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ABSTRACT
Studies in monogamous rodents have begun to elucidate the neural circuitry underlying

the formation and maintenance of selective pair bonds between mates. This research suggests
that at least three distinct, yet interconnected, neural pathways interact in the establishment
of the pair bond. These include circuits involved in conveying somatosensory information
from the genitalia to the brain during sexual activity, the mesolimbic dopamine circuits of
reward and reinforcement, and neuropeptidergic circuits involved specifically in the process-
ing of socially salient cues. Here we present an integrated description of the interaction of
these circuits in a model of pair bond formation in rodents with a discussion of the implica-
tions of these findings for evolution, individual variation, and human bonding. J. Comp.
Neurol. 493:51–57, 2005. © 2005 Wiley-Liss, Inc.
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The emotional bonds between sexual partners are
among the most powerful driving forces of human behav-
ior, motivating some of the most notable examples of art,
literature, and architecture. Furthermore, disruption of
established pair bonds can have devastating consequences
for mental health. Thus, the formation of a pair bond is
one of the most profound events in the human experience.
The monogamous prairie vole has proven to be a useful
model for elucidating the neural substrates of pair bond
formation (Carter et al., 1995; Young and Wang, 2004).
This research has suggested that at least three separate,
yet interconnected neural circuits converge to yield the
development of the pair bond. Circuits involved in the
processing of social cues and formation of social memory
are tightly coupled with the brain’s reward and reinforce-
ment circuitry. These two circuits are modulated by as-
cending circuits conveying somatosensory information
from the genitalia during sexual interactions. The inter-
action of these pathways during sex culminate in the
development of a powerful association between the condi-
tioned stimulus (sex) and the unconditioned stimulus (the
partner) to form the conditioned “partner” preference, or
pair bond (Young and Wang, 2004). Dissociation of these
circuits in nonmonogamous species results in the failure
to form pair bonds between mates. Here we discuss the

integration of these circuits through the interactions of
peptide and dopamine (DA) systems and propose a holistic
model of pair bond formation. While these studies are
based exclusively in rodents, some of these principles, if
not the specific neurotransmitters and circuitry, are likely
relevant to pair bond formation in humans.

VOLE MODEL OF PAIR BONDING

Prairie voles are hamster-sized rodents that form en-
during pair bonds with their mates (Getz and Carter,
1996). Males and females nest together and both contrib-
ute to the rearing of their offspring. Pair bonds typically
last a lifetime and field studies suggest that if one partner
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disappears, more than 70% of the surviving partners do
not take on a new partner (Getz and Carter, 1996). While
prairie voles are considered “monogamous” because of
their social organization, extrapair copulations do occur
(Wolff et al., 2002). Therefore, prairie voles are useful as a
model of social bond formation, but not sexual fidelity. In
the laboratory, the neural substrates underlying pair bond
formation have been assessed using a “partner preference”
test, in which the time spent with a partner versus a
novel, opposite-sex individual is quantified (Williams et
al., 1992). Early behavioral studies revealed two impor-
tant observations. First, pair bonds are formed in both
male and female partners (Williams et al., 1992; Winslow
et al., 1993). Second, while pair bonds can form indepen-
dently from sexual activity, mating greatly facilitates the
formation of this bond (Williams et al., 1992; Winslow et
al., 1993).

Early studies of the pair bond revealed that the neu-
ropeptides oxytocin (OT) and arginine vasopressin (AVP)
play critical roles in pair bond formation (Winslow et al.,
1993; Williams et al., 1994). While there is now clear
evidence that both peptides play a role in pair bonding in
both sexes (Cho et al., 1999; Liu et al., 2001), most studies
have focused on the role of OT in the female and AVP in
the male pair bond. Central infusions of OT stimulate
partner preference formation in females in the absence of
mating, while a selective OT receptor antagonist blocks
mating-induced partner preference formation (Williams et
al., 1994). Similar effects have been reported with AVP
and the AVP V1a receptor subtype (V1aR) antagonists in
male prairie voles (Winslow et al., 1993).

OT and AVP are synthesized in the paraventricular
(PVN) and supraoptic nuclei of the hypothalamus, where
they are transported to the posterior pituitary and re-
leased into the general circulation (Gainer and Wray,
1994). Separate, centrally projecting OT and AVP systems
are involved in the regulation of a number of social behav-
iors in addition to pair bonding, including parental care
(Pedersen and Prange, 1979; Kendrick et al., 1987; Wang
et al., 1994; Kendrick et al., 1997), aggression (Ferris et
al., 1997), and anxiety-like behavior (Bielsky et al., 2004).
Central OT projections most likely arise from neurons in
the PVN, while AVP projections arise from the PVN, me-
dial amygdala (MeA), and bed nucleus of the stria termi-
nalis (BnST) (De Vries and Buijs, 1983).

