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Effect of data density, scan angle, and flying height on the accuracy of
building extraction using LiDAR data
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A Hough transform based approach for extraction of buildings using LiDAR
data is presented. It is argued that LIDAR data should be smoothed and sparsed
prior to Hough transform for better result. Algorithms to realize this are
presented. Further, an algorithm which fits a vector model to extracted buildings
is outlined. Simulated LiDAR data have been used to investigate the effect of
three parameters (data density, flying height, and scan angle) on the quality of
buildings extracted. A set of accuracy indices is proposed for this purpose. It is
shown that the data density is the most significant parameter affecting the
accuracy of building identification.
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1. Introduction

The significance of 3D geo-information is increasing day by day with new
applications being found. Accurate 3D geo-information can help to make important
decisions like placement of telecommunication towers, planning of disaster
management, land tax evaluation, etc. It also helps in various modelling studies
like noise simulation, heat and exhaust studies, pollutant movement, etc. The 3D
details of buildings are an important item of geo-information and can be obtained
from land surveys, through photogramme-try (aerial or satellite stereco images) or
from LiDAR (Light Detection And Ranging) data.

Till recently, building extraction was being performed mainly by photogrammetry.
However, generation of a digital surface model (DSM) and extraction of buildings
using photogrammetry is resource and time consuming. In some cases it may even
become impossible to obtain DSM due to high object density, occlusions and object
complexity in city areas (Guo and Yasuoka 2002).

The advent of LiDAR technology has solved the problem of obtaining DSM as it
directly provides 3D coordinates of the ground points. The points provided by laser
scanner are dense and accurate. To utilize this data there is a need to develop
algorithms to efficiently and accurately extract information from a large volume of
data.
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Various approaches have been employed for extracting buildings from LiDAR
data. Classification of LiIDAR data using remote sensing tools has been investigated
by Arefi et al. (2003). They generated normalized difference images and also used
reflectance data for their classification approach. Researchers have used several
different methods for LiDAR data classification, like height segmentation (Maas
1999), texture based segmentation (Tan and Shibasaki 2002), reasoning on image
segments (Zhan et al. 2002), morphological processing, mathematical model fitting
(Vu and Tokunaga 2002), classification algorithms (Maas 1999, Voegtle and Steinle
2003, Elberink and Maas 2000) etc. Various methods have been combined to
increase the efficiency of classification. Both the first and last return data have been
used to get better accuracy (Voegtle and Steinle 2003). Integration of LiDAR data
with different data types, like multispectral images (Sohn and Dowman 2003),
reflectance information from LiDAR (Elberink and Maas 2000), GIS (geographical
information system) maps (Tan and Shibasaki 2002), etc. has been attempted to
improve classification accuracy.

This paper concentrates on building extraction using the Hough transform, which
has emerged as a valuable technique. The term ‘building extraction” encompasses
two processes — first, building identification, which is detection of LIDAR points that
belong to a building, and second the model fitting (also referred to in the literature as
building reconstruction), in which the identified building surfaces are modelled on a
vector framework. Vosselman and Dijkman (2001) have used a 3D Hough transform
to detect planes in LiDAR data. Hofmann et a/. (2003) have made a comparison
between 2D and 3D Hough transforms for detecting building planes in LiDAR data.
The Hough transform can be implemented using a cluster space described by two
slope parameters (s, and s,) and a distance parameter (d) (Maas and Vosselman
1999):

Z=sX+s5Y+d

The basic element adopted for computing the aforesaid parameters is a triangle.
Triangles are generated using a tessellation scheme on LiDAR data. Due to random
errors in the data (particularly in the Z direction) the parameters of these triangular
elements vary substantially even if the triangles come from the same roof plane. This
variation of parameters can be taken care of by clustering of data (i.e. having higher
values of quantization in Hough room). However, in case of high data density, on its
own this measure may not be able to account for the variation in parameters of
triangular planes due to random error. So preprocessing of LiDAR data by
smoothing, sparsing, or both, prior to the Hough transform, is desired. Further, how
building extraction is dependent upon data characteristics is not known. However,
this is fundamental for optimal use of LiDAR data. Finally, in the absence of a
proper accuracy analysis procedure, it is difficult to compare the performance of
different algorithms or the effect of data characteristics. The aforesaid issues have
been either partly explored or not explored in the existing literature, and are the
motivation for this work.

2. Data used

The availability of a large number of LiDAR data sets with varied specifications is
fundamental to this study. However, acquiring this data from the field is not feasible
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considering the cost involved. Furthermore, for the accuracy analysis studies it is
desirable that full and accurate ground truth is available. Considering the above, the
data used in this paper are generated using a LIDAR simulator (Lohani ez al. 2006).
In the simulator the terrain (ground surface and buildings on it) is represented using
mathematical equations. Mathematical models are also employed to simulate the
aircraft trajectory and scanning mechanism. A laser vector, for each transmitted
pulse, is computed using the trajectory coordinate, attitude parameters, and
instantaneous scan angle. The intersection of this vector with the terrain (i.e.
equations representing ground and buildings) gives the coordinate of the LiDAR
point. The simulator can also generate LIDAR data with specified errors.

