIONALUNIT with the other patterns in the language. It is evident that the PERSON
and CONTACT helps to complete the ORGANIZATIONALUNIT pattern. On the other hand, the
ORGANIZATIONALUNIT pattern can be used in the context of Organizations.

Problem

How do you capture and represent internal structures in an organizational context, knowing
that different organizations can have different internal arrangements? How do you capture
hierarchies and or embedded arrangements among organizational-units? How do you specify
the human resources required and or used currently by some organizational-unit, as well as
the involved skills required? How do you capture the people that work and or manage a
specific organizational-unit?

Forces

An organizational-unit has a set of common information, such as name, type, budget, and
credit limit. Usually, it has also a leader (which can be called differently, such as president,
director or manager), and one or more contacts.

An organization can be structured around multiple organizational-units; some of them can be
embedded inside others.

People work for organizations only if they are affected to some organizational-unit. Of course,
people can be affected simultaneously to multiple organizational-units. However, it can be
important to keep the reasons that justify the recruitment of a given person, or the original set
of required skills for a given position.

Solution

Represent the internal structures of organizations with OrganizationalUnits.
OrganizationalUnit offers specific positions, which can be filled by Employees, if they
have the convenient Skills. Additionally, OrganizationalUnits can have different
arrangements between themselves.

Figure 14 shows the solution for the referred problems, which are relevant two main concepts.
On one hand, the concept of organizational-unit with properties such as name, contacts,
manager and a set of required and or occupied positions. The “subOrgUnits” reflexive
association allows the definition of organizational-unit hierarchies.

e.g., Section,
Department,
Service, Board EmployeeSkill

createDate
lastChangeDate
skillLevel
notes

WorksAs
initialDate
finalDate
jobName
notes

Skill

name
purpose

subSkills

OrganizationalUnitType

OrgUnitPosition
numberNeeded
purpose

*

*

*

*

Employee
* ** *

works as

*

*

*

*

profissional skills

OrganizationalUnit
name
purpose

**

subOrgUnits

**positions

0..1
*

0..1
*

managed by

Entity PersonRole

Figure 14: ORGANIZATIONALUNIT pattern, the structural definition.

On the other hand, the concept of employee, which is a generic role that every person working
for any organization should have. Both organizational-units’ positions and employees are
described by their respective skills. Hence, this solution allows capturing the people
competence model and consequently can provide some support for the matching between the
positions and the employment offered.

Figure 15 shows the generic collaboration corresponding to the ORGANIZATIONALUNIT
pattern.

Employee

OrganizationalUnit Pattern

OrganizationalUnit
Type

Skill

OrgUnitPosition

OrganizationalUnit

OrganizationalUnit

positions
skills

type employees

Figure 15: ORGANIZATIONALUNIT pattern, the generic collaboration.

Related Work

The ORGANIZATIONALUNIT pattern is tightly coupled with the other patterns presented in this
paper. In particular, this pattern can be used to describe the internal structures of
organizations.

The Organizational Structure Facility (OMG, 2001) specifies a data model and a set of
CORBA interfaces related to organizations modeling. However, in spite of its robustness and
flexibility, OSF tends to be hard to understand and to apply in practice.

The OIM’s Business Engineering Model (MDC, 2000) specifies a business metamodel, which
also introduces some main concepts that we adopted. This metamodel describes the actors and
resources of a business and their relationships. It captures who should perform what activity,
the necessary skills, the reporting structure, and the responsibility structure. But also, BEM is
focused on the internal view of organizations, and considers only two types of resources (i.e.,
BusinessUnit and OrganizationalRole).

The ORGANIZATIONALUNIT pattern can be used in several systems such as those referred for
the PERSON pattern, namely for human resource and payroll systems.

ORGANIZATION Pattern

Context

Organizations represent the central concept of the organizational engineering domain.
Nevertheless and despite organizations’ information systems have to manage a high volume
of information about other related organizations, that is not well known represented, designed
and or implemented in concrete information systems. Traditionally, organizations are
understood and represented following their internal view, through well-knows diagrams that
just show their organizational structures and the corresponding relationships. However, these
representations are not enough because there are other organizational perspectives that
deserve to be designed and analysed, such as the vision of the business roles, the people
involved on (e.g., employees and shareholders), or the external vision of the organization.