In addition to OT and AVP, more recent studies have
suggested that corticotrophin-releasing factor (CRF) also
modulates pair bond formation (DeVries et al., 2002). Ini-
tial studies examining the interaction of stress and pair
bond formation found that both stress and corticosterone
facilitated pair bond formation in male prairie voles, while
inhibiting pair bond formation in females (DeVries et al.,
1995, 1996). Further examination of this relationship
demonstrated that central infusions of CRF facilitated
pair bond formation directly (Devries et al., 2002).

NEUROANATOMY OF PAIR BOND
FORMATION

The initial insights into the neuroanatomical sites of
action of all three neuropeptides in pair bond formation
were gleaned from studies comparing the distribution of
the peptide receptors in the monogamous and nonmonoga-
mous vole species. Montane and meadow voles are much
less social than prairie voles and do not typically form pair

bonds after mating (Jannett, 1980; Shapiro and Dews-
bury, 1990; Lim et al., 2004b). Interestingly, the distribu-
tion of OT, AVP, and CRF receptors in the brain are quite
distinct in monogamous and nonmonogamous voles (Insel
and Shapiro, 1992; Insel et al., 1994; Lim et al., 2005). The
striking differences in receptor densities in the nucleus
accumbens (NAcc) and ventral pallidum inspired early
hypotheses of an involvement of reward systems in pair
bond formation (Insel, 2003) (Fig. 1).

Prairie voles have high densities of OT receptors in the
striatum compared to montane voles (Fig. 1A,B), and site-
specific infusions of OT antagonist into NAcc, as well as
the prefrontal cortex, block pair bond formation in the
female (Insel and Shapiro, 1992; Young et al., 2001). Sim-
ilarly, prairie voles have higher densities of V1aR in the
ventral pallidum (Fig. 1C,D), and V1aR antagonist infu-
sion into the ventral pallidum prevents pair bond forma-
tion in males (Insel and Shapiro, 1992; Lim and Young,
2004). In addition, V1aR antagonist into the lateral sep-
tum prevents partner preference formation in males (Liu
et al., 2001). Finally, prairie voles have higher levels of
CRF-R2 binding in the septal pole of the NAcc (Fig. 1E,F),
and infusion of CRF into this region facilitates pair bond
formation in males, while a selective CRF-R2 receptor
antagonist, but not CRF-R1, blocks the facilitatory effect
of CRF (Lim et al., 2005, submitted). Interestingly, non-
monogamous vole species have higher levels of CRF-R1 in
the shell of the NAcc than prairie voles, and there is a
significant inverse correlation between the strength of the
pair bond and CRF-R1 density among individual prairie
voles (Lim et al., submitted).

In addition to the respective receptors, the neuropep-
tides themselves have been localized in the NAcc and
ventral pallidum (Lim et al., 2004a). Large-diameter OT-
immunoreactive fibers in the NAcc of both male and fe-
male prairie voles are likely of hypothalamic origin since
this is the major location of OT-producing neurons in
rodents. Smaller-diameter, punctate AVP-immuno-
reactive fibers which course through the ventral pallidum
and terminate in the lateral septum (Lim et al., 2004a)
likely originate in the MeA and BnST (De Vries and Buijs,
1983). Finally, CRF mRNA-producing cells and immuno-
reactive fibers are concentrated in the septal pole of the
NAcc (Lim et al., submitted).

While release of OT and CRF in these structures with
mating has only been inferred from the effects of antago-
nist infusions, AVP has been shown to be released in the
ventral pallidum concomitantly with ejaculation in the
male prairie vole using in vivo microdialysis (Morales et
al., 2004). Vaginocervical stimulation has been found to
potently stimulate central release of OT (Kendrick et al.,
1986; Sansone et al., 2002), suggesting that multiple mat-
ing bouts may also stimulate OT release in female prairie
voles.