It is imperative that the data density should play a crucial role in the quality of
buildings extracted. However, it is not known how the quality would vary for
different data densities. Furthermore, the same data density can be achieved for
different flying heights or for different scan angles or a combination of both by
changing the firing frequency accordingly. With the change in flying height and scan
angle, the pattern of spread of data points on the terrain changes. It is interesting to
investigate how this impacts the building extraction.

In view of the above discussion, three parameters, viz. data density, scan angle,
and flying height are chosen to characterize a data set. A total of 45 data sets
(consisting of 11 building roof planes) are generated for different settings of these
parameters. These buildings stand on flat ground. No trees were included in
simulated data as the aim is to study building extraction accuracy. Further, the
presence of trees will only increase the extra lap error, as discussed in the accuracy
analysis section later. For a simulated data set the flying height could be any of
500 m, 1000 m, and 1500 m while the scan angle could be any of 10°, 20°, and 30°.
Further, the data density could be any of 1, 2, 4, 8§, 12 points/mz. To achieve the
desired data density for fixed scan angle and flying height the firing frequency is
varied accordingly. A random error with standard deviation of 0.45 m in the X and
Y coordinates and 0.15 m in the Z coordinate is also added to the simulated data. It
is understood that the quantum of random error depends upon the altitude and the
location of LiDAR point on swath. However, this is maintained the same here for all
date sets as the main emphasis is to study the effect of the chosen parameters and not
that of varying random errors. The simulated data mimic cartesian coordinates on
UTM projection with WGS84 datum.

3. Methodology for building extraction

The methodology for building extraction is divided into two parts. First part consists
of identification of group of points corresponding to a roof plane by using Hough
transform. The second part consists of fitting a model to the points within a group.
The following paragraphs describe these steps. Matlab is used for coding the
algorithm.

3.1 Detection of building roof points

Building roof points are detected using the Hough transform. The methodology
adopted is shown in figure 1. LIDAR data in WGS84 are normalized by tran-
sforming the coordinates of points to the local origin (mean x, mean y, minimum z).
This helps to reduce the Z intercept parameter (d) of the plane equation
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Figure 1. Methodology for identification of group of data points belonging to a roof plane.

Z=5.X+s,Y+d. This parameter is further constrained in range by specifying the
maximum slope of the roofs present in the data. The data can be transformed back
to the original coordinates once the building model fitting is over. The point
elevation coordinates are smoothed if the data density is lower (up to eight
points/m?) while for higher data density both sparsing and smoothing are done.
Each data point is evaluated for smoothing. A plane is fitted to the point under
consideration and its neighbouring points (figure 2). The standard deviation of the
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Figure 2. Smoothing raw LiIDAR data to minimise the effect of random error. The dots are
LiDAR data while the line represents the plane fitted. Larger dot is the point under
consideration. (a) Standard deviation of separation less, so elevation changes to that of fitted
plane; (b) Large standard deviation of separation, so no change in elevation for this point on
edge.

separation of these points from the fitted plane is computed in the z direction. If the
standard deviation is less than the standard deviation of the data error the elevation
of the point under consideration is replaced by the corresponding elevation on the
fitted plane. This ensures that the data are smoothed for random error while
preserving the edges. Sparsing is done by removing the neighbours of a point which
are within a specified distance from the point. Data points which are on edges,
determined using the edge detector on the LIDAR image, and which were removed
in the process of sparsing, are added back. The sparse data produce larger basic
computation elements, i.e. triangles, thus minimizing the effect of random error on
slope parameters computed.

Data resulting from the above step are triangulated in plan by using a 2D
Delaunay triangulation. Using the coordinates of vertices of triangles the plane
parameters, i.e. sy, s,, and d are computed for each triangle. Hough room
quantization is done based on the specified quantization levels for different
parameters. These quantized levels facilitate voting to parameter space. The Hough
room cells with high frequency of votes are further analysed. All the triangles with
similar plane parameters vote in the same cell. However, all these may not belong to
one roof plane. So different point groups in one cell need to be separated. This is
realized by gridding all the points of a cell to a binary image with grid size being
equal to the average data spacing (figure 3). Grid elements where a data point is
present are made TRUE while the rests become FALSE. A morphological closing
operator (with a 3 x 3 structuring element) is operated on the resulting binary image
to close the holes in the data group. All the elements of an eight-connected point
group are given a unique ID using an indexing algorithm. The IDs are mapped back
to the points in the Hough room. The point groups, having area and number of
points larger than the specified thresholds, are kept for further analysis.