Organization Pattern
+ Concrete OrganizationRoleA
+ Concrete OrganizationRoleB

+ Concrete PersonOrganizationRole
+ ConcreteOrganization

+ Organization
+ OrganizationRole
+ OrganizationType

Person Pattern

Business
Process Pattern

Contact Pattern

Vision, Mission,
Goal Pattern

InformationSystem
Pattern

OrganizationalUnit
Pattern

Organization

Person
Contact

Vision, Mission
and Goal

OrganizationalUnit
Person

ContacContact

Contact

Business
Process

Information
System

Figure 16: The ORGANIZATION pattern and the other patterns in the language.

Organizations have different information systems with distinct data models that try to
represent and maintain information concerning organizational and human entities. However,
following the organizational engineering, it is important to have a common, application-
independent and consolidated data model. Of course, that common data model should capture
in a flexible and elegant way organizational and human entities.

This kind of information is used in many situations and supported by distinct types of
information systems, such as ERP and CRM systems; strategic management or business
reengineering support systems; or even simulators and games for management or economy
domains.

Context/pattern relationships : Figure 16 shows the relationships of the ORGANIZATION with
the other patterns in the language. It is evident that this pattern performs a central role in the
pattern language, with many dependencies with the other patterns. Particularly, PERSON,
CONTACT and ORGANIZATIONALUNIT help to complete the ORGANIZATION pattern.

Problem

How do you identify and capture the relationships between organizations and people as well
as between organizations performing different roles (e.g., customer, supplier or partner)?
How do you capture the internal structure of an organization, with all its complex
organizational structures, internal business roles, needed skills, and people involved on? How
do you capture the external view of an organization compound by a multitude of relationships
with other organizations and or people performing different business roles?

Forces

Organizations have some common information, such as name, nationality, fiscal
identification, and contacts. They have also internal organizational structures based on which
they support their own business processes and activities.

Organizations have to deal with resources in order to carry out its business. Resources can be
arranged in structures and have relationships with each other. However, there are a wide
variety of resources, such as tangibles (e.g., people, buildings, machines and equipment, cars,
materials, money) and intangibles (e.g., information, knowledge, research and innovation
politics, know-how).

Organizations establish several relationships with people and also with other organizations.

Organizations can perform different roles, namely they can act as public administrations,
partners, subsidiaries, suppliers or customers.

Solution

Model an Organization as an entity with a varying number of OrganizationRoles.
Implement this by making the OrganizationRoles decorators for Organization. An
Organization can establish different kind of relationships with other Organizations as
well as with Persons. Additionally, an Organization has a Vision (and consequently
Missions and Goals), is structured internally around a set of OrganizationalUnits, and
supports multiple BusinessProcesses.

The generic solution to the referred problems is depicted in Figures 17 and 18, and it is based
in the unambiguous identification of two key concepts: persons and organizations, as well as
their respective business roles. Persons are entities with individual and multifaceted interests,
who are designed according the PERSON pattern, presented previously. On the other hand,
organizations are viewed as socio-economical entities that can establish different kind of

relationships with people and other organizations. Because an organization can perform
different roles in the same or different situations (e.g., can perform simultaneously roles like
customer, supplier, subsidiary and business partner) we adapt the DECORATOR design pattern
in order to support this unpredictability. The DECORATOR pattern (Gamma et. al., 1994)
allows attaching dynamically additional responsibilities or roles to an object and hence, it is
very adequate to support this situation.

ConcretePerson
(from Person Pattern)

PersonRole
(from Person Pattern)

Person
(from Person Pattern)

*

1

+person*

1

OrganizationRole
(from Organization Pattern)

Organization
(from Organization Pattern)

*

1

+organization

*

1Employee
(from OrganizationalUnit Pattern)

Public Admin Supplier Subsidiary Customer Shareholder

ConcreteOrganization
(from Organization Pattern)

has-people

pays-taxes

regulates

buys
owns

sells
owners

{xor}{xor}

Figure 17: The ORGANIZATION pattern applied in a business context.