REWARD, REINFORCEMENT, AND
BONDING

The critical role of the peptide receptors in the NAcc,
prefrontal cortex, and ventral pallidum suggest that the
mesolimbic reward pathway plays a critical role in pair
bond formation. The NAcc and prefrontal cortex receive
dopaminergic (DAergic) projections from the ventral teg-
mental area (VTA). The ventral pallidum is a major out-
put of the NAcc and relays information to other nuclei
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involved in reward processing (Zahm and Heimer, 1990;
Heimer et al., 1991; Klitenick et al., 1992; Zahm et al.,
1996). In female prairie voles, mating is associated with
an increase in extracellular DA in the NAcc, and there is
evidence of DAergic activity in males during mating
(Gingrich et al., 2000; Aragona et al., 2003). Dopamine D2
receptor activation in the NAcc facilitates pair bond for-
mation in both male and female prairie voles (Gingrich et
al., 2000; Aragona et al., 2003). In addition, blockade of D2
receptors, but not DA D1 receptors, inhibits pair bond
formation in both sexes. In female prairie voles, activation
of both D2 and OT receptors is necessary for pair bonding,
since blocking either receptor disrupts pair bond forma-
tion (Liu and Wang, 2003).

OT, AVP, AND SOCIAL RECOGNITION
PATHWAYS

In addition to their role in pair bonding, OT and AVP
play critical roles in the neural processing of social stimuli
necessary for individual recognition, which is a critical
component of pair bond formation. Rodents recognize pre-

viously encountered individuals, presumably via olfactory
signatures, and display a decrease in olfactory investiga-
tion during subsequent encounters. Brattleboro rats,
which have a natural mutation in the AVP gene, and
V1aR knockout mice display social amnesia (Englemann
and Landgraf, 1994; Bielsky et al., 2004). V1aR activation
in the lateral septum appears to mediate social recogni-
tion since infusion of AVP into this area enhances the
duration of the social memory (Engelmann et al., 1996),
and infusion of V1aR antagonist or antisense oligonucle-
otides into the lateral septum disrupts social recognition
(Englemann and Landgraf, 1994; Landgraf et al., 1995).
As noted earlier, infusion of V1aR antagonist into the
lateral septum blocks pair bond formation in male prairie
voles, possibly by blocking social recognition. With its
projections to the hippocampus and NAcc (Jakab and Le-
ranth, 1995), the lateral septum represents a potential
link between the social memory and reward circuitries
involved in pair bond formation.

OT knockout mice also display social amnesia (Fergu-
son et al., 2000). In contrast to AVP, OT appears to be
acting in the medial amygdala (MeA) to facilitate social

Fig. 1. Social organization and
neuropeptide receptor distribu-
tion in forebrain reward circuitry.
Autoradiographs of V1aR (A,B),
OT receptor (C,D), and CRF-R2
receptor (E,F) reveal that monog-
amous prairie voles (left column)
have higher densities of neuropep-
tide receptor than promiscuous
montane voles (right column) in
the nucleus accumbens (NAcc)
and the ventral pallidum (VP).
Panels E and F are courtesy of
Miranda M. Lim. Scale bar � 1
mm in A (applies to A–F).
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recognition, since infusions of OT into this area of OT
knockout mice rescues social recognition (Ferguson et al.,
2001). The MeA receives direct and indirect input from the
accessory and main olfactory bulbs and is involved in
processing socially relevant olfactory stimuli (Meredith
and Westberry, 2004). Lesions of the vomeronasal organ
inhibits pair bond formation in female prairie voles (Cur-
tis et al., 2001) and the MeA is dramatically activated
during a heterosexual social encounter or mating in prai-
rie voles as measured by c-Fos immunoreactivity (Cushing
et al., 2003; Lim and Young, 2004). Since the MeA is one
of the major sources of the AVP projection to the ventral
pallidum, this region likely serves an important role in
linking sexual activity, social sensory stimuli and the re-
ward pathway during pair bond formation.

SOMATOSENSORY MODULATION OF
NEUROPEPTIDE AND REWARD CIRCUITS

Peptidergic and DAergic pathways are modulated by
sexual activity through ascending somatosensory path-
ways. In males, sensory information from the penis is
relayed primarily within the dorsal penile nerve, a branch
of the pudendal nerve (Nunez et al., 1986). In females,
sensory input from the vagina and clitoris is relayed cen-
trally via the clitoral sensory nerve and vaginocervical
afferent fibers traveling within the pelvic and pudendal
nerves (Ueyama et al., 1987; Yucel et al., 2004). In both
males and females sensory afferents from the external
genitalia terminate bilaterally within the dorsal horn of
the lumbosacral spinal cord and these neuronal popula-
tions are activated during vaginocervical stimulation (ei-
ther artificially or via mating; Lee and Erskine, 1996,
2000) or copulation (Truitt et al., 2003).