Following the above, a segmentation based fitting is carried out to collect all the
points belonging to one roof in one point group. This is done by starting with a point
group and fitting a plane to it by least squares. The perpendicular distance of
neighbouring points (within a distance threshold) to the fitted plane is calculated. If
the point is within 3¢ of the elevation error it is included in point group and the plane
parameters are updated. This is done till no other point is being included into the
group. This step helps to merge groups having different IDs but belonging to the
same roof.
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Figure 3. Segmentation of one cell of hough room. (a) Raw data; (b) Gridding of raw data
with TRUE (T) and FALSE (F) pixels; (c) Morphological closing on grid to fill holes; (d) ID
assigned to each individual group; (¢) Groups merging; (f) Retention of only major groups.
(The figure is only indicative of processing steps and not an exact graphical representation.)

3.2 Building model fitting

LiDAR points identified corresponding to building roofs in the above step are
represented using a vector framework. This is realized by fitting a plane to the point
group by least squares and finding the edges of the point group. The steps used for
building model fitting are shown in figure 4. For detection of the edge points the roof
point group is converted to binary raster with a pixel size equal to the average data
spacing (figure 5). Holes in the raster data are filled by morphological closing.
Boundary pixels are determined using the bwboundaries() function of the Matlab
software. The roof group points are mapped onto the raster and the points
corresponding to edge pixels are selected for further fitting of line by contour
approximation and orthogonalization. An algorithm, similar in concept to (Douglas
and Peucker 1973), but specifically adapted to identify roof edges, has been
developed for this purpose.

In this, two points having maximum separation in the boundaries are flagged as
control points. The distance of other points is calculated from the line formed by
joining the control points (figure 6(a)). The point at maximum distance from this
line is again flagged as a control point. Consideration of the direction of the
contour ensures that the points only on one side of the line are evaluated for
selection. Again the distance of points is calculated from the lines formed. The
point at maximum distance from its nearest contour line is made a control point
if its distance from the contour line is greater than a threshold distance. This is
done till all the points are within the threshold distance (half the minimum side
length specified for building) from the nearest contour line (figure 6(c)). Then
lines are fitted to all points between two consecutive control points. The longest
line is taken as the main orientation of building and other lines are made
orthogonal to that line. The lines obtained are later intersected to get the corners
of the roofs.

Once the building roofs are detected the roofs which are close (within a threshold)
to each other are intersected to get the line of intersection of roofs. The next step is to
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Figure 4. Steps of building model fitting and accuracy analysis.
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Figure 5. Schema of edge point detection of roofs. (a) Gridding roof points; (b)
Morphological Closing on grid to fill holes; (c) Application of Bwboundaries() function;
(d)Edge points detected.

find the height of the point group above ground. This is accomplished based on the
difference of the elevation of edge point group and their neighbours on the ground.
The point group height helps to differentiate roofs from the planar surfaces formed
due to flat ground. Using the corner coordinates of the roofs the building models can
be plotted.
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(a) (b) (c) (d)

Figure 6. Schema of line fitting to edge points by contour approximation and
orthogonalisation. (a) Maximum distance point from line; (b) Joining point at maximum
distance; (c) Contour approximation of edge points; (d) Resultant boundary of Line fitting
and orthogonalisation.

4. Development of accuracy indices

In order to assess the quality of buildings extracted the ground truth and a method
for comparison are required. A set of accuracy measures is proposed below. In the
existing literature the accuracy analysis is carried out mostly by employing the areal
measures. However, inclusion of the corner distance, slope and perimeter indices
makes error analysis more comprehensive. Only areal measures lead to misleading
conclusions on some occasions.

e Corner distance: Mean value of distance between corresponding nearest corner of
extracted and reference building:

0 dist(Prf, P
n

Cde

where Cde is the corner distance accuracy of a building, P& and P are the /"
corner points of the identified and reference buildings, respectively, dist(A4, B) is a
function which calculates the distance between points 4 and B, and n is the
number of corners of the building.

e Slope accuracy: This is the difference of the absolute values of the reference
building slope and the actual slope detected:

SDi = |Slref|i - |SICXt|j

where SD,; is the slope difference, S/, and S/. are the slopes of the reference and
extracted buildings, respectively, and i represents the direction of the slope (S, or
S, direction).

e Area difference: This is calculated using the formula:

Area(Poly,.;) — Area(Poly.y)
Area(Poly,r)

Area difference =
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where Area(Poly,) is the area calculation function for calculation of the area of
Poly, polygon. Poly,.s is the reference building polygon and Poly. is the
extracted building polygon.

e Perimeter difference: This is calculated using the formula:

Peri(Poly,.s) — Peri(Polyy)

Perimeter difference = Peri(Poly,)

where Peri(Poly,) is the perimeter calculation function for Poly,. Other terms are
as defined above.
e Area Overlap: This index is calculated using the formula:

Area(Poly,.; N Poly.y)
Area(Poly,r)

Area overlap =

where all the terms are defined as above.
e Area extralap: This is calculated as:

Area(Poly,,, — Poly,)

Area extralap =
rea extralap Area(Poly,r)

The corner distance and slope accuracies are reported in metres and degrees,
respectively, while the rest of the indices are unitless. Further, the aforesaid indices
are defined for an individual building. To define the accuracy for all buildings
together in a data set, the accuracy indices of individual buildings are averaged. The
standard error of mean is also computed.