People can be identified as different roles through the Person-PersonRole inherence,
such as suggested in Figure 17: Employee (e.g., worker, collaborator, consultant, project
manager), Shareholder (e.g., enterprise owner) or Customer (e.g., anonymous or well-
known customer). The adoption of the DECORATOR pattern means that a person can be
simultaneously an employee, a shareholder and or a customer.

An organization can perform disparate roles (defined according the Organization-
OrganizationRole inherence), such as customer, supplier, shareholder, subsidiary and or
public administration. Generically, an organization establishes relationships with the Public
Administration (e.g., to pay taxes or to satisfy legal/social obligations), buy and sell
products/services respectively to suppliers and customers, and can work with other

organizations in partnerships agreements. Finally, organizations have to motivate and manage
their employees in order to satisfy the goals and requirements of their respective shareholders.

Figure 17 depicts two {xor} constraints that deserve a special note. Those constraints are
needed to specify that some roles (e.g., Customer or Shareholder) can be performed
either by an organization or by a person, but not both simultaneously. For example, the
{xor} constraint between the inherence relationships PersonRole-Customer and
OrganizationRole-Customer means that either an organization or a person can be a
customer in a given context. By exclusion, we assume that only organizations can perform
roles like public administration, supplier, subsidiary or partner.

As discussed previously for persons, organizations should also have different kind of contacts
in order to support conveniently their businesses. This information is not represented in
Figure 18 for the sake of simplicity. However, this is evident in the CONTACT pattern through
the Entity-Organization inherence (see Figure 6).

Organizations can be classified according a specific type (i.e., the OrganizationType
class), such as a company, university, private or public institute.

{xor}

ConcretePerson
(from Person Pattern)

Organization

OrganizationRole

1

*

1

+organization

*

e.g., Company,
Public Institute,
Private Institute,
University

Entity
(from Contact Pattern)

Person
(from Person Pattern)

PersonRole
(from Person Pattern)

1

*

1

+person

*

OrganizationalUnit
(from OrganizationalUnit Pattern)

OrganizationType

Concrete
PersonOrganizationRole

Concrete
OrganizationRoleB

Concrete
OrganizationRoleA

ConcretePersonRoleA
(from Person Pattern)

Vision
(from Vision, Mission, Goal Pattern)

BusinessProcess
(from Business Process Pattern)

ConcreteOrganization

**
internal-structures

type

has-some-other-relationship

has-other-relationship

has-some-relationship

has-relationship-with-PersonRole

vision

**

processes

Figure 18: ORGANIZATION pattern, the structural definition.

Concrete OrganizationRoleB
(from Organization Pattern)Organization Pattern

OrganizationType
(from Organization Pattern)

Concrete PersonOrganizationRole
(from Organization Pattern)

Concrete OrganizationRoleA
(from Organization Pattern)

ConcretePersonRoleA
(from Person Pattern)

OrganizationType

Common PersonOrganizationRole

ConcreteOrganizationRole

ConcretePersonRole

ConcreteOrganizationRole
Vision

(from Vision, Mission, Goal Pattern)...)

BusinessProcess
(from Business Process Pattern)

OrganizationalUnit
(from OrganizationalUnit Pattern)...)

Internal Structures

ConcreteOrganization
(from Organization Pattern)

ConcreteOrganization

Organization
(from Organization Pattern)

Organization

Processes

Vision

Figure 19: ORGANIZATION pattern, the generic collaboration.

Additionally, organizations are better represented through two complementary perspectives:
the internal view and the external view.

External View

According the external view, there should be captured all the relationships between the source
organization and all target organizations and people involved on. This information can be
obtained from the relationships between the ConcreteOrganization and all the person
and organization roles (i.e., ConcreteOrganizationRole and ConcretePerson
OrganizationRole). Of course, some of these relationships, in real situations, would
involve more information and consequently relationships with other entities. A simple but
suggestive application of the Organization pattern is depicted in Figure 17.

Internal View

On the other hand, according the internal view, there should be captured the organizations’
internal units (e.g., sections, departments and services), employees and their respective
relationships (see ORGANIZATIONALUNIT pattern). It can also be captured the organizations’
vision, mission and goal statements (see the VISION, MISSION AND GOAL pattern) as well as
their internal and external business processes and involved activities (see the BUSINESS
PROCESS pattern).