While a number of ascending pathways have been
shown to relay information from the genitalia to the brain,
spinal projections from the lumbosacral spinal cord to the
nucleus tractus solitarius (NTS) and midbrain periaque-
ductal gray (PAG) are two likely candidates for modulat-
ing the OT, AVP, and DAergic systems involved in pair
bond formation. The NTS receives direct input from the
spinal cord (Menetrey and Basbaum, 1987) and electro-
physiological studies have shown that the majority of NTS
neurons respond to vaginocervical stimulation (VCS) in an
estrogen-dependent manner (Hubscher and Berkley,
1994, 1995). The NTS projects heavily to the PVN
(Sawchenko and Swanson, 1981; Cunningham and
Sawchenko, 1988; Sim and Joseph, 1994), providing exci-
tatory input to OT and AVP parvocellular neurons (Kan-
nan and Yamashita, 1985). The PAG also receives dense
input from the lumbosacral spinal cord (Mouton and Hol-
stege, 1998; Mouton et al., 2001) and this region has been
intimately linked to both male (Murphy and Marson,
2000; Murphy and Hoffman, 2001; Beall and Murphy,
2002) and female (Schwartz-Giblin and McCarthy, 1995;
Holstege et al., 1997; Vanderhorst et al., 2000) reproduc-
tive behavior. The PAG sends direct projections to the
PVN that preferentially terminate on neurons transneu-
ronally labeled from the penis (Murphy and Marson, 2000)
and vagina/clitoris (Murphy and Marson, 2001). Interest-
ingly, a subpopulation of oxytocinergic PVN neurons, per-
haps those receiving input from the PAG, project to the
intermediolateral cell column (Swanson and McKellar,
1979) and may provide sympathetic control over erection
and ejaculatory responses. In addition to the PAG and the

NTS, the parvocellular subparafascicular thalamic nu-
cleus (SPFp) is an interesting candidate for conveying
sexual somatosensory information to the forebrain. The
role of the SPFp in processing sexual stimuli is reviewed
in detail elsewhere in this issue (Coolen, 2005).

Sex is one of the most pleasurable activities that hu-
mans engage in, and evolution has enlisted the reward
centers of the brain to make sure that individuals have sex
to ensure reproductive success. Yet little is known about
the neurobiological mechanisms that create the pleasur-
able feeling associated with sex. Surprisingly, a direct
pathway by which somatosensory stimulation during sex
activates the reward circuitry has not been established. As
discussed, the VTA, along with its connections with the
NAcc and prefrontal cortex, is an essential neural sub-
strate for producing natural reward, including sex. In
male rhesus monkeys, stimulation of the VTA elicits
touching and mounting of a receptive female (Okada et al.,
1991), and recent studies have reported that the firing
rate of VTA neurons increases with the pursuit of a recep-
tive female and during mating (Hernandez-Gonzalez et
al., 1997). There are no direct projections to the VTA from
the lumbosacral spinal cord; however, there are direct
noradrenergic projections from the NTS to the NAcc (Delfs
et al., 1998). Since the NAcc is reciprocally connected to
the VTA, activation of the NTS during sex may activate
the NAcc-VTA pathway.

SYNTHESIS OF THE MODEL

Based on the pharmacological and anatomical data pre-
sented here, a working model of pair bond formation can
be formulated (Fig. 2). First, ascending sensory stimula-
tion from the genitalia during mating simultaneously ac-
tivates the DAergic reward circuitry and the OT and AVP
pathways involved in social recognition, presumably via
activation of the NTS, PAG, and ultimately the VTA.
Social olfactory information is conveyed via the olfactory
bulbs to the MeA and lateral septum. Other factors medi-

Fig. 2. Proposed neural circuitry of social bonding in monogamous
prairie voles. Somatosensory input from the penis or vagina impinge
on the nucleus tractus solitarius (NTS) and midbrain periaqueductal
gray (PAG), which then project to the nucleus accumbens (NAcc) and
paraventricular nucleus (PVN). Olfactory information is conveyed via
the olfactory bulb to the medial amygdala (MeA), where oxytocin
facilitates social recognition. The MeA sends vasopressinergic projec-
tions to the ventral pallidum (VP) and lateral septum (LS), which is
also involved in the formation of social memory. Activation of the
ventral tegmental area (VTA) results in dopamine release within the
prefrontal cortex (PFC) and NAcc. The simultaneous activation of the
dopaminergic and peptidergic pathways results in the formation of
the selective pair bond.
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ating reward, such as glutamate and opioids may also be
involved, but their role in pair bonding has yet to be
investigated. In monogamous species the interaction of
the reward and olfactory recognition systems during mat-
ing stimulates the formation of a conditioned association
between the reward of the sexual interactions and the
olfactory signature of the partner. The precise neural and
cellular mechanisms underlying this association are un-
known. It may be useful to consider the NAcc and ventral
pallidum as coincidence detectors, such that simultaneous
activation of peptide and DA receptors in these regions
leads to the development of the association.