5. Result and discussion

All 45 data sets are processed by the building extraction algorithm. The quantization
for Sy and S is kept at 7° and 2 m for the z intercept. The result shown in figure 7 is
for the simulated data obtained from an altitude of 500 m with scan angle 20° and a
data density of 8 points/m®. The algorithm was also tested on actual data with
satisfactory performance. The results of same are not included in this paper as the
main focus of this paper is on simulated data. The building models generated from
45 data sets are compared with their truth (the parameters of buildings used for
simulating the data) using the accuracy indices proposed above. In most of the cases
there are enough data points to yield statistically significant results. For example, the
corner distance value of the plot in figure 9(a) is an average of 660 corner distances
(four corners X, 11 roof planes X, 15 data sets). The extracted building models
(shown in figure 7) and their accuracy analysis indicate satisfactory performance of
the proposed method.

The results of an accuracy analysis are presented in two formats. In the first case,
the results presented are for all data generated with 10° scan angle (figure 8). The
ordinate scale values in these plots are set to accommodate the maximum error
value. The corresponding standard error is also plotted. These results show how
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Figure 8. (Continued).

accuracy varies with changes in data density and height for a constant scan angle.
The results for other scan angles are similar, thus are not shown here. In the second
case, the results are averaged all across the data. For example, to know how the
corner distance accuracy varies with height, all data obtained from a height with
different data densities and scan angles are averaged. These overall results are
presented in figure 9. This result attempts to explain, despite the variation in other
parameters (e.g. data density and scan angle), how the accuracy is being affected by
the parameter under consideration (e.g. flying height). Here the ordinate axis scale is
set between 0.00 and 1.00. The mean errors computed for all accuracy indices fall
within this range. Moreover, for corner distance and slope errors this axis represents
units in metres and degrees, respectively, while for other indices it indicates the
unitless value of ratio.

The mean values and standard errors of the mean plotted in figure 8(a) exhibit
significant improvement in corner distance accuracy with increase of data density
(e.g. 1 to 8 points/m?). However, the improvement from 8 to 12 points/m? is not
significant. Further, there is no significant systematic variation of accuracy for data
obtained from different flying heights. Similar behaviour is observed for all other
indices. The near-zero values of extralap are because the algorithm does not jump
out of building roof planes and also because there are no adjoining trees, etc. in the
simulated data.
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Figure 9. Variation of accuracy indices and their standard error for the variation in one
parameter and irrespective of values of other parameters.

The results in figure 9 show that the flying height and scan angle variation do not
affect building identification. However, as seen in figure 9(c) all accuracies improve
with data density. Except for the slope, the standard errors for other measures are
significantly small, thus showing the statistical significance of the results.

From figures 8 and 9 it is clear that with an increase in data density the corner
distance accuracy improves most. This is due to the fact that building corner
identification depends mainly on the definition of roof edges. The edges will be
located better if more data are available for line fitting. There is a similar reason for
the increase in slope accuracy as the roof plane is being defined better with more
accurate roof corners. The large standard error for slope indices is because of the
smaller buildings used here. A minor change in corner coordinates gives a large
rotation to the determined roof planes. For large buildings this error should have
smaller standard error. For the same reason, there is a non-monotonic improvement
in slope accuracy indices with increase in data density and the standard error is still
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larger when all results are clubbed together (figure 9(c)), though there is monotonic
improvement in slope accuracy.

Based on the result of the accuracy analysis for different data densities it is clear
that the main factor affecting the accuracy of building identification is data density.
The other factors do not affect the performance of building extraction in any
systematic manner.

6. Conclusion

The Hough transform based approach with data smoothing and sparsing to reduce
the effect of random error is effective in extracting buildings accurately. The building
modelling algorithm works satisfactorily and produces a vector model of buildings
for display and other purposes. However, extraction of edge points of building needs
further improvement. From accuracy analysis it is clear that building extraction
accuracy mainly depends on data density and there is generally no significant
improvement after 8 points/m?. The flying height and scan angle variations do not
affect the accuracy. It is expected that, like the Hough transform method, other
approaches to building extraction should also mainly depend on data density, with a
similar trend.
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