The next box shows the ORGANIZATION pattern’s relational schemas specified according the
compact format.

Related Work

The ORGANIZATION pattern is tightly coupled with the patterns presented previously, namely
it is completed by the CONTACT, PERSON and ORGANIZATIONALUNIT patterns. Like the
PERSON, it is based on the DECORATOR pattern due to its flexibility and elegance regarding the
management of organization roles. Also the ROLE OBJECT pattern (Baumer et. al., 2000) could
be considered because it has the same structure of the DECORATOR pattern, but it allows
introducing new operations dynamically. However, because the ORGANIZATION pattern is
essentially structural (i.e., it does not focus on operations) the DECORATOR pattern seems to be
a more simple and appropriate adoption.

The Organizational Structure Facility (OMG, 2001) specifies a data model and a set of
CORBA interfaces related to organizations modeling. However, in spite of its robustness and
flexibility, OSF tends to be hard to understand and to apply in practice. On the other hand,
OSF is primarily focused on the organization’s internal views and, as a consequence, it does
not propose mechanisms to model and to manage explicit relationships between organizations
and their roles, such as it is proposed in this pattern.

The OIM’s Business Engineering Model (MDC, 2000) specifies a business metamodel, which
also introduces some main concepts that we analyzed. This metamodel describes the actors
and resources of a business and their relationships. It captures who should perform what
activity, the necessary skills, the reporting structure, and the responsibility structure. But also,
BEM is focused on the internal view of organizations, and considers only two types of
resources (i.e., BusinessUnit and OrganizationalRole).

The use of the ORGANIZATION pattern is twofold. First, from its internal perspective, it can be
used in several systems such as those referred for the PERSON pattern, namely human resource
and payroll systems, or application service provider (ASP) based systems. Second, from the
its external perspective, this pattern can be used by used in management simulators and
games, virtual societies, and the majority of e-business based systems such as e-marketplaces,
customer relationship and supply-chain management systems.

4 Conclusions
As stated initially in this paper, patterns are about proven solutions, not new or unique ones.
Patterns represent years of application development, observation and experience. In spite of
the long experience designing and developing software systems (with the consequent wide
range of well-known software patterns (Rising, 1999)) there are not so much experience in the
organizational engineering domain, at least described according the “pattern approach”.

In this paper we argue that an organizational pattern language is needed for a better design,
understanding and (re)engineering of organizations as well as their associated information
systems. In particular, we analysed and discussed in detail the CONTACT , PERSON,
ORGANIZATIONALUNIT and ORGANIZATION patterns. Other patterns, for instance VISION, MISSION

AND GOAL, BUSINESS PROCESS, and INFORMATION SYSTEM patterns , were drafted and would be
discussed and proposed in future work.

The most important contribute of this paper was the proposal and discussion of organizational
patterns in a novel way, bringing the pragmatic and effective approach of software patterns
(Vlissides, 1996-2003) to a more recent and yet conceptual area of organizational engineering
(Scheer, 1999; Bider & Khomyakov, 1998; Malone, 1999; Eriksson & Penker, 2000; Adams
et al., 2001; MIT, 2000). Our main goal is to start a reflection, with consequent activities,
concerning the issue of modelling organizations through generic and high- level concepts and
structures.

Furthermore, the proposed patterns are important by themselves, they can be analysed and
applied together or individually into a large range of information systems and situations as
was referred along the paper.

Finally, it is important to state that the patterns proposed are just an open and incomplete
version of the intended “organizational pattern language”. Consequently, for us it is clear
that more work and research should be done in the future. Among others, we identify two
issues that deserve to be handled. First, this pattern language should be applied at different
levels into different case studies and real scenarios in order to obtain positive feedback as well
as to improve itself. Second, this pattern language can eventually becomes the basis for an
organizational metamodel (i.e., an UML profile) with main concepts (i.e., stereotypes or
metatypes) such as Organization, Person, OrganizationRole, PersonRole, Goal, Business
Process, and Information System. Of course, with that metamodel, it would be possible to
associate easy-to-read icons to those stereotypes, and consequently to improve the
expressiveness of the produced models as well as the communication among the involved
stakeholders.