Remarkable plasticity in the neuropeptide receptor dis-
tributions within the circuits involved in pair bonding
suggests a model for evolution of social behavior. The
differential expression of OT, AVP, and CRF receptors in
the NAcc and ventral pallidum in monogamous and pro-
miscuous vole species alters the coupling of the social
recognition and reward circuits involved in pair bonding.
Each of the circuits discussed here exist in all species, yet
in the monogamous prairie vole they merge due to the
particular expression pattern of the receptors. This idea is
supported by a study in which overexpressing the V1aR in
the ventral pallidum of the nonmonogamous meadow vole
using a viral vector resulted in their developing partner
preferences (Lim et al., 2004B). In that regard, it is inter-
esting to note that nonmonogamous rats will display a
conditioned partner preference, provided the female part-
ner is scented with a nonsocial scent (Pfaus et al., 2001).

The molecular mechanisms resulting in the diversity of
receptor expression patterns have been studied in detail
for the V1aR. The prairie vole V1aR gene has a polymor-
phic repetitive microsatellite sequence in the promoter
that is not present in the nonmonogamous montane and
meadow vole genes (Young et al., 1999). This microsatel-
lite may be responsible for the species differences in ex-
pression pattern, since it has been shown to alter gene
expression in a cell-type-specific manner (Hammock and
Young, 2004). Considerable individual variation in the
length of this microsatellite element (�40 basepairs) also
exists within the prairie vole species (Hammock and
Young, 2002). A recent selective breeding experiment re-
vealed that male prairie voles with a long microsatellite in
the V1aR gene promoter had higher levels of V1aR bind-
ing in the olfactory bulb and lateral septum than males
with a short microsatellite (Hammock and Young, 2005).
These long males also displayed higher levels of paternal
behavior and were more likely to form pair bonds after
abbreviated cohabitation with a female. Therefore, even
individual differences in the expression of the neuropep-
tide receptor within the circuits of pair bonding may par-
tially explain individual differences in the likelihood of
forming a pair bond. The human V1aR also has polymor-
phic microsatellite sequences in the promoter, and one
microsatellite has been associated with autism in two
independent studies (Kim et al., 2001; Wassink et al.,
2004). This raises the possibility that variations in V1aR
gene may alter expression patterns and potentially behav-
iors related to social bonding in humans.

IMPLICATIONS FOR HUMAN BONDING

There are few data to support the idea that common
neural pathways are involved in pair bonding in voles and
love in humans. Most certainly, higher-level cortical struc-

tures play a significantly greater role in pair bond forma-
tion in humans and other primates than in rodents; none-
theless, the pathways discussed here could modulate
human bond formation. A recent study has suggested that
in human females fidelity in relationships has a strong
genetic component (Cherkas et al., 2004). Imaging studies
reveal that the brain activation patterns in people while
viewing pictures of their romantic partners are similar to
that observed after infusion of cocaine or heroin (i.e.,
heavy activation in the VTA and striatum), and the acti-
vation pattern partially overlaps DAergic regions known
to express OT receptors (Bartels and Zeki, 2000). Obvi-
ously, pair bonding in humans can occur in the absence of
sex, but intimate sexual interactions may facilitate emo-
tional bonding in mates. The lack of a strict relationship
between ovarian cycle and sexual receptivity in human
females permits frequent sexual activity that may serve to
maintain the pair bond. Furthermore, nipple stimulation
is an important component of human sexuality, unlike any
other species, and in lactating females this stimulation is
a potent stimulus of OT secretion (Christensson et al.,
1989). OT and AVP are released into the blood during
sexual arousal and orgasm in humans (Carmichael et al.,
1987; Murphy et al., 1987). While in rodents OT and AVP
primarily have been associated with the processing of
olfactory social cues, the possibility remains that in pri-
mates these same peptides may modulate the processing
of social cues from other modalities, including visual and
auditory. Thus, in humans ascending somatosensory cir-
cuits activated during sexual intercourse, coincident with
the heightened activation of visual, tactile, and auditory
social pathways, may also modulate DA, OT, and AVP
circuits, potentially promoting the formation and mainte-
nance of the emotional bonds between partners.
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