Acknowledgments

I’d like to thank my EuroPLoP’2003 colleagues and in particular my EuroPLoP’2003
shepherd, Steve Berczuk, for his pertinent suggestions and guidance, which help to improve
the readiness and deepness of this paper.

I also would like to thank my colleague José Tribolet, for the discussions around the
“organizational engineering” subject, from which I recognized the relevance of defining a
minimum set of organizational constructors.

References
Adams, J., Koushik, S., Vasudeva, G., Galambos, G. (2001). Patterns for e-business: A Strategy for

Reuse. IBM Press.

Alexander, C., Ishikawa, S., Silverstein, M., et al. (1977). A Pattern Language. Oxford University
Press.

Berczuk, S, Coplien, J, Devos, M., Harrison, N.(--). Common Pattern Language of Organizational
Patterns. To be published in a forthcoming Prentice - Hall book. See
http://www.easycomp.org/cgi-bin/OrgPatterns?OrgPatterns and
http://easycomp.info.uni-karlsruhe.de/~jcoplien/HarrisonCoplien.pdf

Bider, I. and Khomyakov, M.(1998). One OO Aproach to Business Modeling, Proceedings of
OOPSLA’1998. ACM Press.

Baumer, D., Riehle, D., Siberski, W., Wulf, M. (2000). Role Object. In Pattern Languages of Program
Design 4 . Addison Wesley.

Booch, G, Rumbaugh, J, Jacobson, I. (1999). The Unified Modeling Language User Guide. Addison-
Wesley.

Eriksson, H-E. and Penker, M. (2000). Business Modeling with UML – business Patterns at Work. John
Wiley and Sons, Inc.

Fowler, M. (1996). Analysis Patterns: Reusable Object Models (Object-Oriented Software Engineering
Series), Addison-Wesley.

Fowler, M. (2003). Martin Fowler: Articles. http://www.martinfowler.com/articles.html#ap

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley.

Hillside Group. (n.d). Patterns Home Page – Patterns Conferences. URL:
http://www.hillside.net/conferencesnavigation.htm

Malone, T. et al. (1999). Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes. Management Science. 45(3) pp 425-443. March 1999.

Meta Data Coalition (MDC). (2000). Open Information Model.
http://www.mdcinfo.com/OIM/index.html

MIT (2000). MIT eBusiness Process Handbook. MIT Sloan School and Phios Corporation.

OMG. (1999). Common Warehouse Metamodel Specification. URL:
http://www.omg.org/technology/cwm/

OMG. (2001). Organizational Structure Facility Specification. URL:
http://www.omg.org/docs/dtc/01-09-04.pdf

Penker, M., Eriksson, H. (2000). Business Modeling With UML: Business Patterns at Work. John Wiley
& Sons

Ramakrishnan, R., Gehrke, J.(2002). Database Management Systems, Third Edition. McGraw-Hill.

Rising, L. (1999). The Pattern Almanac. Addison Wesley.

Scheer, A (1999). ARIS – Business Process Modeling, Second Edition.Springer-Verlag.

Sharp, A., McDermott, P. (2001). Workflow Modeling: Tools for Process Improvement and Application
Development. Artech House.

Silverston, L. (2001). The Data Model Resource Book, Vol. 1 and 2: A Library of Universal Data Models
for All Enterprises. John Wiley.

Wurman, R. (1997). Information Architects. Palace Press International.

Vlissides, J. (Series Ed.). (1996-2003). The Software Patterns Series. Addison Wesley. URL:
http://www.awl.com/cseng/swpatterns.

Zachman, J. (1987). “A Framework for Information Systems Architecture”. IBM Systems Journal,
vol. 26(3).

Appendix – Data schema
For the reader interested in design or implement whole or parts of this pattern set, we present
below the respective relational data models (Ramakrishnan, Gehrke, 2002) represented
according a compact- format schema, where:

(1) Relations map to table names (e.g., Entity);

(2) Underline attributes represent primary key attributes for their respective table (e.g.,
EntityID of the Entity table); and

(3) Dashed underline attributes represent foreign key attributes for their respective table (e.g.,
EntityOwnerFK of the Contact table).

Data Model for the CONTACT Pattern
//

// Entity and Contacts

Entity(EntityID, Name, EntityType, …)

Contact(ContactID, Name, EntityOwnerFK …)

ContactEntityAccess(ContactEntityAccessID, ContactFK, EntityFK)

// Normal addresses

Address(AddressID, Address, ZipCode, City, CountryFK, AddressTypeFK, ContactFK, notes, …)

AddressType(AddressType, Name) // e.g., home, business, other

Country(CountryID, Name)

// Electronic addresses

EAddress (EAddressID, Address, EAddressTypeFK, ContactFK, notes, …)

EAddressType(EAddressTypeID, Name) // e.g., email, web, im, wap

// Telephones

Telephone(TelephoneID, CountryCode, PhoneNumber, PhoneTypeFK, ContactFK, notes, …)

PhoneType(PhoneTypeID, Name) // e.g., phone, mobile, fax, phone+fax

//

Data Model for the PERSON Pattern
// Entity and Contacts

// see Contact pattern’s data model

//

// Person Core

Person(PersonID, EntityFK, Name, Title, Birthday, Gender, NationalId, Notes, …)

// Roles

PersonRoleA(PersonRoleA, PersonFK, addedStateA, …)

PersonRoleB(PersonRoleB, PersonFK, addedStateB, …)

e.g., applied in the business application domain:

Customer(CustomerID, PersonFK, CurrentCredit, LimitCredit, Preferences, …)

Collaborator(CollaboratorID, PersonFK, SalaryClass, ProfessionalTitle, …)

Shareholder(ShareholderID, PersonFK, SharesNr, Percentage, …)

...

Data Model for the ORGANIZATIONALUNIT Pattern
// Entity and Contacts

// see Contact pattern’s data model

//

// Person and Person Roles

// see Person pattern’s data model

Person(PersonID, EntityFK, Name, Title, Birthday, Gender, NationalId, Notes, …)

Employee(EmployeeID, PersonFK, SalaryClass, ProfessionalTitle, …)

...

// OrganizationalUnit

OrganizationalUnit(OrganizationalUnitID, Name, HierarchyLevel, OrganizationalUnitTypeFK,
OrgUnitFatherFK, ManagerFK, ManagerRoleName, Purpose)

OrganizationalUnitType(OrganizationalUnitTypeID, Name)

// Positions

OrgUnitPosition(OrgUnitPositionID, OrgUnitFK, NumberNeeded, Purpose)

Skill(SkillID, Name, Purpose)

OrgUnitPositionSkill(OrgUnitPositionSkill, OrgUnitPositionFK, SkillFK)

EmployeeSkill(EmployeeSkill, EmployeeFK, SkillFK, createDate, lastChangeDate, skillLevel, …)

WorkAs(WorkAsID, EmployeeFK, OrgUnitPositionFK, InitialDate, FinalDate, JobName, …)

Data Model for the ORGANIZATION Pattern
//

// Entities and Contacts

// see CONTACT pattern’s data model

// People

// see PERSON pattern’s data model

// Organizations

Organization (OrganizationID, EntityFK, Name, Acronym, FiscalNumber, Notes,
OrganizationTypeFK, …)

OrganizationType(OrganizationTypeID, Name)

// Organizations Internal View

// see ORGANIZATIONALUNIT pattern’s data model

// ...

// Organizations External View

OrganizationRoleA(OrganizationRoleA, OrganizationFK, addedStateA, …)

OrganizationRoleB(OrganizationRoleB, OrganizationFK, addedStateB, …)

PersonOrganizationRoleB(PersonOrganizationRoleC, [PersonFK | OrganizationFK], addedStateC, …)

e.g., applied in the business application domain:

Customer(CustomerID, [PersonFK | OrganizationFK], InitialDate, FinalDate, CurrentCredit,
LimitCredit, Preferences, …)

Shareholder(ShareholderID, [PersonFK | OrganizationFK], SharesNr, Percentage, …)

Partner(PartnerID, OrganizationFK, InitialDate, FinalDate, …)

Subsidiary(SubsidiaryID, OrganizationFK, InitialDate, FinalDate, PercentageOwner, …)

Supplier(SupplierID, OrganizationFK, InitialDate, FinalDate, Notes, …)

PublicAdmin(PublicAdminID, OrganizationFK, Notes, …)

...

